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Abstract

This work introduces and evaluates an algorithm for dynamically adjusting the delay and gain of artificial late
reverberation in a real-time auralization system combining the image source method with a Feedback Delay Networks.
We propose a mixing time estimator that operates solely on the early reflections of a Room Impulse Response (RIR),
enabling its use in real-time dynamic auralization where full RIRs are unavailable. The estimator is based on both
signal-based and model-based predictors and exploits spatial information from Ambisonic-encoded early reflections.
We demonstrate that our method yields mixing time estimates that align with those obtained from complete RIRs,
while significantly reducing the required computational load. Building on this estimate, we propose a gain-matching
strategy that ensures smooth continuity of the RIR energy envelope, avoiding perceptual discontinuities and masking
effects. The algorithm was implemented in a real-time-compatible auralization framework and evaluated on a dataset
of measured and simulated room responses. Objective metrics and perceptual tests confirm that the proposed method
preserves spatial impression, source localization, and immersion. This makes it suitable for applications in virtual and
augmented reality, interactive audio systems, and real-time acoustic simulation. Its performance on a broader range
of room geometries and acoustic scenes remains to be fully evaluated.

Keywords— Room Acoustics, Spatial Audio, Auralization, Virtual Reality, Reverberation, Perception.

Résumé

Ce travail présente et évalue un algorithme d’ajustement dynamique du délai et du gain de la réverbération
artificielle dans un système d’auralisation combinant la méthode des sources images avec un Feedback Delay Network
(FDN). Nous proposons un estimateur du temps de mélange opérant uniquement sur les premières réflexions d’une
réponse impulsionnelle de salle (RIR), ce qui permet son utilisation dans un contexte d’auralisation dynamique en
temps réel où les RIR complètes ne sont pas disponibles. L’estimateur repose sur des prédicteurs à la fois basés
sur le signal et sur le modèle géométrique, et exploite l’information spatiale contenue dans les premières réflexions
encodées dans le format ambisonique. Nous montrons que la méthode fournit des estimations du temps de mélange
cohérentes avec celles issues des RIR complètes, tout en réduisant considérablement le temps de calcul. À partir de
cette estimation, nous proposons une stratégie d’ajustement du gain permettant d’assurer la continuité de l’enveloppe
énergétique de la RIR, évitant ainsi les discontinuités perceptibles et les effets de masquage. L’algorithme a été
implémenté dans un cadre d’auralisation en temps réel et évalué sur un ensemble de réponses impulsionnelles mesurées
et simulées. Les évaluations objectives et perceptives montrent que la méthode préserve l’impression spatiale, la
localisation des sources et l’immersion. Elle se prête ainsi à des applications en réalité virtuelle et augmentée, dans les
systèmes audio interactifs et la simulation acoustique en temps réel. La généralisation de cette méthode à une grande
diversité de géométries et de scènes acoustiques demande à être validée sur une base de données plus complète.

Mots clés— Acoustique des salles, Audio spatialisé, Auralisation, Réalité virtuelle, Réverberation, Percep-

tion.



Contents

1 Introduction 5

1.1 Context of the internship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Scientific context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Aim of the internship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Dataset and simulation methods 8

2.1 Measured Room Impulse Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Room models and room acoustic scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Simulation methods: geometrical acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 CATT-Acoustic simulations: Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Evert simulations: the Image Source Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Mixing time estimation 14

3.1 Theoretical background: mixing rooms, ideally diffuse sound fields and the mixing time . . . . . . . . 14

3.2 Model-based mixing time estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Signal-based mixing time estimators: echo density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Signal-based mixing time estimators: spatial incoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Limits and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Late reverberation synthesis and integration 25

4.1 Static late reverberation synthesis: Gaussian white noise with exponentially decaying envelope . . . . 25

4.2 Dynamic late reverberation synthesis: Feedback Delay Networks . . . . . . . . . . . . . . . . . . . . . 26

4.3 Reverberation time estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Late reverberation delay adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Late reverberation gain adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Objective evaluation 29

5.1 Energy decay properties and acoustic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Diffuseness properties of the simulated RIRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Perceptual evaluation 34

6.1 Test objective and expected results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Test protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 MUSHRA test and web implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.2 Subjects, number of trials, duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.3 Anechoic source stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.4 Room acoustic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.5 Binaural rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



4 CONTENTS

6.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.1 Subject post-screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3.2 Statistical data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Partial validation of the mixing time estimation algorithm . . . . . . . . . . . . . . . . . . . . . 40

6.4.2 Partial validation of the reverberation adjustment algorithm . . . . . . . . . . . . . . . . . . . . 41

6.5 Dynamic perceptual test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Discussion 42

7.1 Generalization to arbitrary room geometries and non-exponential decays . . . . . . . . . . . . . . . . . 42

7.2 Influence of scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Anisotropy of the late reverberation field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusion 44



Chapter 1

Introduction

This report presents the work that I conducted during my internship at the Institut Jean le Rond ∂’alembert (Sorbonne
Université) as part of the ATIAM Master 2 (IRCAM, Sorbonne Université, Télécom Paris).

1.1 Context of the internship

My internship took place in the ”Sound and Space” group of the Lutheries Acoustique Musique (LAM) team, located
on the Jussieu campus, from March 3 to August 11, 2025, under the supervision of Brian F.G. Katz and David
Poirier-Quinot. The Sound and Space group conducts research on room acoustics and spatial sound, with a focus on
real-time dynamic rendering of acoustic scenes. The ATIAM Master’s degree is part of my research curriculum at
École Normale Supérieure de Paris. This internship served as an introduction to the research field I will specialize in.
I will be starting a PhD position in October 2025 at IRCAM under the supervision of Benôıt Alary, Olivier Warusfel
and Carlos Agon on the topic of room acoustic simulations and spatial audio technologies.

1.2 Scientific context and motivation

The auralization of acoustics aims at reproducing the perceptual experience of sound by simulating its propagation from
a source to a receiver in a room. With the rise of immersive and binaural sound technologies, there is growing demand
for accurate virtual acoustics methods for applications such as Augmented Reality and Virtual Reality (AR/VR) [43],
archeoacoustics [42], video games, and virtual telepresence [5, 24]. In these scenarios, virtual sound sources must
seamlessly integrate with real or virtual environments, allowing the listener to freely explore the scene while the
simulation is dynamically updated.

The real-time dynamic auralization of acoustic spaces poses computational challenges. In fact, precise numerical
simulations of the wave equation are generally incompatible with real time requirements and room acoustic modelers
rely on geometric simplifications of the wave phenomena, treating the sound waves as sound rays [49]. Real time
auralization engines also rely on the simplified Room Impulse Response (RIR) model depicted in Fig. 1.1. A Room
Impulse Response between a source and a receiver is the time-domain pressure signal obtained at the receiver after a
Dirac excitation at the source. It can be used to reproduce the reverberation effect by means of a convolution with
an anechoic signal [23]. In this model, the RIR consists in three parts:

• the direct sound, arriving at time t0 (with respect to the sound source emission at time t = 0);
• the early reflections, which consist in sparse echoes of the direct sound arriving typically 20 to 200 milliseconds
after it;

• the late reverberation, starting at time t1, when too many reflections start arriving at once at the receiver
so that they cannot be perceptually separated. After t1, the reverberation is completely characterized by its
time-frequency energy envelope, following an exponential decay.
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Figure 1.1: Room impulse response model [23].

This model is a simplification that is not valid for all room geometries or source and receiver positions. It is known
that coupled volumes do not display an exponential decay, but rather a double-slope decay [30]. The closeness of the
receiver to a room boundary might also cause artifacts such as comb filter effects that hinders a smooth exponential
energy decay [29].

The RIR model separating the early reflections from the late reverberation is the basis of many existing auralization
systems, comprising two independent modules, one for the early reflections and one for the late reverberation. In
particular, a widely-used combination uses the Image Source method (ISM) to compute the early reflections and a
Feedback Delay Network (FDN) to render the late reverberation [39, 43]. While the ISM is computationally challenging
when computing high orders of reflections, one may compute only the first few orders and have an artificial reverberator
produce the reverberation tail. FDNs [22] are one of the most popular artificial reverberators, giving a precise control
over the frequency-band decay times of the reverberation. Because the late reverberation is completely determined by
its exponentially-decaying energy envelope, according to the stochastic model, and must not be updated dynamically
with source and receiver movements, artificial reverberators are computationally cheap. This duality leads to efficient
systems compatible with real-time purposes.

However, the question of the transition time between the Image Sources and the FDN remains mostly unaddressed
in the literature. Following the stochastic model, the transition time should be set to be the mixing time. This makes
sense perceptively if we assume that the mixing time is equal to the perceptual mixing time. The perceptual mixing
time tpm is defined as the smallest time τ at which the impulse response is perceptually indistiguishable from the same
impulse response but with the reverberation tail after τ replaced by a generic reverberation tail with the same gain
and slope [29]. Generally, no spatially precise modeling is required after the mixing time to preserve plausibility and
source localization. The RIR manipulation process is illustrated in Fig. 1.2. Here, the reverberation tail is replaced
by Gaussian white noise modulated by an amplitude envelope with the same decay slope as that of the RIR, as it has
been shown that this is perceptually similar to a room’s late reverberation [36, 23].
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Figure 1.2: Measured RIR (left) and the same RIR with tail replaced by an exponentially decaying noise (right).

However, the mixing time is not the transition time used in most implementations. This is because no accurate
method exists to estimate the mixing time based solely on model parameters on of the first early reflections. Fur-
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thermore, computing early reflections up to the mixing time might have a high computational cost, for instance in
very slowly mixing rooms. For instance, a classical value for the mixing time in a room with a volume of around 2000
m3 and a total surface area of around 1000 m2 is 200 milliseconds; that might require computing up to 10 orders of
reflections. Instead, for implementation eases and to reduce the number of image sources that must be computed, the
FDN delay is usually set to an arbitrary number around 40-80 milliseconds [36], or simply to the initialization time
of the FDN [29]. This implementation, lacking theoretical justification, may degrade auralization quality, as the FDN
might mask the image sources if introduced too early, and thus prevent source localization [18].

The question of the FDN gain is also not widely addressed in the literature. Reverberation gain critically influences
spatial impression, such that a higher gain can create the illusion of a larger space, even if the decay time remains
unchanged [27]. It may also bias distance perception by altering the early-to-late energy ratio, which is correlated
to perceived distance [35]. In most systems, there is a user control over the gain [5], but no algorithm that tries to
optimize the gain for maximal plausibility and immersivity. Like the reverberation delay, a reverberation gain set too
high might create a masking effect masking the precise spatial information contained in the image sources. Conversely,
a reverberation gain set too low will create a perceptually implausible effect of absence of reverberation.

Adjusting the delay and gain of the artificial late reverberation is critical for creating efficient and immersive
auralization systems. The solution proposed must be based on theoretical considerations. More precisely, to match
the stochastic model and its perceptual consequences, the FDN delay should be set to the mixing time, while making
sure that the FDN initialization time is compensated for. The question of estimating the mixing time from model
parameters and/or early reflections is thus critical and constitutes the gist of this work. Following the stochastic
model, the gain value may be deduced based on the gain of the early reflections around the mixing time, with the idea
of guaranteeing the smoothness of the exponential decay curve at all frequencies.

1.3 Aim of the internship

The aim of this work is to propose an algorithm for adjusting the delay and the gain of an artificial reverberator so that
it smoothly integrates to an image source simulation. This algorithm should have theoretical foundations based on the
physical properties of reverberant sound fields. It should be compatible with a real-time implementation for integration
into a dynamic auralization framework. The goal is to enhance the auralization framework by improving localization,
plausibility and immersivity. Its performance will be evaluated both with objective metrics and with perceptual tests.
The work intersects acoustics (sound propagation modeling), computer science (real-time algorithm optimization),
signal processing (implementation in the Max softmare for real-time auralization), and auditory perception (subjective
evaluation of the auralization).

The structure of this report mirrors the successive steps of the research. First, a test dataset was gathered,
comprising both measured RIRs and room models for which RIRs were simulated using different simulation methods
and parameters (Chapter 2). Then, the main work of this internship was focused on the problem of mixing time
estimation. Chapter 3 describes methods for the estimation of the mixing time both on complete RIRs and on early
reflections only, based on theoretical properties. Mixing time estimation is the first step of the algorithm developed
for the delay and gain adjustment of the artificial reverberation, which is described in Chapter 4. The following
two chapters are dedicated to the evaluation of the algorithm, based first on objective metrics (Chapter 5) and on a
perceptual evaluation (Chapter 6). Finally, remaining fields of inquiry and open questions are discussed in Chapter 7.



Chapter 2

Dataset and simulation methods

The test dataset is used through the study to test and quantify the behavior of the diffuseness metrics. It consists in
two types of data:

• Room Impulse Responses (RIRs) measured in various existing rooms
• Geometrical acoustic models that can serve as input of room acoustic modelers to simulate RIRs

Ideally, the room models would correspond to the rooms the measurements were made in, so that measured and
simulated RIRs could be compared for given source and receiver configurations. However, such datasets are very
hard to acquire in practice. A room model corresponding to a real room must be calibrated to fit the reality, as for
instance the absorption coefficients of the materials are not precisely known [6]. This is a time-consuming process
that was judged incompatible with the time constraints of the internship. Moreover, real rooms tend to have complex
geometries that lead to computationally expensive simulations that are difficult to work with. Systematic variation
of room properties in order to cover a wide range of room types and ensure a thorough evaluation of the method
is difficult for real rooms and enabled by designing room models that do not correspond to real rooms. Thus, to
produce simulations, room models were used that either did not correspond to existing spaces, or if they did, were not
calibrated. Independently, measured RIRs were taken from open-source datasets in order to evaluate the behavior of
the proposed metrics on real-world data. We will first describe the measured RIR dataset and then turn to the room
models.

2.1 Measured Room Impulse Responses

The measured RIRs gathered for the study were Spatial RIRs (SRIRs). SRIRs are RIRs measured using Spherical
Microphone Arrays (SMAs) in order to capture the spatial information of the sound fields. In Chapter 3, we will define
metrics that take as input SRIRs and make use of the spatial information contained in them in order to estimate the
mixing time. The SRIRs were encoded into higher-order Ambisonic (HOA). The HOA formalism relies on the spherical
harmonic decomposition of signals, where spherical sound fields are expressed in a basis of spherical functions. A B-
format signal comprises (N + 1)2 channels which correspond to the coefficients of the SH expansions, where N is the
Ambisonic order, with the convention that the first (M + 1)2 channels always correspond to the Mth-order encoding
of the signal (the first 4 channels correspond to the 1st order encoding, the first 9 to the 2nd order encoding, etc.).

SRIRs were gathered from three academic datasets:

• McKenzie et al. [34] released a dataset of SRIRs measured with an Eigenmike and encoded into 4th-order
Ambisonic. These were measured in a variable acoustics room with five different levels of absorption. In the
following, those are treated as five different rooms referred to as Variable 0%, Variable 25%, Variable 50%,
Variable 75% and Variable 100% and 21 RIRs per level of absorption were analyzed.

• The Motus dataset Götz et al. [19] is a series of measurements made in the same room with varying furniture and
source and receiver configurations. They were recorded with an Eigenmike and encoded to 4th-order Ambisonic.
Five furniture configurations were selected from this dataset with four different source-to-receiver configurations
per room configuration.

• Finally, an internal dataset of 13 SRIRs measured with an OctoMic in the Saint-Elizabeth church and encoded
to 2nd-order Ambisonic was used.

There were in total 123 measured RIRs with various acoustic parameters whose variability is presented in Fig. 2.1.
The standard acoustic parameters that were estimated are [21]:

• Early Decay Time (EDT): the reverberation time extrapolated from a linear fit between the arrival of the direct
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2.2. ROOM MODELS AND ROOM ACOUSTIC SCENES 9

sound and the -10 dB point, i.e. the time when the energy has decayed by 10 dB compared to the initial energy;
• 30 dB reverberation time (rt30): the -60 dB reverberation time extrapolated from a linear fit between the -5 dB
point and the -35 dB point.

• clarity (c80): the ratio of the total energy in the first 80 milliseconds of the RIR to the total energy after 80
milliseconds:

c80 = 10 log10

[∫ 80ms

0ms
h2(τ)dτ∫ +∞

80ms
h2(τ)dτ

]
(2.1)
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Figure 2.1: Distribution of RT30, EDT and c80 values in total and per room.

2.2 Room models and room acoustic scenes

The dataset of geometric models consisted in 16 room models with various geometries, volumes, surfaces, and wall
absorption. For some rooms, several source-receiver configurations were modeled, for a total of 21 distinct room
acoustic scenes. The complete configurations are listed in Table 2.1 along with the mean values.

For each configuration, the complete room acoustic scene consists in:

• Room geometry: walls and furniture positions and dimensions
• Room absorption: material for each surface with corresponding absorption coefficient per frequency band
• Source and receiver position and orientation

In terms of geometry, the room complexity shows great variability, ranging from the simplest shoebox rooms to
large concerts halls and complex coupled volumes showing nonexponential decay, such as the Snail. Examples of room
models are depicted on Fig. 2.2.

20
0

x (m)

2

4

10 10

6

z
(m

)

8

y (m)

5
0 0

(a) ShoeboxLarge

0

5

10

z
(m

)

10

x (m)

0

y (m)

0
-10-10

(b) Snail

400

10

z
(m

)

20

x (m)

10 20

y (m)

0
-10 0

(c) Pleyel

Figure 2.2: Room models examples, with source (red) and receiver (blue) positions. Surface colors indicate various wall materials.

Thus, while relatively small, the dataset provides enough variability in the room acoustic parameters to evaluate
the performance of the presented methods on various acoustic spaces with various complexities. This will enable us
to estimate the level of generality of the methods in terms of geometric complexity.
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Room Rec. Src. Volume (m3) Surface (m2) Abs. (%) RT60 (s) S-R dist. (m)

Amst 1 1 19578 5507 17.7 2.49 21.0
Coupled 1 1 12000 3600 32.1 1.40 15.5
Cube 1 1 1000 600 50.0 0.39 5.0
Fogg 1 1 2613 1472 17.1 1.37 10.9
HalteresFurnished 1 1 2114 1635 43.2 0.49 19.2
HalteresFurnished 1 2 2114 1635 43.2 0.49 7.1
Halteres 1 1 2227 1427 43.0 0.60 19.2
Halteres 1 2 2227 1427 43.0 0.60 7.1
Morgan 1 1 2089 2679 9.1 1.12 6.3
Orsay 1 1 2122 1357 15.7 1.27 12.0
Pleyel 1 1 16342 5384 22.4 1.69 24.5
ShoeboxIsoRefl 1 1 220 238 14.2 0.97 4.9
ShoeboxIso 1 1 220 238 10.0 1.41 4.9
ShoeboxLargeIso 1 1 1760 952 10.0 2.82 4.9
ShoeboxLarge 1 1 1760 952 10.0 2.82 4.9
Shoebox 1 1 220 238 10.0 1.41 4.9
Snail 1 1 3573 2038 21.4 1.17 8.5
Snail 1 2 3573 2038 21.4 1.17 13.1
Snail 1 3 3573 2038 21.4 1.17 24.3
Snail 1 4 3573 2038 21.4 1.17 20.1
Vienne 1 1 17095 5641 15.1 2.62 32.8
Mean 4762 2054 23.4 1.36 12.9

Table 2.1: Room model parameters for each acoustic scene of the dataset. The 60 dB reverberation time RT60 is estimated
with Eyring’s formula.

2.3 Simulation methods: geometrical acoustics

The geometrical acoustic models, more precisely the room geometry, absorption material and source and receiver
location and orientation, serve as input to room acoustic modeling algorithms aimed at simulating sound propagation.
One of the focuses of this work is the comparison between different simulation methods. The various room acoustic
modeling methods are generally divided into two main families [49]. The first family consists in numerically solving
the wave equation using appropriate discretization schemes [7]. These methods are computationally expensive and
unadapted to real-time purposes. A second family of methods, called geometrical acoustics, enables to considerably
speed up computations, at the cost of physical exactitude. Sound waves are approximated as rays traveling in straight
lines. Whereas in optics this assumption is mostly valid because the wavelengths are much smaller than the physical
objects they reflect on, acoustical waves may be of the same order of magnitude as these objects, particularly at low
frequencies [45], and in that context wave phenomena such as diffraction may not be neglected. Moreover, the phase
components of the waves are neglected, so that rays do not superpose coherently and interferences are not simulated.

In the following work, we will compare two geometrical simulations methods, namely Ray Tracing and the Image
Source method (ISM). Both methods were run on all the room acoustic models presented above.

2.3.1 CATT-Acoustic simulations: Ray Tracing

In the ray tracing method, inherited from geometrical optics, a certain number of rays are cast from the sound source
and their individuals reflection paths are computed until they reach the receiver or their sound energy becomes too
low. The rays are reflected from the walls either specularly or according to a given random law (such as Lambert’s
law) [55, 49]. The ray tracing method allows extensions that aim to model wave phenomena such as scattering (by
enabling a division of a sound ray in many rays when it reflects on a surface) and diffraction on edges [49].

The ray tracing method is considered highly accurate for simulating room acoustics. Schroeder [55] shows the
shortcomings of the traditional reverberation formulas (Sabine, Eyring and Millington) on the basis of reverberation
times estimated from RIRs simulated with ray tracing. Ray tracing simulations are often considered as groundtruth
for estimating room acoustic parameters and are used to study the variability of those parameters e.g. across source
or receiver positions [8], since it is very easy to run many simulations while modifying only one parameter, whereas
perfect control over the parameters is impossible in measurement setups. However, the accuracy of ray tracing depends
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on the number of rays cast from the sound, and the computational cost grows with the number of rays cast. As a
result, accurate simulations require an important amount of computations, which makes this method incompatible
with real-time requirements.

The ray tracing method was not re-implemented during this internship. Instead, we relied on a closed-source
commercial ray tracing software called CATT-Acoustic [11]. The CATT-Acoustic software is an accurate ray-tracer
widely used in academia and industry.

2.3.2 Evert simulations: the Image Source Method

The ISM is a widely used method in the context of real-time room acoustic modeling and auralization because of its
algorithmic simplicity. This method was originally introduced by Allen and Berkley [4] in the case of a rectangular
room, and then extended to arbitrary room geometries [9]. It consists in recursively creating virtual mirror sources
of the original sound source, positioning them symmetrically with respect to the surfaces of the room, as shown on
Fig. 2.3. The image sources are virtually located outside of the room, with the property that their distance to the
receiver is equal to the length of the reflection path of the sound ray from the real source to the receiver. For rigid wall
boundaries in a shoebox room, the image source solution converges to the wave equation solution when the number
of image sources increases [49]. The ISM assumes specular reflections: the angle of incidence equals the angle of
reflection. No scattering, diffuse reflection, or surface roughness is considered, although recent implementations try to
integrate these wave phenomena [57].

Source Image source

Wall

Listener

Figure 2.3: First order image source solution. The thick line from the image source to the listener represents the same distance as the
path from the real source to the listener reflecting on the wall.

The image source algorithm was not re-implemented in the course of the internship. The implementation included
in the IRCAM SPAT [10] software, called Evert, was used. It outputs a list of all image sources up to a certain
reflection order. For each image source, its time of arrival, location, and per-frequency band sound attenuation due
to distance and absorbing material are given.

The auralization of the image sources was re-implemented. The auralization consists in outputing a RIR based on
the list of image sources. The monophonic (single-channel) implementation is straight-forward. For each frequency
band, the image sources are added together at their respective times of arrival with the adequate attenuation. The
frequency band auralizations are summed together to produce a broadband auralization. However, this neglects the
receiver orientation and prevents the localization of the sound source. With the development of the Higher Order
Ambisonic (HOA) formalism and of binaural technologies, spatially accurate methods have been developed for the
auralization of image sources. The method implemented in SPAT and re-implemented in the course of this work consists
in projecting the input signal corresponding to one image source onto the basis of spherical harmonic functions, an
orthonormal basis of functions defined over the sphere. The ambisonic-encoded signal vector a(t) ∈ R(N+1)2 for a
source signal s(t) coming from direction (θ, ϕ) is given by:

a(t) = s(t) · y(θ, ϕ), (2.2)

where y(θ, ϕ) is the vector of (N+1)2 real spherical harmonics up to order N , evaluated at azimuth θ and elevation
ϕ. Each image source is thus encoded based on its direction of arrival, then all image sources are summed together
to produce the final, spatialized auralization. A higher Ambisonic order leads to a higher spatial resolution. Here we
chose N = 3, which results in 16-channel signals. In order to listen to the Ambisonic signals and perceive the desired
spatial impression, one must decode them into a given loudspeaker setup or to the binaural (2-channel) format for
headphone rendering [38]. Binaural decoding will be more thoroughly discussed in Chapter 5. This was implemented
in SPAT and re-implemented in the course of the internship with good agreement.
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Table 2.2 shows the maximum orders on which the simulations were run and the corresponding computation times
and RIR durations. For practical reasons, the maximum order was chosen based on the running time in order not to
exceed one hour of computation. Predicting the running time based on the room model parameters is a non-trivial
problem. In the general case, the number of image sources grows exponentially with the reflection order: the number
of image sources of order up to K is

∑K
k=1 N(N − 1)k−1 for N surfaces [49]. Borish [9] shows that the most costly

computations come from the visibility check: given an image source, one must check whether its sound actually reaches
the receiver. In a shoebox room, no visibility check is necessary, which makes the computations very efficient for those
rooms, as shown by Table 2.2. In other room geometries, this visibility check influences the computation time in
unpredictable ways.

Room Rec Src Max Order Running time
Amst 1 1 12 32’50
Coupled 1 1 20 5’39
Cube 1 1 20 0’26
Fogg 1 1 4 26’56
HalteresFurnished 1 1 11 22’42
HalteresFurnished 1 2 10 11’20
Halteres 1 1 14 28’40
Halteres 1 2 14 30’17
Morgan 1 1 6 1h15’41
Orsay 1 1 12 50’06
Pleyel 1 1 10 57’05
ShoeboxIsoRefl 1 1 18 15’11
ShoeboxIso 1 1 18 15’14
ShoeboxLargeIso 1 1 12 13’56
ShoeboxLarge 1 1 20 0’29
Shoebox 1 1 20 0’28
Snail 1 1 13 18’28
Snail 1 2 14 13’45
Snail 1 3 14 12’42
Snail 1 4 13 14’15
Vienne 1 1 12 35’46

Table 2.2: Simulation parameters and computation times for each room acoustic scene.

Thus, ray tracing and image source simulations were run on the same room models, yielding 3rd-order Ambisonic
RIRs. Due to the exponential increase in the number of image sources with reflection order, the ISM quickly becomes
computationally infeasible for high orders. Consequently, it is typically limited to modeling only early reflections. In
contrast, ray tracing approximates the entire RIR by simulating a large number of rays that propagate and reflect
within the environment. The accuracy and computational cost of ray tracing depend heavily on the number of rays
emitted. Using too few rays risks missing some sound paths, which can lead to an underrepresentation of energy and
reflection density in the simulated RIR. However, the ISM deterministically computes all specular reflection paths up
to the chosen order, ensuring completeness within that limit. Moreover, the ISM models only specular reflections,
whereas ray tracing naturally accommodates more complex phenomena such as scattering by allowing reflections with
randomized incidence directions, thus better capturing diffuse reflection effects. The differences between the two
simulation methods are summarized in Table 2.3.

These datasets will serve as a basis to evalute the metrics and algorithms that will be defined throughout this
work, with an emphasis on the contrasted behaviors between measured and simulated RIRs and between ISM and ray
tracing simulated RIRs.
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Image Source Method Ray Tracing

Computational Complex-
ity

Exponentially grows with reflection
order; becomes intractable at high
orders.

Depends on number of rays; scales
linearly with rays cast.

Reflection Order Computes all specular reflections up
to a specified order exactly.

Approximates reflections probabilis-
tically; can model higher-order re-
flections with enough rays.

Completeness Guaranteed to find all reflection
paths up to the chosen order.

May miss some paths if too few
rays are used, leading to reduced en-
ergy/density.

Reflection Type Models only specular (mirror-like)
reflections.

Can model specular and dif-
fuse/scattered reflections via
randomized incidence.

Physical Phenomena
Modeled

Limited to specular reflections and
direct paths.

Includes scattering, diffraction (to
some extent), and diffuse reflections.

Typical Use Case Accurate early reflection modeling,
useful for detailed analysis of initial
reflections.

Simulates complete RIR including
late reverberation and diffuse field
effects.

Table 2.3: Comparison between Image Source Method and Ray Tracing.



Chapter 3

Mixing time estimation

In the context of a real-time auralization system combining the ISM for the early reflections and a FDN for the late
reverberation, a natural choice for the FDN delay is the mixing time. In fact, the mixing time is defined as the time
from which the RIR contains no more spatial information and may be fully modeled by its exponentially-decaying
time-frequency envelope. The ISM produces a spatially precise auralization, where each image source is auralized based
on its virtual position relative to the listener, while the FDN produces a generic auralization which takes as input only
the room reverberation time and does not depend on source or receiver position or orientation. Therefore, the mixing
time seems to be the perfect tradeoff between computational efficiency and perceptual authenticity. Many mixing time
estimations methods have been widely addressed in the literature [2, 58, 20, 12, 29, 31], but no consensus has been
reached. Moreover, mixing time estimators often take as input full RIRs and do not operate online, making them
incompatible with real-time implementations. Thus, this chapter will address the question of mixing time estimation,
focusing in particular on the challenge of estimating the mixing time in a real-time context, i.e. when only model
parameters and the early reflections are available inputs.

3.1 Theoretical background: mixing rooms, ideally diffuse sound fields
and the mixing time

In order to propose estimates for the mixing time, one must define from a theoretical point of view the stochastic
model and the properties associated with it, namely the properties of a diffuse sound field.

Schroeder [56] in the frequency domain and Polack [44] in the time domain proposed a stochastic model for
reverberation, which serves as the theoretical basis for artificial reverberators. The late reverberation may be modeled
as the realization of a Gaussian random process:

h(t) = b(t)e−δt, (3.1)

where b(t) is a centered stationary Gaussian white noise and δ the damping factor. A dependence to frequency
may be added by modeling the impulse response’s time-frequency energy envelope:

Wh(t, f) = P (f)e−δ(f)t. (3.2)

There are two frequency-dependent parameters, the noise initial power spectrum P (f) and the damping factor
δ(f). This stochastic model is based on two densities: modal density and echo density [53, 23].

Dm(f) ≈ 4πV
f2

c3
, (3.3)

De(t) ≈ 4πc3
t2

V
, (3.4)

where c is the speed of sound, V the room’s volume and t is the time since the sound source emission.

The stochastic model is valid for high modal and echo densities. In the frequency domain, the stastical model relies
on the assumption of high modal overlap, which is not verified at low frequencies [23]. The cutoff frequency, based on
the criterion that the average spacing between normal frequencies must be less than one third of the bandwidth of a
mode, is called the Schroeder frequency [53]:

14
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fsch ≈ 2000

√
RT

V
Hz, (3.5)

where RT is the -60 dB reverberation time in seconds and V the room volume in m3. The Schroeder frequency
marks the transition from individual, well-separated resonances to many overlapping normal modes.

In the time domain, the stochastic model assumes a high density of arriving reflections at any point. The transition
time between early individual reflections and a diffuse sound field is called the physical mixing time tm and is a property
of the room. The threshold for sufficient echo density De to reach the physical mixing time remains to be determined.

Eq. 3.4 shows that the density of echos increases with time after a Dirac excitation. After a sufficient time, if
the right conditions are met, there are many reflections arriving from every direction at any point of the enclosure.
This property is called diffuseness, or mixing. The physical mixing time is the time required for a sound field to
become diffuse after a Dirac excitation; it is the duration of the diffusion process [29], during which the sound energy
continuously spreads over the whole volume.

An ideally diffuse sound field satisfies the following properties [26, 29]:

• isotropy: a uniform angular distribution of sound energy flux (rate of energy flow per unit area) at any point
• homogeneity: a constant acoustical energy density (energy per unit volume) over the whole space

Mixing is linked to the stochastic model because during mixing, the sound field becomes increasingly stochastic
over time. A condition for a room to be mixing, i.e. to reach an ideally diffuse sound field after a sufficient amount of
time, is its ergodicity [45]. Ergodicity ensures that long-term time-averaged measurements (e.g., decay rates, energy
distribution) are representative of the entire room. The statistical behavior at all points in the space equals that at
one point over time. After a sufficiently long time, the system’s state becomes statistically independent of its starting
configuration.

The theoretical conditions for a room’s ergodicity are not fully understood. Some room geometries are known to
be non-mixing: for example, perfectly rectangular rooms, since particles traveling in them take only eight possible
directions and thus might not explore the whole space.

In practice, an ideally diffuse sound field is never reached. In a reverberant chamber, the diffuse-field conditions are
not perfectly fulfilled due to the statistical superposition of wall reflections (time domain) or of room modes (frequency
domain) [37]. Polack [45] showed that absorbing rooms can never be perfectly isotropic because there always remains
a net energy flow towards the absorbing walls, as is illustrated by Fig. 3.1. Diffuse-field conditions are not usually met
everywhere in the enclosure, as there are for instance comb filters caused by the nearness of room boundaries.

Therefore, although the diffuse-field properties (i.e. isotropy and homogeneity) can serve as a basis for measuring
the diffusion process, they are never completely met. Thus, we must rely on perceptual thresholds to estimate a mixing
time based on these properties.
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Figure 3.1: Angular distribution of energy at the receiver during an image source simulation, at time windows 43-64 ms (left), 234-256
ms (center), and 405-426 ms (right).

3.2 Model-based mixing time estimators

Model-based estimators of the mixing time take as input one or several room model parameters such as volume, surface,
or absorption coefficients. Lindau et al. [29] provided a comprehensive review of existing model-based estimators. A
simple criterion for estimating the perceptual mixing time is a sufficient echo density. The echo density is given by
Eq. 3.4. The echo density threshold is determined based on psychoacoustic knowledge. Based on the criterion that at
least 10 reflections overlap within the auditory system’s time resolution (24 ms), the mixing time may be estimated
from equation 3.4 as [23]:
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tmp ≈
√
V in milliseconds, (3.6)

where V is the room volume in m3. Other model-based estimators of the perceptual mixing time have been
proposed, for instance:

tmp ≈ 47× V

S
, (3.7)

where S is the room surface area in m2 [48].

Model-based estimators provide computationally cheap estimates of the mixing time based on room properties.
After determining perceptual mixing times on a dataset of measured RIRs via a perceptual test, Lindau et al. [29]
showed that

√
V and V correlated linearly with perceptual mixing times with statistical significance on their dataset.

However, their dataset was limited to classical shoebox rooms with uniform distribution of absorption, which are also
the types of rooms from which the model-based formulas have been derived [23]. It is expected that the model-based
estimators will perform poorly on non-Sabinian rooms [46, 60], i.e. rooms that do not obey the assumptions of Sabine’s
formula (uniform distribution of absorption across surfaces, homogeneous and isotropic sound field, and exponential
energy decay). More refined estimation methods, based on RIRs, have been proposed.

3.3 Signal-based mixing time estimators: echo density

Several signal-based methods have been proposed to estimate the mixing time from RIRs. A comprehensive review is
provided by Lindau et al. [29], comparing the perceptual relevance of various estimators. Among those reviewed, the
method of Abel and Huang [2] shows the strongest correlation with perceptual mixing time and is thus the primary
focus of our discussion. Other approaches such as those by Defrance et al. [12], Stewart and Sandler [58], Hidaka et al.
[20] perform less well in this regard.

The echo density profile η(t) proposed by Abel and Huang [2] quantifies the time-varying diffuseness of an RIR.
Their approach is based on the assumption that, in a fully mixed (diffuse) field, the pressure amplitude values in a
short window follow a Gaussian distribution. The profile measures the fraction of samples in a window that exceed
one standard deviation, normalized by the expected value under the Gaussian assumption.

The echo density at time t is given by:

η(t) =
1

erfc(1/
√
2)

t+δ∑
τ=t−δ

w(τ)1{|h(τ)| > σ(t)}, (3.8)

where h(t) is the room impulse response, w(τ) is a positive windowing function (typically rectangular or Hanning),
2δ + 1 is the window length in samples, σ(t) is the windowed standard deviation of h defined as:

σ(t) =

[
t+δ∑

τ=t−δ

w(τ)h2(τ)

]1/2

, (3.9)

and erfc(1/
√
2) ≈ 0.3173 is the expected proportion of samples outside one standard deviation in a standard Gaussian

distribution. The window duration is typically around 20 ms, long enough to contain at least a few reflections within
each frame and short enough to be psychoacoustically relevant.

This profile starts near zero in the early part of the RIR (where few strong reflections dominate, so the standard
deviation is high) and increases as overlapping reflections cause the pressure distribution to approximate Gaussian
noise, as shown by Fig. 3.2. In fully diffuse conditions, η(t) ≈ 1. Although Abel and Huang [2] do not explicitly
mention the mixing time, they interpret the time at which a value of one is first attained as the start of the late field.
Following this remark, Lindau et al. [29] propose using the echo density profile to estimate the mixing time, simply
by setting the estimated mixing time as the first time at which the profile reaches unity. An example of a measured
RIR, its corresponding echo density profile and resulting estimated tm is given on Fig. 3.3, along with the echo density
profile of measurement noise.
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Figure 3.2: Amplitude histograms before and at the estimated mixing time
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Figure 3.3: Echo density on a measured RIR (left) and on measurement noise (right).

The echo density metric shows good performance on measured RIRs but does not give satisfactory results on
early RIRs simulated with the ISM. For early RIRs, the echo density metric never reaches unity on image source
auralizations, as they are too sparse to take on a Gaussian distribution. In the classical implementation, the ISM
does not implement scattering. Scattering is a phenomenon caused by the reflection of sound on rough surfaces,
and causes the reflections to spread in space and time [57]. In contrast, the ray tracing simulations used in this
study implemented scattering. Thus the echo density metric applied on ISM and ray tracing simulations for the same
acoustic scene produce very different results, as can be seen on Fig. 3.4.
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Figure 3.4: Comparisons of echo density profiles between ISM and ray tracing simulations. From left to right: Snail 1 3, ShoeboxIsoRefl
1 1, and Halteres 1 1. tlim is the noise level.

As such, the echo density metric is not usable to estimate mixing time from an image source auralization, since in
general the echo density metric does not reach unity on early RIRs.

3.4 Signal-based mixing time estimators: spatial incoherence

The echo density metric seems unadapted to RIRs simulated with the ISM. It relies only on the arrival times and
amplitudes of the image sources and does not take into account their direction of arrival relative to the listener. Other
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metrics must be proposed that fully exploit the spatial information contained in the ISM simulations.

In fact, both the ISM and ray tracing may simulate Spatial RIRs (SRIRs). SRIRs are encoded using the Spherical
Harmonic formalism. The acoustic pressure measured at the spherical coordinates r = (r, θ, ϕ) may be expressed in
the basis of the SH functions:

p(r, k) =

∞∑
l=0

l∑
m=−l

iljl(kr)Y
m
l (θ, ϕ)bl,m(k), (3.10)

where k = 2πf/c is the wavenumber, jl the order-l spherical Bessel function, and Y m
l the order-l, degree-m, real-valued

SH function. The order-L SH expansion consists in keeping the coefficients up to order L. The higher the order, the
larger the area of accurate description of the sound field around the origin. The time-domain SH expansion is the
inverse Fourier transform of the frequency-domain coefficients bl,m(k). The coefficients are classically ordered by order
and then by degree, and the total number of coefficients is (L + 1)2. Each coefficient is a time series bl,m(t). This
format is called Ambisonics. Typical values for L are 1 and 3, and the SH signals are thus encoded using respectively
4 and 16 channels. For L > 1, the format is referred to as Higher Order Ambisonics (HOA).

Epain and Jin [13] proposed to use the spatial information contained in SRIRs encoded in the SH domain in order
to estimate the spatial incoherence of the sound field. In the case of an ideally diffuse sound field, which may be
modeled by Gaussian noise or by an infinite number of uncorrelated plane waves, the covariance matrix of the SH
signal channels is close to ρI(L+1)2 , where I is the identity matrix, which means that the SH signals are mutually
uncorrelated. This is due to the fact that the sound field, being perfectly diffuse, is spatially incoherent, with plane
waves arriving from every direction. On the contrary, in the case of a maximally non-diffuse sound field, consisting
for instance of only one plane wave or of several correlated plane waves, the SH signals with have non-zero covariance
outside of the diagonal. The homogeneity of the eigenvalues of the covariance matrix is a good indicator for the degree
of spatial incoherence caputed by the SH signals. This is illustrated by Fig. 3.5.
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Figure 3.5: SH signals covariance matrix and eigenvalues for uncorrelated Gaussian white noise (left) and perfectly correlated Gaussian
white noise (right).

As a result, the spatial incoherence metric coined CoMEDie is defined as [13]:

d = 1− γ

γ0
, (3.11)

where γ is the deviation of the eigenvalues of the covariance matrix from their mean:

γ =
1

⟨v⟩

(L+1)2∑
i=1

|vi − ⟨v⟩|, with ⟨v⟩ = 1

(L+ 1)2

(L+1)2∑
i=1

vi (3.12)

and γ0 = 2
[
(L+ 1)2 − 1

]
the value in the most non-diffuse case.

If we simulate an ideally diffuse sound field by mutually uncorrelated Gaussian white noise across the SH channels,
we obtain a diffuseness value close to 1, since the covariance matrix approximates ρI(L+1)2 and its eigenvalues are all
close to ρ. The maximum value for this metric is thus 1 (γ = 0).

Massé [31] extended the CoMEDiE measure to a spatial incoherence profile by proposing to apply it on a short
sliding window of the RIR. A typical value for a window length is 24 milliseconds. This results in a spatial incoherence
profile Γ(t). Examples of the spatial incoherence profile of two measured RIRs and of measurement noise are given on
Fig. 3.6.
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Figure 3.6: Spatial incoherence on two measured RIRs (left, center) and on measurement noise (right).

As such, the spatial incoherence metric is more adapted to ISM simulations than the echo density metric. In fact,
the spatial incoherence profile of the ISM simulations closely matches that of the ray tracing simulations for the same
room acoustic scene, as can be seen on Fig. 3.7. The RMS error between the ray tracing and the ISM simulations
averages only 0.09 for the spatial incoherence metric whereas it is 0.4 for the echo density metric. Fig. 3.9 shows
closely matching spatial incoherence values. This can be explained by the fact that the spatial incoherence metric
makes full use of the spatial information contained in image source simulations in order to capture the phenomenom of
increasing diffuseness. Although the two simulations methods (ray tracing and image source) have critical differences,
such as the fact that ray tracing takes into account scattering while image source assumes purely specular reflections,
the spatial incoherence metric, by using the spatial information contained in the image sources, manages to overcome
the limitations of image source and capture the increasing diffuseness of the sound field even after a few reflections.
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Figure 3.7: Spatial incoherence profiles computed on ISM and ray tracing simulations. From left to right: HalteresFurnished 1 1, Snail
1 1, and ShoeboxLarge 1 1.

Unlike the echo density measure, the spatial incoherence profile cannot be straightforwardly used to estimate the
mixing time. In fact, as we can see on Figs. 3.6 and 3.7, a clear plateau is not always reached, and when it is, there
is no predictable value for the spatial incoherence plateau. The spatial incoherence value is constrained not to exceed
unity, but since the sound field is never perfectly diffuse, there is no guarantee that it will reach a certain value in
all cases. The spatial incoherence metric was applied on the dataset of measured RIRs and simulations presented in
Chapter 2 with great variability. Table 3.1 shows the global spatial incoherence values (i.e. the spatial incoherence
metric applied on the full RIR with no windowing) for all room acoustic scenes and the mean spatial incoherence
values per measured room. We observe great variability in the case of the simulated RIRs, with values ranging from
0.2 to 0.84. For the measured RIRs, we observe slightly less variability, with values ranging from 0.31 to 0.58.

As higher orders induce higher spatial resolution, the metric is sensitive to Ambisonic order. This was already
observed by Epain and Jin [13] who noted that the sound field generated by a few uncorrelated sources evenly
distributed in space might be interpreted as diffuse when looking only at the order-1 Ambisonic signals, while the
spatial incoherence profile of the order-3 Ambisonic signals will show the sound field coherence. Typically, when
several uncorrelated sources are located in directions opposite to each other, higher Ambisonic orders will lead to
smaller spatial incoherence values: the sound field looks diffuse when looking only at the lower order Ambisonic
signals.

Figs. 3.8 and 3.9 show the influence of Ambisonic order on the spatial incoherence value for both measured and
simulated RIRs. In all cases, the spatial incoherence value tends to decrease as the Ambisonic order increases.
Examples of spatial incoherence profiles confirm this observation (Figs. 3.11, 3.10). The figures show that the higher
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order signals have a smoother profiles and tend to decrease variability within a room. Therefore, the 3rd-order signals
were chosen for mixing time estimation. A more thorough analysis of the influence of Ambisonic order and correlation
with perception of diffuseness is left for future work.

Room Rec. Src. S.I. (rt) S.I. (IS)

Amst 1 1 0.58
Coupled 1 1 0.42
Cube 1 1 0.20
Fogg 1 1 0.34
HalteresFurnished 1 1 0.42 0.38
HalteresFurnished 1 2 0.34 0.34
Halteres 1 1 0.45 0.41
Halteres 1 2 0.34 0.30
Morgan 1 1 0.41 0.32
Orsay 1 1 0.56 0.49
Pleyel 1 1 0.64 0.54
ShoeboxIsoRefl 1 1 0.69 0.73
ShoeboxIso 1 1 0.76 0.84
ShoeboxLargeIso 1 1 0.66 0.78
ShoeboxLarge 1 1 0.72 0.80
Shoebox 1 1 0.78 0.84
Snail 1 1 0.44 0.49
Snail 1 2 0.48 0.53
Snail 1 3 0.56 0.57
Snail 1 4 0.48 0.47
Vienne 1 1 0.59 0.56

Room (# RIRs) Mean S.I. Min Max

Motus 0020 (4) 0.46 0.41 0.55
Motus 0166 (4) 0.44 0.37 0.54
Motus 0171 (4) 0.46 0.39 0.55
Motus 0178 (4) 0.44 0.37 0.54
Motus 0212 (4) 0.47 0.39 0.55
Motus 0769 (4) 0.50 0.47 0.57
Variable 0% (21) 0.50 0.37 0.54
Variable 25% (21) 0.51 0.31 0.58
Variable 50% (21) 0.51 0.35 0.55
Variable 75% (21) 0.50 0.33 0.57
Variable 100% (21) 0.49 0.31 0.58

Table 3.1: Spatial incoherence of the complete RIRs simulated by ray tracing (rt) and image sources (IS) for the different
room models (left) and mean spatial incoherence per room of the measured RIRs truncated at order 3 (right). For rooms Amst,
Coupled, and Cube, 3-rd order ray tracing simulations were not available.
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Figure 3.8: Distribution of spatial incoherence values for all measured RIRs and per room, for different Ambisonic orders.
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Figure 3.9: Spatial incoherence values for each configuration for ray tracing and image sources, for different Ambisonic orders.
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Figure 3.10: Spatial incherence metric for different Ambisonic orders on measured RIRs. From left to right: Motus 0171, Variable 0%,
and Saint-Elizabeth.
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Figure 3.11: Spatial incherence metric for different Ambisonic orders on ray tracing (top) and image source (bottom) simulations. From
left to right: HalteresFurnished 1 1, Pleyel 1 1, and Snail 1 1.
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Due to the variability in spatial incoherence measure, the general non-smoothness of the profiles and the sensitivity
to Ambisonic order, there exists no straightforward algorithm to deduce the mixing time from the spatial incoherence
profile. Massé [31] proposed an algorithm to estimate the moment when Γ(t) levels out at a near-maximal value after
the initial instability due to coherent early reflections. The algorithm consists in segmenting the spatial incoherence
profile using an adaptive Ramer-Douglas-Peucker (RDP) algorithm, assigning a score to each segment based on its
length, slope and average incoherence, and estimating tm at the time of the segment with the highest score. The
goal is to find the moment the diffuseness profile reaches a maximum value that is maintained throughout the late
reverberation tail. This algorithm shows mixed results and is incompatible with a real-time implementation. Other
techniques for detecting the start of a spatial incoherence plateau include detecting when the derivative of the profile
is close to zero, but this is not robust to small fluctuations in the profile.

Fig. 3.8 hints at the fact that the spatial incoherence value might be linked to properties of the room. In fact, in
the case of the variable-acoustics room [34], the spatial incoherence tends to decrease with increased absorption. This
correlation is particularly visible for lower Ambisonic orders. The overall level of absorption might not so much have
an impact on the spatial incoherence as the uniformity of the distribution of absorbing surfaces. Polack [45] showed
that absorbing rooms can never be perfectly diffuse because there is always an energy flow in the direction of the
absorbing walls [29]. As such, a non-uniform repartition of absorption is expected to reduce spatial incoherence as
rays might travel in coherent directions [60]. Regular room shapes and specular reflections also tend to favor coherent
ray trajectories [45]. This can explain the very low spatial incoherence value of the cubic room (Table 3.1).

For these reasons, some work has been devoted to try to predict the value of the spatial incoherence plateau for a
given room based on model parameters such as volume, surface, or the repartition of absorption. Preliminary results
on the dataset of room acoustic scenes are a quadratic correlation between the room’s total surface area and the spatial
incoherence value, with a R2 value of 69%. The associated quadratic formula is:

d(S) = 4.7e−8 S2 − 3e−4 S + 0.82, (3.13)

where S is the surface and d(S) the estimated global spatial incoherence. The quadratic curve against the data points
is shown on Fig. 3.12. Other parameters that were tested are the source-receiver distance, V ,

√
V , V

S , and the Sabine
and Eyring reverberation times; no satisfactory linear or quadratic correlation was found for these parameters.
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Figure 3.12: Spatial incoherence of the ray tracing simulations against room surface area and best quadratic fit on the dataset of room
acoustic scenes.

This is a preliminary result that is not expected to generalize well to any room geometry but that will serve as
a basis to propose a mixed mixing time estimation method based on both model and signal parameters. In future
work, a more thorough study on a larger dataset of measured RIRs and room models will be conducted with a specific
focus on understanding the relationship between the spatial incoherence value and the repartition of absorption and
the shape of the enclosure.

This formula gives a prediction of the spatial incoherence value of a room. This enables to derive a real-time
compatible mixing time estimation algorithm from the spatial incoherence profile. One can estimate the mixing time
as the first time the spatial incoherence value exceeds d(S) + ϵ, where ϵ is a very small adjustable value. We thus
obtain a new complete mixing time estimator that operates on early RIRs for rooms whose surface area is known.

3.5 Results

The evaluation of mixing time estimation results is not straightforward because there is no available groundtruth for
the mixing time. Lindau et al. [29] reported great variability of the estimated mixing times across the estimation



3.6. LIMITS AND DISCUSSION 23

methods.

Fig. 3.13 compare the results of mixing time estimation on simulated RIRs between the estimator based on echo
density and the estimator based on spatial incoherence. The spatial incoherence mixing time is systematically lower
than the echo density one. The estimated mixing times vary by factors up to 5. The mean square error between both
metrics for ray tracing simulations is of 0.05 s. There is a statistically significative linear correlation between the two
estimation methods (p = 0.002). The mean squared error between mixing times estimated from the ray tracing RIRs
and from the image source RIRs whenever the mixing time estimation succeeds is 0.0004 s. Cases of failure of the
algorithm will be discussed later.
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Figure 3.13: Results of mixing time estimation by echo density and by spatial incoherence on the ray tracing and image source simulations.

The parametric threshold, computed using the room surface area and formula 3.13, successfully detects the starting
time of the spatial incoherence plateau for almost all acoustic scenes, as illustrated by Fig. 3.14.
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Figure 3.14: Examples of spatial incoherence profiles and estimated mixing times on ray tracing (top) and image source (bottom)
simulations. From left to right: HalteresFurnished 1 1, Orsay 1 1, ShoeboxIsoRefl 1 1.

3.6 Limits and discussion

There remain differences in the spatial incoherence between ray tracing and ISM simulations. The ISM spatial
incoherence is globally lower than the ray tracing spatial incoherence. The parametric threshold is not reached for
some ISM RIRs (whereas it is always reached for the ray tracing RIRs). This is the case for configurations 6, 7, 9 and
19. For those configurations, the spatial incoherence profile of the image source simulation fails to converge to the ray
tracing one, as illustrated by Fig. 3.15. The computation of higher orders of reflections might permit to exceed the
spatial incoherence threshold.
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Figure 3.15: Examples of non-matching spatial incoherence profiles. From left to right: Halteres 1 1, Pleyel 1 1, and Vienne 1 1.

This might be explained by the absence of scattering in the ISM in its classical implementation. By considering
only specular reflections, we obtain sparse simulations. Further work will include considering extensions of the ISM
implementing surface scattering [57] and evaluating the effect of scattering on the diffuseness profiles of the simulated
RIRs. The constraints of specular reflections and a non-uniform distribution of absorption may entail a lack of
ergodicity, which might favor coherent trajectories for sound rays [55, 45]. For example, in our dataset, the cubic room
simulations fails to reach a sufficient echo density and spatial incoherence threshold, as seen on Fig. 3.16. The rooms
that show the greatest discrepancy in the spatial incoherence profile between image source and ray tracing simulations
are models of concert halls: Halteres, Pleyel and Vienne, that might deviate from a uniform distribution of absorption.
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Figure 3.16: Echo density metric on the ray tracing simulation (left) and spatial incoherence metric on the ISM simulation (right) for
the cubic room.

In this chapter, we addressed the problem of estimating the mixing exclusively on the early part of the RIR, more
specifically the early reflections simulated with the ISM. We have put forward a method for estimating the mixing
time based solely on the early reflections and on room parameters, making use of the spatial information contained
in the Ambisonic encoding of the simulated RIRs. The results on the dataset of room models shows that the spatial
information contained in the image source simulations, when analyzed with an adequate metric, enables to quantify
the diffuseness growth even from the first few orders of reflections. We have shown that the spatial incoherence metric
may be used to improve mixing time estimation on image source simulations, when room parameters enable to predict
the spatial incoherence value. Future work will need to further explore methods for a robust prediction of the spatial
incoherence value.



Chapter 4

Late reverberation synthesis and
integration

In this chapter, we will build on the mixing time estimation method developed in Chapter 3 in order to propose a
full algorithm to adjust the transition time between the early reflections and the late reverberation and their relative
gains.

Following the duality between spatialized early reflections and late stochastic reverberation, the mixing time seems
to be the ideal time at which to transition from the image source auralization to the artificial reverberator. In
principle, after the mixing time, the reverberation tail may be fully described by its time-frequency envelope, which is
independent of source and receiver positions. This time-frequency envelope is further constrained to an exponential
decay, and thus the late reverberation is described by a reverberation gain and slope for each frequency band. The
slope is generally expressed as a -60dB reverberation time, related to the exponential damping coefficient δ by the
formula [23]:

RT (f) =
3 ln 10

δ(f)
. (4.1)

Thus, implementations of artificial reverberators focus on simulating a stochastic process whose energy decay time
may be precisely controlled for each frequency band. We will first describe two different implementations of artificial
reverberation, before discussing the late reverberation delay and gain adjustment based on the mixing time estimation
process described in Chapter 3.

4.1 Static late reverberation synthesis: Gaussian white noise with ex-
ponentially decaying envelope

Moorer [36] first noted the perceptual ressemblance between a RIR and Gaussian white noise modulated by an expo-
nentially decaying envelope. Convolving an anechoic signal with such a simulated RIR leads to a natural sounding
reverberation effect. In a room, frequencies decay at different rates, with higher frequencies usually having a faster
decay rate. He thus proposes a simple method for synthesizing a reverberation tail with frequence-dependent rever-
beration time:

• first, a sequence of Gaussian white noise is genereated;
• then, it goes through a filter bank. The filter bank consists in 3rd order Butterworth filters in octave bands at
frequency centers 125, 250, 500, 1000, 2000, 4000, and 8000 Hz [1];

• each bandpassed signal is modulated by an exponential curve with the adequate damping factor computed
according to the 60dB reverberation time (Eq. 4.1);

• the bands are summed together to produce the synthetic reverberation tail.

This produces a monophonic reverberation signal. An Ambisonic-encoded late reverberation tail may be synthesized
by repeating this process for each channel, generating a new Gaussian signal each time. Massé et al. [33] showed that
synthesizing a Gaussian white noise per spherical harmonic component preserves the properties of the late diffuse
sound field, i.e. incoherence and isotropy.

This method was implemented and used to synthesize the late reverberation in 3rd-order Ambisonic encoding.
The auralization of anechoic signals then reduces to a convolution with the synthesized RIR. However, in real-time

25
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contexts, convolutions might be too expensive, and artificial reverberators are used that enable cheaper auralization,
in particular the Feedback Delay Network (FDN).

4.2 Dynamic late reverberation synthesis: Feedback Delay Networks

Originally proposed by Jot and Chaigne [22], FDNs consist of multiple interconnected delay lines, each possibly followed
by attenuation filters, with their outputs mixed and fed back into the system through a feedback matrix. FDNs can
achieve reverberation synthesis with far lower computational cost than direct convolution with room impulse responses,
especially for long reverberation times and multi-channel scenarios [50]. While convolution (even with fast partitioned
methods) requires O(L logL) operations per block for a RIR length L, an N -delay-line FDN can operate in O(N) or
O(N logN) per sample, independently of the reverberation time. For example, a dense orthogonal feedback matrix
(e.g., random orthogonal) requires O(N2) multiplications per sample, while a Hadamard matrix can be implemented in
O(N logN) using the Fast Hadamard Transform, greatly reducing cost for large N . These computational gains make
FDNs scalable for Ambisonic-encoded or multi-source reverberation, where convolution would scale multiplicatively
with the number of sources and outputs.

The FDN topology allows for precise control over the decay time in separate frequency bands. Delays and gains
may be modulated in real-time for time-varying reverberation without recomputing the entire impulse response.

In the context of this preliminary study on late reverberation gain and delay adjustment methods, exponentially
decaying Gaussian white noise was chosen rather than a FDN for the late reverberation synthesis. In fact, precise
control over the FDN delay is difficult in practice, as FDNs have an inherent initialization delay during which the
decay is not exponential. However, the developed algorithm will in time be integrated into a real-time auralization
framework using a FDN, and further work will study on the specific implementation challenges this raises.

4.3 Reverberation time estimation

The per-frequency-band reverberations times given as input to the artificial reverberator were computed using the
Eyring formula [15]:

T60(f) =
0.164 V

−S × ln(1− α(f))
, (4.2)

with α(f) the frequency-dependent mean absorption coefficient (the mean absorption of the different materials
pondered by the surface they occupy):

α(f) =
1∑
i Si

∑
i

αi(f)Si, (4.3)

where Si are the different room surfaces and αi(f) the corresponding frequency-dependent absorption coefficients.

This formula assumes ideally diffuse conditions as described in Chapter 3, i.e. isotropy and homogeneity of the
sound field. We have seen that ideal diffusion is never met in practice. It is a known fact that this formula fails to
predict accurately the reverberation time in many cases [55, 8]. However, developing a more accurate method for
reverberation time estimation is left to future work and will be discussed briefly in Chapter 7.

4.4 Late reverberation delay adjustment

As hypothesized throughout this work, the mixing time seems to be the optimal time at which to set the late rever-
beration delay, based on theoretical and perceptual considerations. In fact, the mixing time is the time limit of the
validity of the stochastic model, which reduces the late reverberation tail to its exponentially decaying time-frequency
envelope. The mixing time is estimated based on the spatial incoherence profile, meaning that it is the time from
which enough spatial incoherence is reached to forget the spatial information contained in the early reflections. For all
these reasons, the mixing time estimated on the image sources as described in Chapter 3 was chosen as the starting
time of the late reverberation tail.

To handle cases where the spatial incoherence does not reach the required threshold within a reasonable time, a
maximum mixing time of 0.2 seconds was set. This value was chosen because it is longer than any estimated mixing
time observed in the dataset. If the threshold has not been reached by 0.2 seconds, the system automatically starts late
reverberation. This ensures a consistent transition when the mixing time estimation method described in Chapter 3
fails.
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4.5 Late reverberation gain adjustment

The main theoretical concern when computing the late reverberation gain is to maintain the smoothness of the
exponential decay at each frequency band. Solutions have been proposed in the literature to satisfy that constraint.
The solution proposed by Gardner [17] is to adjust the gain of the artificial reverberator so that the linear decay slope
retrospectively reaches the level of the direct sound. This solution would be valid if the early decay time was always
equal to the late reverberation time. In practice, the early reflections tend to follow a steeper decay slope than the
late reverberation, even in shoebox rooms. Thus, this method tends to overestimate the late reverberation gain and
hinders the continuity of the decay. Another solution proposed by Li and Feng [28] is to set the gain of the artificial
reverberator as the mean gain of the auralized image sources in a given window around the mixing time. Since even
at the mixing time, the image source auralization remains sparse, this usually results in a very low late reverberation
gain because of the many zero values in the image source auralization. Both methods are illustrated on Fig. 4.1.
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Figure 4.1: Methods for late reverberation gain adjustment proposed by Gardner [17] (left) and Li and Feng [28] (right) applied on
ShoeboxLargeIso.

Building on the limits of these methods, the method implemented consisted in setting the gain as the mean
amplitude of the non-zero values of the image source auralization in a 5 ms window around the mixing time. The
zero values were excluded in order to maintain the smoothness of the decay. This was done for each frequency band
to obtain a frequency-dependent gain factor. To account for cases when the mixing time estimation failed and the
late reverberation started after the end of the image source auralization, the gain was set to half of the direct sound
amplitude in those cases.

This gave visually satisfactory results, where the straight decay line of the dB-scale amplitude was preserved, as
can by seen on Fig. 4.2. This gain adjustment method remains to be thoroughly evaluated against other methods by
means of a perceptual test focusing on the perception of reverberation loudness.

To conclude, the late reverberation delay and gain adjustment algorithm was directly deduced from the mixing
time estimation algorithm developed in Section 3. The delay was set as the estimated mixing time and the gain was
set to guarantee the continuity of the decay envelope around the mixing time. We thus obtain a complete delay and
gain adjustment algorithm that is compatible with a real-time implementation. We will now turn to the evaluation of
the results, first through objective metrics and then through a perceptual test.
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Figure 4.2: Examples of late reverberation delay and gain adjustment on Coupled 1 1 (top) and ShoeboxLarge 1 1 (bottom), and the
resulting Reverse Integration Curves per frequency band.



Chapter 5

Objective evaluation

In this chapter, we propose and apply metrics for the objective evaluation of the late reverberation adjustment
algorithm. In the first part, we will check that the energy decay and main acoustic parameters are close to that of
the ray tracing reference. In the second part, we will evaluate the computational performance of the algorithm and in
particular study the question of the number of image source reflection orders that must be computed for the algorithm
to succeed. Last, we will turn to an exploratory study of the diffuseness properties of the resulting RIRs, by applying
metrics developed in Chapter 3.

5.1 Energy decay properties and acoustic parameters

In this section, we will present some of the main acoustic parameters and estimate them on the CATT-Acoustic ray
tracing RIRs as well as on the RIRs obtained by adjusting the late reverberation to the image sources through the
algorithm described in Chapter 4.

One of the main concerns in the late reverberation delay and gain adjustment is to preserve the continuity of the
energy decay, which can be verified by looking at the Energy Decay Curve (EDC), or Reverse Integration Curve (RIC).
This curve, first introduced by Schroeder [54], is given by the formula:

EDCh(t) =

∫ +∞

t

h2(τ)dτ, (5.1)

where h(t) is the RIR. In other terms, EDCh(t) is the remaining energy in the RIR after time t. The backward
integration serves as a smoothing technique on the envelope of the response [23]. In theory, the room response should
follow an exponential decay and thus the EDC should follow a straigth line in dB scale, at least after the mixing time.
Figure 5.1 gives examples of configurations where the EDC of the IS+FDN RIR is very smooth and closely matches
that of the ray tracing RIR. These examples illustrate the fact that the EDCs closely match whenever the ray tracing
EDC is nearly a straight line in dB scale.
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Figure 5.1: Comparisons of Energy Decay Curves of the ray tracing RIR and of the IS+FDN RIR on configurations with exponential
decays (from left to right: ShoeboxIso 1 1, Morgan 1 1, and Vienne 1 1).

In cases when the decay is not perfectly exponential, the IS+FDN RIR EDC does not exactly match the ray tracing
EDC. This is due to the artificial reverberation synthesis method, which constrains the late reverberation to have an

29



30 CHAPTER 5. OBJECTIVE EVALUATION

exponential envelope. The IS+FDN RIR EDC tends to be smoother than the ray tracing EDC. Examples are visible
on Fig. 5.2. Possible methods for enabling double decays or other nonexponential late energy decays will be discussed
in Chapter 7.
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Figure 5.2: Comparisons of Early Decay Curves of the ray tracing RIR and of the IS+FDN RIR on configurations with nonexponential
decays (Cube 1 1, Snail 1 1, and Snail 1 2).

There are different acoustic parameters describing the reverberation time. They are all computed from a linear
fit on the dB-scale EDC and extrapolated to a -60 dB reverberation time, i.e. the time it would take for the energy
level to decay by 60 dB after a Dirac excitation. However, they differ in the part of the EDC on which the linear fit is
performed. EDT is the reverberation time extrapolated from a linear fit between the arrival of the direct sound and
the -10 dB point, i.e. the time when the energy has decayed by 10 dB compared to the initial energy, while RT30 is
the reverberation time extrapolated from a linear fit between the -5 dB point and the -35 dB point [21].

Table 5.1 shows the errors of RT30, EDT and c80 between ray tracing RIR and IS+FDN RIR for each configuration,
compared to the JND. RT30 is almost always smaller than one JND, which is not surprising since the ray tracing
reverberation times are given as input to the artificial reverberator. EDT error can go up to 12 JNDs and c80 to 15
JNDs.

Room Rec. Src. RT30 EDT c80

JND 5% 5% 1

Amst 1 1 3.1 17.3 14.8
Coupled 1 1 10.6 31.8 5.9
Cube 1 1 20.2 24.1 NaN
Fogg 1 1 8.1 48.5 7.6
HalteresFurnished 1 1 7.4 35.4 5.0
HalteresFurnished 1 2 14.3 57.6 9.3
Halteres 1 1 33.0 47.1 5.9
Halteres 1 2 19.7 44.1 7.2
Morgan 1 1 3.3 17.2 3.1
Orsay 1 1 2.9 7.1 3.4
Pleyel 1 1 2.3 14.5 6.6
ShoeboxIsoRefl 1 1 1.2 7.0 1.9
ShoeboxIso 1 1 1.6 3.1 0.8
ShoeboxLargeIso 1 1 3.3 7.7 3.3
ShoeboxLarge 1 1 4.2 13.7 3.3
Shoebox 1 1 2.3 5.7 0.8
Snail 1 1 3.3 41.9 8.2
Snail 1 2 2.6 44.7 NaN
Snail 1 3 4.2 25.0 NaN
Snail 1 4 3.1 45.0 4.8
Vienne 1 1 5.0 19.5 5.6

Table 5.1: Acoustic parameter errors between the ray tracing simulation and the IS+FDN simulation.

On simple rooms such as shoebox rooms, acoustic parameters are usually quite well preserved in each frequency
band, as shown on Fig. 5.3. This is not the case (except for RT30) on more complex rooms, as illustrated by Fig. 5.4.
However, we can see that the general relative trend across frequency bands is preserved.
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Figure 5.3: rt30, EDT and c80 per frequency band on the ShoeboxIso 1 1 configuration.

125 250 500 1000 2000 4000 8000

Frequency (Hz)

0.5

1

1.5

2

rt
30

(s
)

IS+FDN
Ray tracing

125 250 500 1000 2000 4000 8000

Frequency (Hz)

0

0.5

1

1.5

E
D

T
(s

)

IS+FDN
Ray tracing

125 250 500 1000 2000 4000 8000

Frequency (Hz)

0

5

10

15

20

25

c 8
0

(d
B
)

IS+FDN
Ray tracing

Figure 5.4: rt30, EDT and c80 per frequency band on the HalteresFurnished 1 2 configuration.

5.2 Performance evaluation

In this section, we turn to the evaluation of the computational complexity of the algorithm proposed in Chapter 4,
in order to test its compatibility with a real-time implementation. In particular, we would like to know how many
orders of image source reflections must be computed before reaching the mixing time. Table 5.2 shows the estimated
mixing times of each configuration and the corresponding number of reflections that must be computed so that the
image source auralization lasts until at least the mixing time. This minimum order is equal to the maximum order
of reflection encountered in the set of image sources that arrive before the mixing time. We also give the running
time to compute reflections up to that order on a personal computer with 16 GB of RAM and an Apple M1 chip.
Some straightforward optimizations could be implemented to reduce the running time. Specifically, the image source
implementation used computes all image sources up to the given order; it could be modified to compute all the image
sources up to the mixing time, and this would lead to lower computation times. The times indicated also include
read/write operations that are unnecessary in a real-time integration.

The expected running time is less than one second for more than half of the configuration and less than ten
seconds for three-quarters of the configurations. For these configurations, adequate optimizations are expected to
enable real-time compatibility. However, there remain some configurations where the expected duration makes this
method out-of-reach for real-time purposes. These are mostly large rooms with complex geometries. Methods must
be developed in those cases to enable real-time auralization. For instance, higher image source reflections orders
may be computed progressively whenever there is no change in room geometry or source location, as implemented by
Poirier-Quinot et al. [43]. Ad-hoc solutions to mask the gap between uncalculated image sources and the FDN include
adding partially spatialized clusters [10].
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Room Rec. Src. tm Orders required Expected duration

Amst 1 1 0.20 7 0’44
Coupled 1 1 0.15 4 649 ms
Cube 1 1 0.20 12 0’05
Fogg 1 1 0.20 Inf Inf
HalteresFurnished 1 1 0.13 10 0’01
HalteresFurnished 1 2 0.07 5 0’01
Halteres 1 1 0.20 14 28’40
Halteres 1 2 0.20 13 11’46
Morgan 1 1 0.03 1 735 ms
Orsay 1 1 0.09 7 0’36
Pleyel 1 1 0.20 10 57’05
ShoeboxIsoRefl 1 1 0.04 4 991 ms
ShoeboxIso 1 1 0.03 3 420 ms
ShoeboxLargeIso 1 1 0.04 3 906 ms
ShoeboxLarge 1 1 0.04 3 339 ms
Shoebox 1 1 0.03 3 350 ms
Snail 1 1 0.03 1 53 ms
Snail 1 2 0.04 1 54 ms
Snail 1 3 0.16 8 0’05
Snail 1 4 0.18 8 0’07
Vienne 1 1 0.20 10 0’07

Table 5.2: Estimated mixing time, corresponding minimum number of orders of reflections to compute and estimated compu-
tation time on a standard computer for that reflection order. Times strictly over one second are highlighted in bold.

5.3 Diffuseness properties of the simulated RIRs

We now apply the echo density and spatial incoherence metrics defined in Chapter 3 to the IS+FDN RIRs and
compare the resulting diffuseness profiles with the profiles of the ray tracing RIRs and to profiles of measured RIRs.
In particular, we would like to know if the diffuseness profiles ressemble those of measured RIRs. That would tell us
something about the realism of the simulated RIRs.

In the case of the echo density measure, it is no surprise that this jumps directly to 1 at the mixing time. In
fact, the echo density measure is normalized such that Gaussian white noise has an echo density of exactly 1. This
ressembles the late reverberation field of measured RIRs and of ray tracing RIRs. The echo density profile of the
IS+FDN RIR is closer to the ray tracing one than that of the image source RIR, thus the late reverberation corrects
the lack of echo density inherent to the image sources. However, echo density tends to increase too fast in the IS+FDN
RIRs compared to the ray tracing RIRs.
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Figure 5.5: Comparisons of echo density profiles of the IS+FDN RIR, the ray tracing RIR and the image source RIR for the same
acoustic scenes (Orsay 1 1, Pleyel 1 1, Vienne 1 1).

In the case of the spatial incoherence profile, which shows very different profiles across different measured RIRs
and ray tracing simulated RIRs, we then again obtain a predictible diffuseness plateau for the late reverberation. The
spatial incoherence value of the synthetic Gaussian reverberation is not of 1 like the echo density value, but around
0.9. In fact, by definition, the spatial incoherence value is constained to not exceed 1. In theory, Gaussian white
noise should have a diagonal covariance profile and a uniform distribution of eigenvalues. Pure uncorrelation is not
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obtained in practice and the spatial incoherence value of Gaussian white noise goes up to 0.95, with higher values
for smaller HOA orders, as can be seen on Fig. 5.6 (left). The spatial incoherence value is further lowered by the
exponential envelope which might cause some covariance in the different spherical harmonic components. This effect
is more pronounced for lower HOA orders, as illustrated on Fig. 5.6 (center). A non-uniform exponential decay over
frequency bands leads to a drastic decrease of spatial incoherence over time, as can be seen on Fig. 5.6 (right). A
non-uniform exponential decay causes some covariance in the SH signals; this phenomenon should be further studied
from a theoretical point of view and experimentally.
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Figure 5.6: Comparisons of spatial incoherence profiles of Gaussian white noise with no exponential decay (left), Gaussian white noise
with uniform exponential decay at all frequencies (center), and Gaussian white noise with faster decay at high frequencies (right), for
different HOA orders.

In some cases, the spatial incoherence value jumps directly from a low value to 0.9 at the mixing time. In other
cases, it has a gradual increase that more closely matches the gradual increase which may be observed in measured
RIRs or ray tracing RIRs. However, the value of the spatial incoherence plateau is systematically higher for the
IS+FDN RIR than for the ray tracing RIR, which never goes as high as 0.9. One possible explanation for this is
that the late reverberation of the ray tracing RIRs deviates from the assumptions of an ideally diffuse sound field,
i.e. homogeneity and isotropy. In particular, in some rooms, the late reverberation field might never reach isotropy.
Late reverberation synthesized with Gaussian white noise is by nature isotropic and homogeneous [13, 32]. This is
not necessarily the case for other artificial reverberators, in particular for FDNs. The possible anisotropy of the late
reverberation field and its perceptual implications will be further discussed in Chapter 7.
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Figure 5.7: Comparisons of spatial incoherence profiles of the IS+FDN RIR, the ray tracing RIR and the image source RIR for the same
acoustic scenes (HalteresFurnished 1 1, Orsay 1 1, Snail 1 3).

The objective evaluation of the algorithm shows mixed results, where the acoustic parameters are preserved for only
part of the acoustic scenes and the real-time compatibility is not guaranteed for all rooms. In the context of AR/VR
applications, however, a perceptual evaluation might be more relevant in order to assess the possible limitations of
the algorithm in terms of immersion.



Chapter 6

Perceptual evaluation

This chapter presents the design and results of a perceptual test aimed at evaluating the proposed reverberation
gain and delay adjustment algorithm. The algorithm and resulting auralizations will be evaluted with a focus on
localization, authenticity, and immersion.

6.1 Test objective and expected results

The goal is to provide a perceptual evaluation of the new late reverberation delay and gain adjustment scheme. The
perceptual evaluation is particularly relevant because the goal of the framework is to produce perceptually plausible
auralization that enables immersion into Virtual Acoustic Environments. Whereas objective measures might detect
differences between distinct auralization schemes, these might be undistinguishable from a perceptual point of view.
The design of a formal perceptual test with adequate statistical analysis aims to assess and quantify the possibility of
perceptual discrimination between different systems under test and an ideal reference.

This first perceptual evaluation will be limited to a static context, i.e. there will be no dynamic update of the
auralization based on listener or source movement and no visual feedback.

As discussed in Chapter 2, in the absence of calibrated geometric models for which measured RIRs could be
compared to simulated RIRs, the reference that was chosen for comparison with the different auralization schemes is
the CATT-Acoustic ray tracing simulation.

The different auralization conditions that are put to test are:

• CATT: the reference auralization, i.e. the RIRs simulated using the CATT-Acoustic ray tracing software;
• Images: image source auralization only, no late reverberation;
• Gaussian: late artificial reverberation only, i.e. Gaussian white noise modulated by an exponential envelope;
• Basic: image sources and late reverberation with a basic transition scheme: the transition time is chosen to be√

V ms and the FDN gain is half of the direct sound gain, as presented in Chapter 4;
• Diffuseness: image sources and late reverberation with the new transition scheme: the transition time is
computed based on the spatial incoherence profile as described in Chapter 3, and the gain is computed based
on the image source gain around that transition time, as explained in Chapter 4;

• CattGaussian: the CATT RIR with the late reverberation tail replaced by exponentially decaying white noise
starting at the mixing time. Evaluating the proximity of these RIRs to the original RIRs is a way of evaluating
the validity of the mixing time estimated with the method discussed in the previous chapter;

• Anchor: a lowpass-filtered version of the reference signal.

For all of these schemes, the per-frequency band reverberation times of the late reverberation are aligned to those
of the CATT-Acoustic reference estimated by exponential decay curve analysis. Participants were asked to focus on
authenticy, plausibility, and localization.

6.2 Test protocol

6.2.1 MUSHRA test and web implementation

The test was designed according to the Recommendation ITU-R BS.1534-3 Method for the subjective assessment
of intermediate quality level of audio systems [59], also known as ”MUlti Stimulus test with Hidden Reference and
Anchor” (MUSHRA), designed to evaluate medium and large impairments of audio systems. The MUSHRA test

34
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presents, for each trial, a high quality reference signal, that must be compared to multiple conditions:

• a certain number of systems under test, expected to introduce impairments to the reference signal;
• a hidden reference signal;
• one or two anchor signals, which are lowpass-filtered versions of the reference signal and should be judged as
most different from the reference signal. In our test, we generated a single anchor with a lowpass filter cutoff of
3.5 kHz.

The assessors are asked to grade to ressemblance of each signal to the high quality reference signal. In our case,
the reference signal is the Catt condition, i.e. the RIRs generated using the CATT-Acoustic ray tracing software.

The test was implemented using webMUSHRA, an open-source web implementation based on the WebAudio
API [52]. The test interface may be visited here1 and a screenshot is visible on Fig. 6.1. The audio signals under
trial were binaurally rendered to be played over headphones, such that anyone could participate remotely with their
personal headset. While experimental conditions can not be precisely controlled, it has been shown that this does
not significantly impact the results [51]. Due to the flexibility of a web support, the recruitment of participants is
facilitated and no experimental setup is required. In addition, binaural rendering over headphones is the most frequent
rendering setup for our applications, and thus it is logical that this should be tested first. In future works, evaluation
should be performed in a loudspeaker array setup in order to assess the influence of higher spatial resolution.

Figure 6.1: Screenshot of a trial page of the online test, using the webMUSHRA framework.

6.2.2 Subjects, number of trials, duration

The maximum test duration was set to 30 minutes in order to avoid tiredness of the participants. All audio stimuli
had a duration of 6 seconds. Four different room acoustic conditions were selected, and two different source stimuli,
for a total of 8 trials. As such the test was expected to last approximately 24 minutes (3 minutes per trial) excluding
the training phase. Each participant was asked to rate all 7 conditions in all 8 trials, resulting in 56 measures per
participant in a fully-repeated measures design. Power analysis for a repeated-measures ANOVA with 7 conditions
across 8 trials (moderate effect size f = 0.25, type I error rate α = 0.05, correlation between measures ρ ≈ 0.5)
indicated that approximately 18 participants provide 80% power to detect statistically significant differences between
conditions while accounting for inter-listener variability. Therefore, a minimum of 18 participants with normal hearing
and experience in listening tests and/or spatial audio was sought for statistical significance. Subjects were recruited
within academic research groups specialized in room acoustics, spatial audio, digital signal processing, and musical
acoustics.

The training phase was designed according to the recommendation [59]. It was aimed at making the participants
familiar with the variety of audio stimuli, the web interface and the grading scale. In the first training phase, the
participants could freely listen to some of the audio excerpts that they would be asked to assess. In the second training

1https://experiment.dalembert.upmc.fr/webmushra/

https://experiment.dalembert.upmc.fr/webmushra/
https://experiment.dalembert.upmc.fr/webmushra/
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phase, they were asked to perform a MUSHRA trial whose results were not taken into account in the analysis. The
participants were not informed of the presence of the hidden reference signal or of the anchor.

6.2.3 Anechoic source stimuli

Two anechoic excerpts were chosen as source stimuli, each 4.5 seconds long. The first one is a percussive sequence.
The second one is a female speech sequence. Both are critical signals for the assessment of reverberation. Percussive
signals have sharp transients and clear onsets, which make them highly sensitive to early reflections and changes in
temporal smearing, allowing listeners to perceive differences in reverberation duration and clarity. Speech signals
are critical because they contain sustained harmonic content, formant structures, and intelligibility cues, which are
affected by reverberation in a way that is perceptually relevant for everyday listening [16].
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Figure 6.2: Anechoic source stimuli and their STFTs: percussive sounds (left) and female voice (right).

6.2.4 Room acoustic conditions

Four room acoustic conditions were chosen with the aim of systematic variation of some parameters: room geometry,
room volume, room surface, source-to-receiver distance, mean absorption, reverberation time, global spatial inco-
herence, estimated mixing time. The room geometries include coupled volumes with furniture (HalteresFurnished),
a simple shoebox room (ShoeboxIsoRefl), a complex succession of rooms (Snail) and a concert hall (Vienne), each
visible on Figure 6.3. The parameters of the configurations chosen are presented on Table 6.1.
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Figure 6.3: The four room models selected for the test.

Room Rec. Src. Volume (m3) Surface (m2) S-R dist. (m) Abs. (%) RT (s) S.I. tm

HalteresFurnished 1 2 2114 1635 7.1 43.2 0.76 0.34 0.07
ShoeboxIsoRefl 1 1 220 238 4.9 14.2 0.94 0.69 0.05
Snail 1 4 3573 2038 20.1 21.4 1.78 0.48 0.20
Vienne 1 1 17095 5641 32.8 15.1 2.57 0.59 0.28

Table 6.1: Parameters for the chosen acoustic scenes. The reverberation time, spatial incoherence and tm are estimated on
the Catt reference signal.

6.2.5 Binaural rendering

The Ambisonic RIRs were decoded to binaural RIRs (BRIRs) using the virtual loudspeaker approach and a set of
publicly available HRTFs [25]. The virtual loudspeaker approach decodes a Higher-Order Ambisonics (HOA) signal to
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a set of 20 virtual loudspeakers positioned evenly on a sphere using the golden-angle method. Each virtual loudspeaker
signal is convolved with the HRTF corresponding to its location to create binaural signals, which are then summed
to produce the final stereo output. Convolution of the left BRIR with the source signal was performed to obtain the
left-ear channel of the binaural auralization, and likewise for the right BRIR.

6.3 Data analysis

6.3.1 Subject post-screening

At the end of the test, participants were asked their gender, if they self-reported a hearing loss, and if they had
expertise in listening tests and in spatial audio. One participant reported a hearing loss and was excluded from the
results analysis.

The hidden reference was exploited to further exclude some participants. As stated in the recommendation [59],
an assessor should be excluded from the results if he or she rates the hidden reference condition lower than a score
of 90 for more than 15% of the trials, i.e. for at least two trials in our case. This rule led to the exclusion of two
participants. This resulted in a total of 23 participants, with a repartition reported on Table 6.4.

Total 23
Gender female 8

male 15
Hearing Loss yes 0

no 23
Listening tests 3+times 10

1-2 times 7
never 6

Expert spatial audio yes 8
no 15

Figure 6.4: Summary of participants after post-screening.

Figure 6.5: Age distribution after post-screening.

6.3.2 Statistical data analysis

Following the recommendations [59], a Linear Mixed Effects Model was applied on the data, treating the participant
as a random effect. Each participant gave multiple ratings (one per trial and per condition) and we are not interested
in individual differences in rating systems, which are thus treated as random effects. The response was the rating
score and the terms were the different factors (age, gender, room, source stimulus, condition) and their interactions.

The non-significant interactions (p > 0.05) were discarded and the significant effects were further analyzed with
post-hoc pairwise Tukey tests.

6.4 Results

First, we provide some visualization of the results, which will give us intuition on the performance of the different
conditions in the different trials, before turning to statistical analysis with the aim of showing significant effects.
Fig. 6.6 shows the distribution of ratings given to each condition, without separating by acoustic scene or source
stimulus. The boxplots show the median and quartiles 1 and 3. The whiskers show the value range of points that
are not outliers, and outliers are displayed separately. Outliers are data points lying below Q1 − 1.5× IQR or above
Q3 + 1.5× IQR, where IQR = Q3 −Q1 and Q1 and Q3 are the first and third quartiles.
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Figure 6.6: Distribution of the rating scores for each condition, over all acoustic scenes and source stimuli.

As we can see, the anchor does not serve its role as an anchor since its median rating is 30/100. The anchor
was a lowpass-filtered version of the reference signal, and although it was perceptually quite far from the reference
signal, participants were asked to focus on authenticy, plausibility, and localization, and were judging the perception of
reverberation across the different conditions. The plot illustrates the absence of anchor, as no condition was uniformly
poorly rated across all trials. In terms of reverberation, the anchor was often closer than other conditions. The
question of finding a good anchor for that specific test will be further discussed in the results analysis.

Apart from the reference, the condition that stands out is the CattGaussian condition, with a median score of
82/100. This tends to validate that the estimated mixing time is generally not smaller than the real perceptual mixing
time, since the reference and the CattGaussian condition seem perceptually close.

Fig. 6.7 further shows the distribution of grades for each condition across acoustic scenes and for both source
stimuli. The plot displays the mean value and standard deviation of the ratings. We can notice several trends:

• The hidden reference has a high mean rating, with some fluctuations across the trials, which can be explained
by confusion with the CattGaussian condition: whenever the CattGaussian condition is rated quite high
(ShoeboxIsoRefl and Snail), the hidden reference is rated a bit less than 100.

• The average ratings for one condition and one acoustic scene are usually similar between both source stimuli,
except for condition Gaussian where the mean rating of the voice is systematically higher than the mean rating
of the bongos.

• Except for the hidden reference, all conditions perform very differently in the different acoustic scenes. In
particular, the Images condition is very well rated in HalteresFurnished and poorly rated in the other rooms.
The CattGaussian condition is on average well rated in ShoeboxIsoRefl, Snail, and Vienne and relatively
poorly rated in HalteresFurnished.

• The CattGaussian is systematically on average the best rated after the hidden reference, except in Halteres-
Furnished.

To test for significant effects, the data was further analyzed via a Linear Mixed Effects Model. A type III ANOVA
test was performed using Satterthwaite’s method, treating the participant as a random effect. The results are sum-
marized in Table 6.2. The factors tested for influence on the rating are:

• expert audio: their experience in listening tests (3 groups)
• expert spatial: whether they worked in spatial audio (2 groups)
• room: the room acoustic scene (4 groups)
• stimulus: the source stimulus (2 groups: voice or bongos)
• condition: the condition under test (7 groups)
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Figure 6.7: Distribution of the rating scores for each condition, for each acoustic scene and source stimulus. The highlighted zones
indicate 68% confidence intervals.

Factor F value p-value
expert audio 0.25 0.79
expert spatial 0.99 0.35
room 9.7 < ϵ
source stimulus 14 < ϵ
condition 3.1e2 < ϵ
room:source stimulus 0.41 0.75
room:condition 31 < ϵ
source stimulus:condition 5.8 < ϵ
room:source stimulus:condition 1.9 0.01

Table 6.2: Type III Analysis of Variance Table applied to the different factors to test their influence on the rating score.
ϵ = 10−3. The semi-colons indicate an interaction effect.

Experience in listening tests and/or spatial audio had no significant influence on the rating scores. The interaction
between the room and the source stimulus (voice or bongos) was also analyzed as non-significant.

The source stimulus (voice or bongos) had a significant influence on the rating score. The voice source stimulus
was significantly better rated than the bongos (F = 12.1, p = 0.0001). The significant difference in rating scores
between the voice and bongos stimuli can be attributed to the distinct perceptual characteristics of these sound types
in reverberant environments. Speech signals allow for better adaptation and intelligibility in reverberant conditions.
Conversely, percussive sounds, such as those produced by bongos, lack the sustained tonal components of speech,
making them more susceptible to degradation in reverberant spaces [41].

The room also had a significant impact on the rating (F = 9.7, p = 2.4e−6), as well as the condition under test
(F = 311.6, p < 2.2e−16). However, those correlations may not be analyzed separately because of the interaction
effects. The main statistically significant interaction was the room:condition interaction (p < 2.2e−16), so we further
analyzed this interaction with post-hoc pairwise comparisons. In particular, we computed the estimated marginal
means for each room:condition pair. The adjusted marginal means for each acoustic scene and each condition are
depicted on Fig. 6.8. The whiskers represent the standard error around the marginal mean. The model being based on
a balanced design (there is an equal number of observations per room:condition pair, since all participants evaluate
all conditions in all trials), the standard errors are the same (equal to 3.61). Intuitively, if whiskers of two lines do not
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overlap, then the difference between their respective ratings is statistically significative: one condition is significantly
better than the one.

Anchor − HalteresFurnished
Anchor − ShoeboxIsoRefl
Anchor − Snail
Anchor − Vienne
Basic − HalteresFurnished
Basic − ShoeboxIsoRefl
Basic − Snail
Basic − Vienne
CattGaussian − HalteresFurnished
CattGaussian − ShoeboxIsoRefl
CattGaussian − Snail
CattGaussian − Vienne
Diffuseness − HalteresFurnished
Diffuseness − ShoeboxIsoRefl
Diffuseness − Snail
Diffuseness − Vienne
Gaussian − HalteresFurnished
Gaussian − ShoeboxIsoRefl
Gaussian − Snail
Gaussian − Vienne
Images − HalteresFurnished
Images − ShoeboxIsoRefl
Images − Snail
Images − Vienne
Reference − HalteresFurnished
Reference − ShoeboxIsoRefl
Reference − Snail
Reference − Vienne

25 50 75 100
Estimated Mean Score

Estimated Marginal Means by Room and Stimulus

Figure 6.8: Estimated marginal means for each acoustic scene and each condition.

A thorough analysis of the significance of the difference between the mean scores for pairs of conditions in the same
room acoustic scene enabled to draw some conclusions on the test results. For sanity check, it was verified that:

• in each acoustic scene, it was never the case that the anchor was rated significantly better than another condition;
• in each acoustic scene, it was never the case that the reference was rated significantly worse than another
condition.

Now, we will first turn to the analysis of the significative pairs in the perspective of validating the mixing time
estimation algorithm (condition CattGaussian), and then with the aim of validating the reverberation delay and
gain adjustment algorithm (condition Diffuseness).

6.4.1 Partial validation of the mixing time estimation algorithm

The CattGaussian condition was used in order to partially validate the mixing time estimation algorithm presented
in Chapter 3. In fact, if it is judged perceptually indistinguishable from the reference, then we know that the estimated
mixing time is not smaller than the perceptual mixing time.

CattGaussian was not judged significantly worse than the other conditions (except for the hidden reference)
except in one case, the Gaussian condition in HalteresFurnished. It was judged significantly worse than the reference
in half of the acoustic scenes, i.e. in HalteresFurnished and Snail. In the other rooms, ShoeboxIsoRefl and Vienne,
the difference was not significant. We can conclude that the estimated mixing time is not smaller than the perceptual
mixing time in those rooms.

The possibility of perceptual discrimation does not refute the (physical) mixing time estimation algorithm. Per-
ceptual differences may be caused by inaccurate estimation of the reverberation times, especially in rooms presenting
double-decay slopes such as HalteresFurnished and Snail. Thus the late reverberation tails of Catt and CattGaus-
sian may have audible differences in spectral coloration. Moreover, since mixing is not perfect, the late reverberation
field will never be perfectly isotropic and homogeneous. Table 6.1 shows that the two rooms where perceptual discrim-
ination is possible are also the rooms with the smallest spatial incoherence value, less than 0.5 for both rooms. This
could be an indicator that the late reverberation fields are anisotropic, since the spatial incoherence analysis performed
in the spherical harmonic domain interprets anisotropy as coherence [32]. An in-depth analysis of the properties of the
late reverberation and their perceptual importance will be conducted in future work, for instance with a perceptual
test focusing only on the late reverberation. This will be further discussed in Chapter 7.
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6.4.2 Partial validation of the reverberation adjustment algorithm

The reverberation adjustment algorithm described in Chapter 4 corresponded to condition Diffuseness, while Basic
was a baseline reverberation delay and gain adjustment algorithm where the delay what set to

√
V milliseconds and

the gain to half of the direct sound gain per frequency band. It was expected that Diffuseness would be closer
to the reference than Images (only early reflections) and Gaussian (only late reverberation). This is significantly
the case in ShoeboxIsoRefl (p ≈ 5e−13). In HalteresFurnished, Diffuseness is significantly better than Gaussian
(p = 1e−4) but significantly worse than Images (p = 8e−13). In Snail, Diffuseness is significantly better than
Images (p = 3e−3) but not than Gaussian. In Vienne, there is no significant difference between Diffuseness and
Images or Gaussian.

The results can be explained by the different reverberation times. For HalteresFurnished, with a very low reverber-
ation time of 0.76 second, the Images condition is very close to the Catt reference because it sounds dry and enables
very precise localization, while the Gaussian reverberation of the Diffuseness condition is too audible. In Snail, with
a reverberation time of 1.78 second, the Images condition is rated poorly because the lack of late reverberation is
clearly audible.

The various reverberation times relate to the difficulty of defining an efficient anchor for this experiment. In fact,
although Images and Gaussian can be expected to be poorly rated (the former because of a lack of authenticy, the
latter because of a lack of localization), they are not evenly so in all rooms, because small reverberation times tend
to favor the Images condition while large reverberation times tend to favor the Gaussian. An efficient anchor that
would be systematically rated as the worst condition remains to be found.

The Diffuseness condition is never rated significantly better than the baseline Basic algorithm. It is in fact rated
significantly worse in Snail. We can thus conclude that the proposed algorithm, although usually closer to the Catt
reference than only early reflections or only late reverberation, does not bring a significant improvement compared to
a baseline algorithm in terms of proximity to the ray tracing reference signal.

We can discuss the choice of the ray tracing simulations as reference. In fact, it is known that ray tracing simulations
tend to miss some acoustic paths and thus underestimate the amount of the sound energy of the response [9]. This can
explain that the late reverberation tails of the Catt conditions tend to have a low gain compared to the Diffuseness,
Basic and CattGaussian conditions. Thus we suppose that the Diffuseness condition would show a better success
if the reference signals were measured RIRs.

6.5 Dynamic perceptual test

The relevance of the comparison between ray tracing simulations and image source simulations with artificial rever-
beration can be discussed. In fact, in the context of Virtual and Augmented Reality applications, the auralization
scheme must be evaluated in terms of localization, authenticity and immersivity. Therefore, its performance should
be evaluated in a dynamic context.

In further works, the auralization scheme will be integrated in Max into an AR/VR framework giving the user
the possibility to move inside an acoustic scene. A discrimination test may be designed to evaluate authenticity,
where the subject is asked to discriminate between real and virtual sources. The new transition scheme is expected to
improve the localization performances. In fact, an accurate mixing time estimation guarantees that the image sources
containing the spatial information are heared, and adequately lowering the FDN gain enables to avoid some masking
effects.

To conclude, the webMUSHRA test has provided a partial validation of the reverberation adjustment algorithm,
which needs to be further confirmed by a dynamic perceptual test designed to assess the authenticity of the auraliza-
tions. The perceptual comparison between various reverberation effects has raised theoretical questions on the nature
of late reverberation and on the impact of different simulation methods, which will be addressed in the next chapter.
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Discussion

The simple question of adjusting the delay and gain of the artifical reverberator has raised a number of complex
questions which must be studied more thoroughly in the future. The main fields of inquiry and ideas for follow-up
studies will be briefly presented in this chapter, including the generalization of our method to complex room geometries,
the reverberation time estimation methods, the influence of scattering on simulations and on diffuseness metrics, and
the anisotropy of the late reverberation field.

7.1 Generalization to arbitrary room geometries and non-exponential
decays

While the mixing time estimation method shows good performance on a dataset comprising various room geometries,
the shoebox rooms show the best performances. This has been confirmed by the results of the perceptual evaluation
presented in Chapter 6, where the reverberation adjustment algorithm performs the best on the shoebox room. In
fact, shoebox rooms have a predictable behavior which can be shown on their diffuseness profiles, and most analytic
formulas have been derived for shoebox rooms.

It remains to be shown whether this method generalizes well to any geometry, and in particular if the room surface
area is indeed a good predictor for the spatial incoherence value. The reverberation gain adjustment algorithm must
be adapted to handle cases of nonexponential decays.

The reverberation time estimation, based on Eyring’s formula, must also be generalized to complex rooms and
nonexponential decays. It is known that Eyring’s formula does not perform well when the late reverberation field
deviates from homogeneous and isotropic conditions [8]. Methods for a more accurate estimation of the reverberation
time per frequency band should be studied, including estimation of the reverberation time using fast ray tracing as a
preprocessing step on the room independently of the source and receiver positions, or relying on radiosity [40].

Rooms with non-uniform distribution of absorption fall in the limits of Sabine and Eyring’s formulas. They tend
to have larger reverberation times than those predicted by these formulas and to present a double-decay slope. Zhou
et al. [60] proposed a method for predicting the decay curve based on the room geometry, the distribution of the sound
absorbing material and the scattering properties of the walls and furniture.

7.2 Influence of scattering

In its basic implementation, the ISM does not enable scattering, which is caused by the reflection of sound on rough
surfaces. This phenomenon is not easily compatible with the ISM, as it violates the fundamental principle of the
ISM that one image source corresponds to one acoustic path. On the contrary, ray tracing can easily account for
scattering by introducing a random reflection law at boundaries. The absence of scattering on RIR simulations results
in temporally sparse RIRs and an overestimation of the energy of early reflections [39].

Methods for introducing scattering in the ISM have been proposed, for example by Siltanen et al. [57] and more
recently by Ewert et al. [14]. The goal is to introduce a temporal spreading of the response. In future work, the echo
density and spatial incoherence metrics will be applied on RIRs simulated with an ISM implementing scattering, and
the resulting diffuseness profiles will be compared to the diffuseness profiles obtained with the classical ISM.
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7.3 Anisotropy of the late reverberation field

Mixing time estimation algorithms and artificial reverberators rely on the assumption that the late reverberation field
is homogeneous and isotropic. As we have seen, this is rarely the case in practice. Anistropy has been shown to be
perceptually noticeable [47], but the threshold for perception of anisotropy remains to be determined [3].

Massé et al. [32] showed that when performed in the spherical harmonic domain, the spatial incoherence metric
confuses anisotropy with spatial coherence. In fact, a set of incoherent plane waves might be interpreted as coherent
by this metric because of the anisotropy of the sound field. To solve that issue, he proposes to perform the spatial
incoherence analysis on the plane-wave decomposition of the signals, so that the measure still manages to capture the
incoherence of the sound field in the presence of an anisotropic sound field.

Thus, practical details of the implementation of artificial reverberation expose fundamental questions about its
physical properties, which must be addressed together with perceptual investigations.



Chapter 8

Conclusion

While the combination of the Image Source Method and a Feedback Delay Network is widely used in auralization
systems, implementation choices lack theoretical backup and perceptual validation. In particular, the delay and gain
of the FDN relative to the image sources were the focus of this study. The mixing time is a physically and perceptually
motivated choice for the late reverberation delay, since it is defined as the starting time of the validity of the stochastic
model and of the impossibility of perceptual discrimination between different source and receiver configurations. In
this work, a mixing time estimation algorithm was developed to operate on the early reflections. This has raised many
questions regarding the quantification of diffuseness in the early part of a RIR simulated with the ISM. Although ISM
simulations lack density due to the absence of scattering, it was shown that spatially encoding the image sources with
a sufficient spatial resolution enables to quantify the growth of diffuseness in the first milliseconds of ISM simulations
and thus to predict a mixing time. Building on this estimation, the late reverberation gain was computed as a function
of the image source gain around the mixing time in order to preserve the continuity of the decay envelope.

The objective and perceptual evaluations of this algorithm suggest that although it shows good performance on
simple rectangular rooms, it has limitations in certain room models that are characterized by non-exponential decays,
e.g. coupled volumes or rooms with a non-uniform distribution of absorption. The late reverberation sound field may
even deviate from the classical properties of homogeneity and isotropy. Those cases give poor results that may be
due to incorrect mixing time estimation, unprecise reverberation time estimation or bad late reverberation synthesis.
Further work must be devoted to tackle them. The perceptual significance of double-decay slopes and of anisotropic
late reverberation must be thoroughly assessed. Future work will include implementing extensions of the simulations
methods, for example by adding wave phenomena such as diffraction and scattering in the ISM or by synthesizing
anisotropic late reverberation with directional FDNs, and observing the behavior of the diffuseness metrics on the
resulting simulations.
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