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Abstract

Recent advances in deep learning have introduced powerful new tools for audio synthesis,
providing musicians with unprecedented means to explore and manipulate soundscapes. In
particular, the rise of generative models has opened new creative perspectives and enabled
novel forms of musical expression. Despite their success, one critical limitation of these
models is their lack of expressive control, making it difficult for musicians to willingfully
guide the generation.

To address this issue, researchers have explored various strategies to control generative
models based on user-specified inputs. Amongst different approaches, diffusion models have
emerged as a promising solution to synthesize high-quality data, while also offering robust
conditioning mechanisms to guide the generative process. Such models have led to numerous
new applications, notably in the audio domain, with the recent advent of text-to-music
models such as Stable Audio 2 [1], where users can generate an entire song from a short
textual description. While such applications illustrate the complex control possibilities
offered by diffusion models, they yet fail to capture the full depth of musical intentions and
have a very limited artistic reach. Indeed, the low expressiveness of small text prompts, as
well as their static nature, comes in contradiction with the idea of precisely manipulating
complex attributes over time, which is required to integrate neural networks within novel
musical instruments. Consequently, multiple approaches have tried to condition generative
models with more creatively adapted controls, such as melody or rhythm [2]. However,
these approaches still fail to account for the inherent time and frequency hierarchies within
musical compositions. Indeed, music is structured across multiple temporal scales, where
short-term information, such as pitch or onsets, intertwine and lead to intricate patterns,
such as melody or groove, which eventually give rise to complex long-term dependencies
like structure or mood. Ignoring these hierarchical elements limits the expressive power
of generative models for audio, as they do not fully capture the layered complexity of
music. We believe that incorporating this hierarchical nature offers a more meaningful and
sophisticated approach to control music generation.

This research aims to create a tool for music composition by enabling finer control over
audio synthesis. We state that current architectures for images manipulation such as
Hierarchical Diffusion Auto-Encoders (HDAE) [3] are suboptimal for audio applications.
Consequently, we propose a novel hierarchical diffusion model that leverages a specific
architecture and training scheme based on these considerations. This model incorporates
multiple encoders to capture distinct levels of musical abstraction and employs a progressive
training approach. Finally, we asses the effectiveness of our model on a custom evaluation
framework, including various temporal ranges for tasks through feature manipulation and
interpretability experiments.



Résumé

Les récents progrés en apprentissage profond ont introduit des outils novateurs et puissants
pour la synthése audio, donnant aux musicien.ne.s des moyens inédits pour explorer les
paysages sonores. En particulier, I'essor des modéles génératifs a ouvert de nouvelles
perspectives créatives ainsi que de nouvelles formes d’expression musicale. Malgré ces
résultats, une limite concréte de ces modéles est leur manque de controle expressif, rendant
difficile pour les artistes d’avoir la main sur le processus de génération.

Pour remédier a ce probléme, diverses stratégies visant a contrdler les modeéles génératifs a
partir de descripteurs ont été explorées. Parmi plusieurs approches différentes, les modéles
de diffusion se sont imposés comme une solution prometteuse pour synthétiser des données
de haute qualité, tout en offrant des mécanismes de conditionnement robustes pour guider le
processus génératif. Ces modéles ont donné lieu a de nombreuses applications, notamment
dans le domaine de I'audio, avec le développement récent de modéles de texte-vers-musique,
tel que Stable Audio 2 [1], qui rend possible la génération d’une musique entiére a partir
d’une courte description textuelle. Bien que ces applications illustrent les possibilités de
controle complexes offertes par les modéles de diffusion, elles ne parviennent pas encore a
saisir pleinement la profondeur des intentions musicales et restent trés limitées pour des
utilisations artistiques. En effet, la faible expressivité et le caractére statique des controles
textuels sont en contradiction avec 'idée de manipuler précisément des attributs audios
complexes dans le temps, ce qui est nécessaire pour intégrer les réseaux de neurones dans de
nouveaux instruments de musique. Par conséquent, plusieurs approches ont tenté de condi-
tionner les modéles génératifs avec des controles plus pertinents pour la création, tels que
la mélodie ou le rythme [2]. Cependant, ces approches ne tiennent toujours pas compte des
hiérarchies temporelles inhérentes a la musique. En effet, les signaux sonores musicaux sont
structurés a plusieurs échelles temporelles, ot des informations & court terme, telles que la
hauteur ou les attaques, se combinent pour former des motifs complexes, comme la mélodie
ou le rythme, qui, & leur tour, donnent naissance a des motifs se manifestant a ’échelle du
morceau, tels que la structure. Nous pensons que prendre en compte cette hiérarchie per-
mettrait de développer une approche plus sophistiquée pour controler la génération musicale.

Ce stage vise a créer un outil de composition musicale en permettant un controle plus fin
de la synthése audio. Nous pensons que les architectures actuelles pour la manipulation
d’images, telles que les Auto-Encodeurs de Diffusion Hiérarchiques (AEDH) [3], ne sont pas
adaptées aux applications audio. Par conséquent, nous proposons un nouveau modéle de
diffusion hiérarchique, reposant sur une architecture et un schéma d’entrainement prenant en
compte ces considérations. Ce modéle intégre notamment plusieurs encodeurs pour capturer
différents niveaux d’abstraction musicale, et utilise une approche d’entrainement progressive.
Enfin, nous évaluons 'efficacité de notre modéle a travers une stratégie d’évaluation adaptée
a notre objectif, incluant plusieurs taches d’extraction d’information a différentes échelles
temporelles, ainsi que par 1’étude de l'effet de la manipulation de représentations latentes
sur 'audio généré.
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1 Introduction

1.1 Audio synthesis for music

Over the last century, artistic creation and technological innovations have been deeply and
reciprocally linked. Music, as a deeply expressive and widely embraced form of art, has
closely followed this pattern and has witnessed profound transformations with the advent
of audio synthesis. This modern revolution has been led through experimental work on
hardware components by pioneers like Iannis Xenakis, who explored granular synthesis, and
foundational theoretical writings such as Max Matthews’ influential article, The Digital
Computer as a Musical Instrument [4]. These new approaches to sound production naturally
benefited from the constant increase in computers’ capacities, and milestones in this domain
have regularly been achieved by the scientific community, leveraging knowledge crossing
the fields of computer science, signal processing and music theory. For example, the devel-
opment of Maxz/MSP by Miller Puckette and David Zicarelli at IRCAM between 1993 and
1994 [5] has expanded the possibilities of computer music by creating an interactive visual
programming language based on the signal processing principles established in the preceding
years. These innovations have pushed creative boundaries and empowered composers to
explore new genres, continuously reshaping the definition of music up to the present day.

In recent years, sound design became a vital part of music creation through the use of modern
tools that can be integrated in Digital Audio Workstations (DAWSs). Hence, innovative
technical approaches have increasingly taken part in the creative process, profoundly
influencing the music we experience today and will experience in the future.

1.2 Deep neural audio synthesis

More recently, machine learning has rapidly advanced and drove numerous innovations
across various fields, including signal processing and audio analysis. These advances were
fueled by the exponential growth in data availability and computational power. Specifically,
the development of deep learning approaches introduced powerful generative models, able
to synthesize new samples from a set of selected examples, while providing novel types of
interaction for audio generation [6] [7].

While historical synthesis methods often rely on the mimesis of specific phenomena, such as
modeling a guitar string coupled with its sounding board, deep learning models learn audio
properties directly from the observation of a given set of examples. Indeed, generative mod-
els approximate the underlying characteristics of a dataset and can be used to create new
examples by sampling from the learned distribution. This shift introduces novel interactions
capabilities that can be exploited as these models are not produced by the same set of
rules. Various generative paradigms such as Generative Adversarial Networks (GAN) [8] or
Variational Auto-Encoders (VAE) [9] have been proposed, and are now capable of generating
realistic samples. However, first attempts with these models faced issues with quality and
inference time, due to the high dimensionality of audio data. Hence, generative models in



audio were originally designed to process simpler representations, such as spectrograms [10].
However, by leveraging a combination between a multi-band decomposition of audio signals,
variational auto-encoding and adversarial training, the recent RAVE model |7] achieved
real-time generation of high-quality audio samples on generic laptops.

Follow-up research lead to the development of a specific class of models capable of reducing
the original audio dimensionality by learning mappings between the waveform and a
deterministic latent representation. Such models provide a very useful representation tool
for audio compression, introducing latent models for generation such as Encodec [11]. More
recently, the diffusion framework |12| has further improved representation learning [13| and
resulted in even faster and higher quality compression models such as Music2latent [14].

1.3 The issue of control in deep generative models

While deep learning methods for audio generation have reached satisfying results in quality
and efficiency, they still lack meaningful and expressive controls, which is a critical com-
ponent for the development of creative tools for artists. Indeed, the interaction between
musicians and their instruments is a key factor in composition and performance, especially
in electronic and experimental music. For instance, the design of the first sequencers,
notably the TR series by Roland, played a significant role in defining the core elements of
the early house and techno sound in the mid-80s. However, defining such relevant controls
for deep learning models is a challenging task, and certain aspects of music composition are
difficult to capture in model design.

This challenge to manipulate the generative process has already been explored via the
use of conditioning [15]. This approach aims to guide the generation with additional
categorical data and tags. Using this extraneous information to categorize the training
data for deep models is called supervised learning. Specifically for music, the DDSP [16]
model proposed to use audio descriptors alongside audio representations to enrich the
latent information. The advent of diffusion models, which offered qualitative results over
complex data generation, pushed these methods a step forward thanks to the accessible
control they offer through classifier-free guidance [17]. Moreover, using diffusion networks
as priors for efficient and qualitative compression models allows the generative process to
be centered on a more elementary task. Hence, latent diffusion approaches have become
increasingly popular for conditional generation. This has facilitated the use of more ab-
stract conditioning representations such as genre or style in various design frameworks [2].
Finally, the recent development of powerful language models for audio [18] and diffusion
auto-encoders (DAE) [13] for representation learning introduced new perspectives for deep
neural audio synthesis. Indeed, their combination reached impressive performances in
text-conditioned audio generation [19][20]. Yet, the musical and creative impacts of theses
approaches remain to be questioned, as some abstract musical concepts such as timbre or
colour do not easily fit with language descriptors. Moreover, supervised approaches are lim-
ited by their dependence on explicit tags and constrained by the need for annotated datasets.



In order to define more flexible tools for deep audio synthesis, unsupervised approaches
should be privileged, meaning that training a model from custom datasets should only
require non-annotated data. These models allow for more exploratory learning by revealing
underlying patterns or structures, potentially enabling high-level controls that may not be
easily defined with common descriptors or labels. The original formulation of VAEs [9]
was designed in this spirit, and the latent space they induce can be explored for control.
However, features in such spaces often exhibit dependencies by being correlated to each
others. Disentanglement aims to reduce these dependencies by isolating the different factors
of variation in the learned latent representation. The goal is for each latent variable to
correspond to a distinct attribute. This results in greater control and flexibility when
manipulating generated outputs, as observed in -VAEs [21]. With diffusion models, DAEs
[13] introduced another type of latent space representation with a compression of the high-
level features into semantic vectors, and also benefited from a disentanglement extension
with Hierarchical Diffusion Auto-Encoders (HDAE) |3].

In audio, unsupervised approaches have already achieved qualitative results |7] [22|. However,
unlike images where features are easily separable, the complexity of audio data introduces
analysis challenges and often leads to entanglement. This makes latent spaces harder to
interpret or control, warranting the development of meaningful control mechanisms as a
crucial area for scientific research.

1.4 The hierarchical nature of music

One of the major challenges in understanding audio signals lies in their intricate structure,
which spans multiple temporal scales. While some short-time information such as transients
and onsets are contained solely in lower-level temporal scales (fig. 7 notes length, rhythm
or even higher-level data like melody and structure arrangement can be observed at larger

time scales (fig. and fig. .
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Figure 1: Different temporal scales for the same musical audio sample

Hence, an audio signal is inherently defined as a hierarchical source of information. It
is composed of multiple layers, each one with its own level of complexity. At the lowest
level, audio signals are composed of fundamental elements that define core characteristics
of sound, such as volume and spectral placement. These elements combine to form more
complex features, such as harmonics, which create the timbre of a sound, and envelopes,
which describe how the amplitude of the signal changes over time (e.g., attack, decay,



sustain and release in musical notes). As we move up the hierarchy, these features combine
to create patterns, such as rhythms, and contribute to the recognition of musical melodies.
At the highest level, these patterns form entire musical phrases or soundscapes. This level
of the hierarchy carries the most complex and meaningful information, like the emotional
tone or genre of a music. Beyond the signal itself, there is a layer of contextual and seman-
tic information that the listener perceives, such as the cultural significance of a musical piece.

Each layer builds upon the lower layers, creating a multi-tiered structure where higher levels
provide context and meaning derived from the integration of simpler, more fundamental
components. This hierarchical nature allows for complex and nuanced interpretation and
analysis of audio signals. Yet, it is important to consider all of these scales simultaneously
to correctly model audio, and eventually control its generation, as the low-level features of
a musical sample are inherently linked with the context they emerge from.

1.5 Control through hierarchical learning

As we just discussed, the temporal structure of an audio signal contains rich information at
different scales. Hence, we think that an effective control framework for deep generative
models must account for this hierarchy to enable precise and expressive manipulation of
the synthesis process. Hence, the objective of this research is to design a deep learning
model that leverages hierarchical separation of musical features as conditioning inputs. To
maintain adaptability and avoid the limitations of labeled data, the model should employ
self-supervised learning for feature extraction directly from the audio signals, allowing
it to be trained on diverse, unannotated datasets while preserving generalization capabilities.

Drawing inspiration from Diffusion Auto-Encoders (DAE) [13], we propose a model incor-
porating multiple encoders in order to capture information at various levels of abstraction,
and use them as conditioning information for diffusion networks trained to reconstruct
the original data. To ensure disentangled representations, distinct features are assigned to
different encoders, with a multi-stage training strategy inspired from progressive GANs [23]
employed to refine this separation. The effectiveness of our model is tested through feature
manipulation tasks and interpretability experiments, and we benchmark its performances
against the Hierarchical Diffusion Auto-Encoder (HDAE) [3] framework, which we adapted
to audio processing. We expect our architecture to provide a manipulation tool for audio
samples, able to extract different hierarchical features and recombine them into a novel
snippet. We think this multi-layer network is particularly relevant for music composition
and sound design, and will allow finer sampling of examples from different parts of the
hierarchical latent spaces.

The remainder of this report is organized as follows. First, we provide a brief presentation
of core machine learning principles and deep generative frameworks with their application
to audio. Then, we discuss the theory behind diffusion models, specifying their different
formulations, and the control capabilities they provide. After a focus on hierarchical



generative models, we present our contribution : a multi-scale spectral hierarchical diffusion
auto-encoder. We detail our model design and characteristics and, then, further explain
the choices made for this specific architecture and training process. Finally, we present the
experiments designed to evaluate our model, including baseline comparisons and feature
analysis. We conclude with a discussion on the contributions and limitations of our work,
opening with some ideas to continue this research in the future.



2 State of the art

In this section, we outline the foundational principles of machine learning and neural
networks that underpins our research. Additionally, we aim to provide some insights into
control mechanisms for deep neural data generation, which are essential to fully understand
the methodology presented in our work. We begin by recalling the general machine learning
techniques and provide an overview of deep neural networks, with a specific emphasis on
audio processing. Following this, we delve into diffusion models and explore their various
formulations. Lastly, we examine current techniques for the control of diffusion models and
their applications in the generative audio domain.

2.1 Machine learning
2.1.1 Machine learning foundations

The core principle of machine learning revolves around building models that can estimate
data distributions. These models rely on identifying patterns in datasets and aim to
generalize them to unseen cases, approximating the relation between the two spaces X
(data) and Y (predictions) that we are interested in. They are typically represented as
parametric functions that map inputs x € X to outputs y € )V, such that

forx—y (1)
The process of learning involves adjusting the model parameters 6 to minimize the difference
between its predictions and the actual outcomes corresponding to the training pairs (x, y) €
X x Y, which is quantified by a loss function £ : (x, y) — L( fo(x) =¥, y). The definition

of a loss function is dependent on the specific task being performed, but the most commonly
used loss is the Mean-Squared-Error (MSE), defined as

Luse(x,y) = || fo(x) = yII*. (2)
The nature of the training data defines the two main approaches in machine learning :
supervised learning, where the model is trained on labeled data, and unsupervised learning,
where instead of being given explicit instructions on what to predict, the model’s objective
is to discover patterns or structures within the data. Common applications for supervised
tasks are regression and classification, whereas unsupervised models are better suited for
clustering and representation learning. In both cases, in order to find the set of parameters 6
that minimizes the loss function £, machine learning approaches use iterative optimization
techniques. The most common method rely on gradient descent, where the model updates
its parameters in the direction that reduces the loss function at each iteration

9n+1 =0, — nAé’LX,y<0n> (3)
Computing the gradient can generally be done efficiently with the chain rule
Iy N Iy N dyNn-1
0) = —1(0 0 4
0 = 3y () 0) (4)



The coefficient n is an hyperparameter, called learning rate, which controls the magnitude
of the model parameters updates at each iteration. If the learning rate is too high, training
might be prone to loss instability or divergence. On the other hand, if the learning rate
is too low, the training will be slow, potentially causing the loss to get stuck in a local
minimum and fail to reach the optimum. Hence, choosing an appropriate learning rate is
crucial for efficient and effective training. Specific methods like learning rate schedules,
where the rate is gradually reduced during training, or adaptive learning rate methods like
Adam |24| can adjust the learning rate dynamically based on the gradients.

Too Low Adequate

Too High

cify)
£(fy)
c(fs)

Figure 2: Different learning rates and their effect on gradient descent

2.1.2 Neural networks

Machine learning models fy must be differentiable with respect to their parameters 6, as
their gradient Ay is used for optimization. For instance, polynomial models can be used
for simple scalar regressions. Yet, while any differentiable parametric function can be
used regardless the task, some architectures are particularly suited for complex problems
thanks to their structural biases. While neural networks do not encompass the full range of
parametric functions available in machine learning, they provide flexible function and serve
as the fundamental building blocks upon which our subsequent research is based.

Multi- Layer Perceptrons

Neural networks (NN) were originally designed as a mathematical model of a brain cells.
A network is a structure composed of a set of interconnected instances called neurons,
organized in layers. Each neuron receives inputs from the preceding layer, and processes
them with an operation defined by weights w = (wy,...,wy,), a bias b and a non-linear
activation function o, and passes its output to the next layer of neurons. The transformation
applied to an input vector x = x1, ..., z,, € RPx by a single neuron can be written as

N
Yy=0 <Z w;T; + b) (5)

i=1



Commonly used activation functions are the sigmoid or tanh, defined as

USigmoid(x) = 1/<1 + e—z)
O'Tanh(x) = tanh(x)

(6)

A dense, fully-connected or linear layer is usually a function of another previous layer
output. It is defined by its weight matrix W and a bias vector b, and maps an input yu
to an output yy+1 with

yn+1 = o(Wyny +b) (7)

Stacking N layers produces a network of depth N, called Multi-Layer Perceptron (MLP),
as depicted in fig. [3] They can be written as the following composition of functions

y=fo(x) =ynoyn—10..0y20y1(X) (8)

B o
( Fow]

Input Layer Hidden Layer Output Layer

Neuron Input Layers Output

Figure 3: An input neuron and a 3-layers MLP network

Even with a small number of layers, these structures can represent highly complex functions
while being composed of many simple singular units. Hence, by considering § = {W, b},
the neural network defines a differentiable parametric function fp : x — y that can be
optimized to model complex relationships between different spaces. Thanks to the chain
rule, the gradient of each layer with respect to its parameters can be expressed based on the
gradient of the next layer. When used in an optimization problem, this iterative technique
is called backpropagation. This greatly reduces the amount of computation required, which
is a critical aspect of machine learning as it allows for a relatively fast training process.

Convolutional Neural Networks

While the MLP formulation is well-suited for simple machine learning problems, it may be
less efficient for extracting features from high-dimensional input data. Indeed, the large
number of neurons required for this task often leads to redundancy, and their inherently



unidimensional nature can result in the loss of critical spatial or temporal information.
Convolutional Neural Networks (CNNs) address these limitations by replacing affine trans-
forms with learnable convolutional filters, known as kernels. These kernels are convolved
with the input data to produce feature maps, thereby preserving spatial and/or temporal
structures. Hence, these models are particularly valuable for signal processing, especially in
computer vision tasks and audio treatment.

Each layer of a CNN is composed of N kernels that are convolved across the input. Hence,
the i layer outputs N feature maps (og)ne[l; ) corresponding to the sum of the convolutions
(kn)nep;n) with each of the M input channels (zy,)pme(1,0)- An additional bias bj, can also
be used. Formally, we have

M
ofy =Y ki * xp + b, (9)
m=1

Again, a graphical representation is provided for greater clarity (fig. . Similar to MLPs,
a non-linear activation function is applied after the summation operation. Additionally,
pooling may be employed to reduce the number of parameters in the model.

Each kernel outputs a feature map
o,, as the sum of their respective
convolution results

(kn)m:[LN' kernels Layer ¢ has M input channels
' that are convolved with k,,

-0.53 -2.01 -0.21

-0.60 1.48 1.16

066 019 015

Figure 4: A CNN Layer operation with 3 kernels and a 5-channel input data

2.1.3 Deep learning

Although shallow neural networks already achieve remarkable success in modeling complex
processes, increasing their depth usually comes with significant limitations. Notably, as
gradients are back-propagated through numerous layers and activation functions, they often
greatly diminish in magnitude, becoming too small to be effectively interpreted. This can
hinder the model’s ability to converge accurately, ultimately compromising its performances.
This issue is called the vanishing gradients, and the introduction of softer and non-saturating
activation functions such as Rectified Linear Unit (ReLU) |25] or Sigmoid Linear Unit
(SiLU) |26] successfully started to resolve this particular constraint. Furthermore, numerous
strategies were introduced to address other training issues, leading to the development of



the deep learning field.

Batch normalization is a technique that stabilizes and accelerates the training of deep neural
networks by normalizing the inputs before each layer. It standardizes the inputs across
successive mini-batches to a unit Gaussian distribution by adjusting their mean and variance,
which reduces internal covariate shift. This process enables faster convergence, allows for
higher learning rates and reduces sensitivity to weight initialization, making it essential
for training deep models effectively |27]. This technique also provides a regularization
effect, which is crucial in enhancing the generalization ability of deep learning models by
preventing overfitting. In this spirit, Dropout is one of the most common regularization
techniques. It consists in randomly masking neurons or dropping output values during each
training iteration. By doing so, the model is forced to learn robust features that are not
overly reliant on any single weight, thereby improving generalization |28].

2.1.4 Probabilistic formulation

In the context of our work, we specifically concentrate on generative models, the principles
of which will be detailed in the following sections (section & section. While some
generative approaches are build on traditional machine learning foundations, most are
grounded in probabilistic formulations. Therefore, before delving into their core principles
it is essential to first define the probabilistic framework that underpins these models.

While we are still considering a dataset of features and predictions &', ), inputs x € X and
outputs y € Y are now defined as random variables drawn from probability distributions,
so that x ~ p(x) and y ~ p(y| x). Consequently, we now aim to model the joint probability
distribution p(x, y), and our model py(x, y) is then derived from a family of parametric
probabilistic functions that characterize the relationship between x and y. The process of
predicting an output y from a given sample x is called inference, and is done by computing
the posterior probability pg(y|x). For differentiable models, optimization is still usually
done with gradient-based techniques. However, the loss is different from the deterministic
definition. Indeed, we usually rely on maximum likelihood estimation, which is defined for
a dataset composed of independent and identically distributed values (x;, y;) of size n as

n

10) = [[pver x:16) (10)

i=1

To facilitate computations, the negative log-likelihood is often used :

L(0) == logp(yi, xi|0) (11)

i=1
Minimizing the negative log-likelihood is equivalent to maximizing the likelihood, but it
often simplifies mathematical expressions and aligns with minimization algorithms.

10



2.2 Established generative models

The advent of deep learning have not only broadened the application scope of generative
models, but also enhanced their potential and capabilities, enabling breakthroughs across
various scientific fields. In this section, we introduce the core concepts behind deep generative
models and their historical applications. As our work mainly relies on diffusion models,
which have been defined recently, they are presented in a dedicated section (see .

2.2.1 Deep generative models

The majority of generative models are grounded in the probabilistic framework outlined
previously. In this context, each individual example x € X is treated as a random variable
drawn from the underlying probability distribution p(x). A probabilistic generative model
seeks to approximate this distribution through a parametric function, with the objective
of achieving pg(x) ~ p(x). In latent variables models, the variations in x are represented
within a lower-dimensional latent space, where latent variables z encapsulate a high-level
abstraction of the original data. This framework allows to assume that the generation
of x is conditioned on z, defining a new formulation of our model p(x,z). Hence, the
marginalized distribution that we aim to model can also be written as

p(x) = / p(x | 2)p(2)dz (12)

However, this integral is generally impossible to solve analytically. Sampling methods
can be used to estimate it, but as the dimension of x is generally large, it introduces
great computational costs. Hence, researchers have proposed a variety of techniques to
approximate p(x) more efficiently, with the two most popular approaches being Variational
Auto-Encoders (VAEs) [9], and Generative Adversarial Networks (GANs) [8].

2.2.2 Variational Auto-Encoders

VAEs [9] extend traditional auto-encoders |29] by incorporating the concept of variational
inference [30]. Standard auto-encoders are neural network composed of an encoder that
compresses input data into a lower-dimensional latent representation, and a decoder that
reconstructs this latent representation back to the original data space. However, they are
deterministic and do not inherently support the generation of new data samples. In contrast,
VAEs use a probabilistic formulation that enables the generation of new data by sampling
from a prior distribution. This approach allows VAEs to learn a continuous, probabilistic
latent space, facilitating both the accurate reconstruction of input data and the generation
of novel, similar data. This formulation places VAEs in a category called likelihood-based
models, in which we can also find auto-regressive models [31] and normalizing flows [32].

VAE models rely on wariational inference, which is a method to approximate complex
probability distributions. It is especially useful when dealing with intractable integrals,
like the marginalized distribution p(x) (Equation . Variational inference approximates
the true posterior p(z|x) with a simpler, tractable distribution g4(z|x) € Q, where ¢
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are its parameters. The objective hence becomes to find the best possible g4 distribution
that is close to the true posterior, measured with a Kullback-Leibler (KL) divergence.
However, since directly minimizing the KL divergence between g4(z|x) and p(z|x) is

difficult, variational inference instead maximizes a related quantity known as the Evidence
Lower Bound (ELBO). This is defined as the following objective

L(¢,0) = Ez[logps(x | )] =8 DxLlgy(z | x)|Ip(2)] (13)

reconstruction regularisation (ELBO)

The first term can be interpreted as a reconstruction error, as it measures the likelihood of
the observed data x being generated from the latent variables z, while the second term
assesses the divergence between the approximate posterior distribution ¢4(z|x) € Q and
the prior distribution p(z). A largely adopted choice for the family of distributions Q is
to consider latent variables as independent and parameterized as Gaussian distributions.
The parameter S was introduced alongside the regularization term to better control the
trade-off between the two terms of the equation, and improves latent space disentanglement.
This modification resulted in a new formulation known as the 5-VAE |21].

VAEs use neural networks to parametrize the distributions ps and ¢4, and optimization is
done using gradient descent on the joint loss (Eq. . The encoder learns to approximate
the posterior gy (z | x), while the decoder takes a latent z drawn from this distribution and
learns to reconstruct the sample X, approximating pg(z |x) (See fig. .
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et 2o N (p(x),2(x)) Se po(X | 2) aenees

Figure 5: Variational Auto-Encoder architecture

As the sampling operation to obtain the latent variables z is not differentiable, VAEs use
a technique called the reparameterization trick to back-propagate through the stochastic
sampling process. Instead of sampling directly from A (u, 02), the model samples from a
standard normal distribution N (0, 1) and shifts and scales it using the learned p and o:
z = i+ o ® € where € is sampled from N (0, 1).
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2.2.3 Generative Adversarial Networks

Generative adversarial networks (GANs) [8] are another family of deep generative models,
part of the wider class of implicit generative models [33]. They are particularly well-known
for their ability to generate realistic images, but they were also used in various other tasks
including audio processing. A GAN consists of two neural networks

e The generator (G) generates data given a latent z drawn from a normal distribution.
It is trained to output samples that closely align with the true data distribution p(x).

e The discriminator (D) is trained to evaluate whether a given input data sample is
real (from the training dataset) or fake (produced by the generator).

These two networks are trained simultaneously and compete against each other during the
training process. The loss functions for the generator and discriminator are set up so that
the generator tries to minimize the discriminator ability to distinguish between real and
fake data, while the discriminator tries to maximize its ability to do so

minmax £(D, G) = Expyyy, (0 [108D ()] + g, ) [log(1 — D(G(2)))] (14)

Training GANs presents several challenges that may affect the quality of the generated data.
One major issue is instability, where the balance between the generator and discriminator is
difficult to maintain. It often results in one network overpowering the other which leads to
suboptimal outcomes. Additionally, GANs are prone to mode collapse, where the generator
produces a limited variety of samples, significantly reducing the diversity of the output.
A last critical challenge is the sensitivity of GANs to hyperparameters, such as learning
rate and architectures. These parameters require meticulous tuning to achieve desirable
performance, and often make training GANs a complex and delicate process. However,
reformulations of the training objective and advancements in architecture design have made
the use of these models manageable and effective, for instance with WGAN [34].

Progressive growing for GANs is another technique introduced to improve the training
stability and quality of generated data [23]. It relies on the idea that directly generating
large, high-resolution images from scratch can lead to poor results, such as artifacts or a
lack of details. Progressive growing addresses this by gradually increasing the resolution of
the images as the training progresses, which stabilizes the process and improves the quality
of the generated data (See fig. @

2.2.4 Applications to audio

Deep generative techniques have been applied to audio in different manners. Although
some models were originally developed to directly generate raw waveform [16] [6], this
task is generally very computationally expensive. Indeed high-quality audio waveforms are
usually sampled at 44.1kHz, meaning that one second of sound is represented by a vector of
44100 dimensions. Hence, the majority of audio applications to generative models rely on
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Figure 6: Progressive growing, taken from [23]. Both the generator (G) and discriminator
(D) start with a low spatial resolution. As training progresses, layers are added to G and
D, gradually increasing the spatial resolution of the generated images.

compression frameworks, that create a mapping between this high-dimensional original data
and a lighter latent representation. It introduces a clear distinction between the generative
and sampling process and with it the notion of prior model.

Oppositely, RAVE [7] achieves fast and efficient computation for generating raw audio data.
It is able to generate high-quality waveforms at 48kHz on a regular laptop CPU. Moreover,
this model is a powerful creative tool as it provides fast inference and real-time generation.
To do so, it relies on combining different classes of generative models presented earlier,
notably GANs and VAEs. It is designed to learn a probabilistic latent space, allowing to
generate new audio samples by sampling directly from this space. Hence, this architecture
is also compatible with a prior model for enhanced control over the generation. This model
relies on the Pseudo-Quadrature-Mirror Filter (PQMF) decomposition of the signal and on
a two-stages training process (See fig. [7)

e In the first stage, the VAE is optimized to encode and decode audio by minimizing
the spectral distance across PQMEF channels. This process constructs the latent space,
which serves as the basis for subsequent generation. However, the outputs generated
at this stage tend to be of suboptimal quality, often missing critical details.

e During the second stage, the focus shifts to fine-tuning the decoder using an adversarial
criterion, compelling the model to produce more realistic samples. At this point, the
encoder is frozen, while the decoder is trained in conjunction with a discriminator
that allows to separate between real and generated samples.

This model forms the basis of our work. Indeed, this generative framework provides direct
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Figure 7: The RAVE training process, taken from [7|. The components highlighted in blue
are those that can be optimized during their respective stages of training.

sampling from the latent space, while enhanced control can be achieved using a prior
model.

2.3 Diffusion models

Diffusion models have recently emerged as a powerful family of generative mod-
els, demonstrating impressive performance in generating high-quality data across various
domains, including image and audio synthesis [38]. Inspired by the thermodynamic dif-
fusion process [39], these models iteratively transform noise into complex data distributions
through a gradual denoising operation (See fig. . Unlike traditional generative models
such as VAEs and GANSs, diffusion models are characterized by their stability in training
and their ability to produce diverse and detailed outputs with expressive control. This has
positioned them as a promising alternative to existing generative frameworks, particularly
in tasks requiring high fidelity and robustness. Recently, diffusion-based techniques were
extended to not only generate data but also provide meaningful latent representations |13,
paving the way for tasks like reconstruction, compression, and data manipulation.

Figure 8: The denoising diffusion reverse process, mapping Gaussian noise into a structured
target data distribution

2.3.1 Original formulation

Early steps on the denoising principle laid the groundwork for modern diffusion models,
and has been explored through various formulations before being unified. The core idea of
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the original article by Sohl-Dickstein et al. [12] is to model complex distributions through
a diffusion forward and reverse process, where data is gradually transformed into noise and
then reversed back to its original form (See fig. @) It is governed by a Markovian sequence
of probabilistic transforms allowing it to generate new samples once it is trained.

Diffusion forward process

By gradually converting a distribution xg ~ qg into Gaussian noise xp ~ N (0,I), we define
a series of latent variables x1,--- ,xp as a sequence of noisy samples. This operation is
called the diffusion forward process q(x; | x¢—1), and applying it as a fixed Markov chain to
the data according to a variance schedule (B1,---, A7) € [0,1]7 yields

q(x¢ | x¢—1) = N(x¢, V1= Bex—1, Bed) (15)

!

= q(xor) = q(x0) [ [ alx¢|xi-1) (16)
t=1

Reparametrizingwith ar =1—p; and @ = H§:1 «; allows us to sample x; at any
arbitrary step ¢

q(x¢ | x0) = N(x¢, Vaigxo, (1 —a)I) (17)
= x; = Vagxo + V1 — aze; with ¢ ~ N(0,T) (18)

Diffusion reverse process

Similarly to the forward process, sampling from ¢(x;—1 | x;) for any ¢ would allow to recreate
any original x¢ from a Gaussian noise input xp ~ N(0,I). However, estimating q(x;—1 | x¢)
it usually not possible when not conditioned with xg, and these probability distributions
are hence approximated by a model py, defining the diffusion reverse process, yielding

Po(Xe—1]x¢) = N(xe-1, po(xe, t), Bo(x, 1)) (19)
T
= po(X0:1) = po(*X0) H (xe—1 %) (20)

Therefore, training our model is equivalent to learn the two functions pg(x;) and Xg(xy).
Moreover, if ¢(x;—1 | x¢) is usually intractable, it becomes manageable when it is conditioned
with xg. Using Bayes’ rule we obtain

q(x¢_1|x
0131, %0) = g 101, 30) 220, 21)
which leads to 5
q(Xt—l |Xt, Xo) = N(Xt—lé ﬂt(Xt, Xo)yﬁtI), (22)
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23
B = 1oL, (#)

{ fit(X¢, Xo) = 1P x0 + r(l Gt 1)Xt

The results of |22| are essential to optimize our model pg, as we can observe that our setup
is similar to VAEs. Indeed, the complete reverse probability can be written as

po(x0) = /pa(XO:T)dXLT, (24)

which is also intractable. Thus, the variational lower bound can be used to optimize
the negative log-likelihood, providing a tractable means of approximating the true data
distribution. Using the Jensen’s inequality, we obtain

Q(XI:T | Xo)

Lrvs = Eyxq.r) {k’g

Finally, in order for this equation to be computable, we can develop it into a last formulation
for training, resulting in a comprehensive diffusion formulation [12]

Lryp < E Drr (q(x¢—1 | %¢,%0) || po(x¢—1 | %¢)) — log pg(x0 | x1) (26)
————
=2
Lo

Li+Lo+..+L1_

@®— @) — @—’.

(:1:2]:1:1)

2

Figure 9: The original diffusion process, from [37]

2.3.2 Score-based models

Score-based models are another class of generative models that focus on estimating the
score function of a data distribution, rather than directly modeling the distribution itself
[40]. The score function is the gradient of the log-probability of the data with respect to
the data itself, denoted as Vi log p(x). It captures the direction in which the data density
increases the fastest (see fig. , and knowing it can help to generate new samples by
moving towards higher-density regions of the data distribution. Once trained, these models
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Fo(x) =~ Vxlogp(x) can take random noise as input and iteratively remove it using the
learned score function to produce realistic data.

A naive objective to train score-based models is to minimize a MSE loss between the score
function and the model

Larse = Expx) [[[Vxlog p(x) — Fo(x)[[3] (27)

However, the score function generally cannot be expressed directly. Instead, denoising score
matching provides an efficient way to minimize this loss without the knowledge of
Vx log p(x), and can be expressed as

1
Lsar = Exopio) [t1(VxFo(x)) + §||]:0(X)||% (28)

This reformulation of the loss function offers a practical framework for learning to model
the score function, which can be efficiently optimized using gradient-based methods.

Once trained, score-based models Fy(x) can be employed to generate new data points into
the estimated distribution. This is typically achieved using Langevin Dynamics, a technique
rooted in non-equilibrium thermodynamics, which has been adapted to machine learning
for efficient sampling [42|. Formally, the process begins by initializing the chain from an
arbitrary prior distribution xo ~ 7(x). It then iteratively applies the following update rule

Xi11 = X; + €V, logp(x;) + V2ez with z, ~ N(0,1) (29)

Under the condition that € — 0 and ¢ — 0o, we obtain x ~ p(x). As Fyp(x) ~ Vx logp(x)
in the case of score-based models, Fy(x) can be used to generate samples.
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2.3.3 Extended frameworks

Suffering from long inference time and poor quality samples, the original diffusion for-
mulation [12] was improved and linked to score-based models [39]. Further research has
demonstrated that the loss employed in training DPMs could be simplified into a weighted
combination of score matching objectives [36]. This equivalence highlights the shared
underlying principles between methods, and has been fundamental to the development
of modern diffusion models. Indeed, this connection has spurred the success of various
alternative extended frameworks, as seen in works like Denoising Diffusion Probabilistic
Models (DDPM) |36] and Denoising Diffusion Implicit Models (DDIM) [37], and culminated
in a unified framework that comprehensively describes this class of generative networks [43].
It has not only clarified the theoretical underpinnings but also facilitated significant perfor-
mance optimization, resulting in more efficient and scalable implementations. Consequently,
diffusion models have emerged as the state-of-the-art in various generative tasks.

Denoising Diffusion Probabilistic Models (DDPM)

DDPM [36] is a diffusion framework directly based on the original DPM results [12], bridging
score-based and diffusion models and enhancing both theoretical clarity and performance.
First, it introduces a more efficient forward process parametrization for g, defining the
variance schedule as a sequence of linearly increasing constants from 3; = 10~% to 7 = 0.02.
Moreover, it presents a simplification of the original loss using score-matching. Indeed,
based on and the model to train pg(x¢,t) can be reparametrized to predict

- 1 1-— (677
/Lt(Xt,Et) = \/7&7 (Xt — mﬁt) s (30)

which leads to

L (S el
polot) = = (1= =) @1

The denoising model €y training loss £ is defined relatively to the noise ¢ ~ N(0,1),
minimizing the difference between fi;(x¢, €;) and pg(x¢,t). In its simplest form, we have

L:simple,t = Et,xo,etH| €t — 69(\/ aXo + v 1- OTta t)||2] (32)

Finally, in this formulation ¥g(xy,t) is chosen not to be learnable and hence set to a fixed
value with ¢
Yo (x4, t) = o1 with o, = By (33)

This reparametrizations and improvements on the diffusion formulation can be linked with
score-based models as for x ~ N(p, 0I) we have Vylogp(x) = —*>£. Using 17| the score
function written in the diffusion formalism hence verifies

€p (Xt7 t)

sp(x¢,t) = Vx, logq(x) = —ﬁa (34)
—

showing that optimizing one or another of these models is similar. This also links the
different sampling processes together. However, using Gaussian parameters in the sampling
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Markov chain is an approximation |12, which happens to be better verified when the
length T of the forward process goes to infinity [36]. As these steps have to be performed
sequentially, sampling with a long forward process still implies a long sampling time, which
consists of a huge limitation to DDPM usage in the generative field.

Denoising diffusion implicit models

In order to reduce the number of sampling steps, a new formulation for the denoising process
has been proposed [37]. By generalizing the previous results from the particular Markovian
diffusion to a class of non-Markovian ones, the sequential chain needed to produce a sample
can be shortened (See fig. . Considering a class @ of inference distributions, indexed by
a real positive vector (o¢)o<t<r, the forward process can be rewritten as

T

do (x1:7 | X0) = go(x1 | 20) [ [ go(xe-1 %1, x0),
=1

with
qO'(XT | XO) = N(@Xoa (1 - Oét)I),

and for all ¢ > 1,

\/OétX o I

Jo (X¢e—1|%¢, X0) = N(Vou—1x0 + /1 — a1 —Ut +1)

Each step of the forward process ¢ (x; | X;—1,X0) can then be obtained via the Bayes’ rule,
and it can no longer be considered as Markovian, since each z; depends on both x;_; and
eventually xg. This forward process is used as a leverage knowledge for the sampling process.
Hence, from a given x;, and a denoising model eét)(
which can be written as

x¢) we first predict an approximate xg,

£ = (xe — VI —are)) (%)) /v,

and use it to predict x;_1

Xi—1 = /-1 fét) +4/1— a1 — o} €ét)(Xt) + o €,

where ¢; ~ N(0,1) is standard Gaussian noise independant of x;. Different choices for oy
give different generative processes. Denoising diffusion implicit model (DDIM) is a special
case of this result when o; = 0 for all ¢. It is an implicit probabilistic model trained with the
DDPM objective. This approach is deterministic, as opposed to DDPM which is stochastic,
and it allows a consistent generation and interpolation.

Elucidating the design space of diffusion-based generative models

As previously observed, the diffusion process can be formalized using various frameworks
[35] [39] [36] [37], often using different scientific backgrounds, and sometimes showing
connections between them. In Elucidating the design space of diffusion-based generative
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Figure 11: The DDIM diffusion process, from [37]

models (EDM)[43], the authors propose a unification of the different diffusion formulations
with a clear explanation of its different components. The paper analyzes the impact of
factors such as noise schedules, network architectures, and the use of different objectives,
helping to refine diffusion models for more efficient and effective generative performance.

First, instead of modeling the forward and backward processes as discrete sequences of
noisy steps, a stochastic differential equation (SDE) called probability flow is used. It makes
it possible to describe the gradual transformation of data into noise (and vice versa) as a
smooth, continuous process, and eliminates the need to specify a fixed number of discrete
time steps, offering more flexibility. Moreover, by formulating the diffusion process as a
differential equation, score-based models and diffusion probabilistic models can completely
be unified under a single framework. Both types of models rely on estimating the gradient
or score function of the data distribution, and the continuous nature of the SDE facilitates
this connection. For a noise schedule o(t) and a scaling s(t) applied to the input data x so
that x = s(t)%, the probability flow is

Vx(Dy(x, 0) — %)
o2

dx = 222 —s(t)26(t)o(t)
where Dy(x,0) is implemented as a denoising neural network, taking an input x for every
noise schedule . The denoising model also often uses a previous reparametrization with a
o-dependent scaling that makes the network able to learn either the noise n given to the
input y or the objective y itself. To do so, the article introduces a network Fy from which
Dy is then defined. If Fjy is the network being trained

dt,

Do(x, 0) = cskip(0) T + Cout () Fy(cin(0) 2, Cpoise(a)),

and the overall training loss with a weight A(o) is

L = Eq,y,n[ M0) | Do(y +n, o) = ylI3]

Finally, sampling data is achieved with solving the stochastic differential equation, by using
an integration scheme such as Euler or Runge-Kutta, and a discrete sampling time series
to,t1,...,tn. As this numerical solution is an approximation, it introduces a truncation
error that accumulates over the steps. Using a Heun’s second order integration scheme
allows to diminish this error. The introduced new training processes and samplers achieved
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excellent generation results with a smaller number of steps than DDIM [37], obtaining a
state-of-the-art FID [44] on benchmark datasets such as CIFAR-10 [45] and ImageNet [46],
further solidifying diffusion models as leading frameworks in the generative domain.

2.3.4 Manipulation and control

Control in generative models refers to the ability to guide the generative process toward
desired outputs by manipulating conditions or intermediate representations during sampling.
Diffusion models are particularly well-suited for control because of their inherent flexibility
and the iterative nature of their generative process. They can easily be conditioned
on auxiliary information such as class labels or text descriptions thanks to classifier-
guidance and classifier-free-guidance [47] [17], enabling targeted generation [48]. The U-Net
architecture [49] that is generally employed in diffusion models also plays a significant
role in enabling this control by capturing multi-scale features and facilitating precise
adjustments across different levels of abstraction in the data. In addition, the recent
development of diffusion auto-encoders [13] provides a unique form of control by allowing
direct manipulation of a latent space, which can be used to modify specific aspects of the
generated data such as style or structure.

Classifier guidance and classifier-free guidance

Classifier guidance is a technique designed to direct diffusion sampling towards the direction
that maximizes the probability that the generated sample is classified into a specific class
[47]. During each denoising step, the update direction V log p(x) provided by the diffusion
model can be combined with the gradient obtained from a classifier, which predicts p(y | x),
where y represents an arbitrary input feature such as a class label (See fig. . The
gradient of the classifier prediction Vx log p(y | x) is scaled by a factor 7 called temperature,
and added to the update direction of the diffusion model, resulting in the expression

Vxlogp(x|y) = Vxlogp(x) + vVxlogp(y | x) (35)

This formulation effectively adjusts the gradient to weight the model’s distribution towards
the expected direction, thereby increasing the likelihood of generating samples consistent
with the target class. However, classifier guidance has the drawback of requiring an external
classifier, which must be separately trained and robust to noise due to its application
to noisy inputs. To address these limitations, classifier-free guidance offers a modern
alternative that eliminates the need for an external classifier model [17]. Instead, this
method involves training a single diffusion model as both a conditional generative model,
computing Vx logp(x|y), and an unconditional generative model, computing Vx log p(x)
(See fig. . Using Bayes’ rule, the update direction is reformulated as

Vxlogp(x|y) = (1 —v)Vxlogp(x) +7Vxlogp(x|y) (36)

This approach combines the conditional and unconditional score functions, typically yielding
better performance than classifier guidance because the internally integrated Bayesian
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classifier is more robust than a separately trained external model. Furthermore, classifier-
free guidance implementation is considered simpler, as it only requires to dropout the
conditioning information during training [17].

e % e
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Figure 12: Classifier guidance (left) and free-guidance (right), taken from [50]

Diffusion auto-encoders

Using diffusion models for representation learning offers a powerful framework for controlled
generation and manipulation. As explored in Diffusion Autoencoders: Toward a Meaning-
ful and Decodable Representation [13], the proposed approach aims to extract a relevant
representation of an input data into a semantic latent space.

For input data xg, a latent variable zg.,, is obtained via a neural encoder E4 so that
Zsem = BEg(x0). A deterministic diffusion decoder is trained to be conditioned with zgep,
and model p(x;—1 | X¢, Zsem) to match with the inference distribution q(x;—1 | X¢, X0 , Zsem)
defined in DDIM [37]. The training objective can be written with the EDM as

ﬁZEU,y,n[A<U)||D9<y+na 0, Zsem) _?JH%] (37)

Supported by experiments on attribute manipulation, this design highlights a hierarchical
separation between the high-level information contained in zg.,, and a lower-level stochastic
representation xp (See fig. . Yet, the article also shows that with a sufficiently large
latent space, the encoded data can almost be reduced to its latent representation and the
reconstruction be weakly dependant to the original noise x7. Furthermore, in this context,
manipulation on Zge,, show that this vector contains rich, meaningful and interpretable
features of the input data, justifying its semantic character (See fig. .

By integrating a reconstruction process with meaningful latent space learning, diffusion auto-
encoders facilitate both high-quality sample manipulation and accurate data reconstruction
in an unsupervised framework. This dual capability enhances their utility in creative tasks,
including audio processing. Hence, the use of diffusion auto-encoders have recently flourished
with the development of numerous tools such as Music2latent , a powerful compression
framework also leveraging consistency diffusion models or Mousai, a text-to-audio
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Figure 13: Diffusion auto-encoder architecture, taken from [13]. A Latent diffusion network
can be trained on the semantic space for unconditional sampling.

generative framework [19]. However, the semantic latent space of diffusion auto-encoders
often contains entangled information, which complicates achieving both expressive and
precise manipulation. To address this challenge, hierarchical approaches were explored to
better disentangle features and improve manipulation capabilities. Finally, a generarive
model trained to sample latent codes from the DAE can also be trained for unconditional

sampling (See fig. .
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Figure 14: Semantic manipulation between images from CelebA [52]. Semantic vectors
Zsem,1 and Zsem 2 are naivly interpolated to reconstruct a novel picture, showing that both
vectors capture meaningful features.

2.4 Hierarchical generative models
2.4.1 First steps with hierarchical models

A hierarchical approach has regularly been introduced in the common generative frameworks
[23], [53]. These structures present several interesting aspects. First, they increase the
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capacity of the model to represent complex data distributions. Indeed, as each level of the
hierarchy can learn different features, it results in richer and more nuanced representations,
which is a fundamental aspect for expressive control. Moreover, they can stabilize the train-
ing process : higher-level abstractions are learned first, which provide a stable foundation
for learning finer details at lower levels. This progressive refinement makes it easier to
avoid abrupt changes in the learning stage, ensuring smoother and more controlled training.
Finally, they are an important factor in enhancing interpretability, which aids in under-
standing how different components contribute to the generation or reconstruction process.
NVAE (Nouveau VAE) [53] is a good example of a hierarchical VAE that benefits from its
use of multi-level latent variables. Each level captures increasingly detailed information
about the data, resulting in smoother training and high-quality image generation across
datasets like CIFAR-10 [45] and ImageNet. Previously mentioned, progressive GANs [23]
also use a hierarchical structure, increasing the complexity of the model during training for
a stable process and better sampling quality.

In audio, hierarchical structures have also been exploited in different models. RAVE |7],
to begin with, employs a hierarchical latent space to model different aspects of the audio
signal. This hierarchical aspect allows the model to learn a low-dimensional, structured
latent representation that can generate high-quality music in real time. Jukebox [54] is
another hierarchical model designed for music generation. Its hierarchical structure is based
on the different temporal levels of music. By using three separates vector-quantized VAEs
(VQ-VAESs) [55], this model operates on three different scales, each one dealing with a
specific time compression and sample rate. The top level generates the high-level structure
(such as melody and harmony), the middle level generates more detailed features (like
instrument texture), and the bottom level handles fine details of the waveform. However,
such separations in classical architectures are often constrained by the inherent limitations
of these models. These challenges could be addressed and enhanced through modern
frameworks like diffusion models, which introduce greater stability in training and enable
finer control over generative processes.

2.4.2 Hierarchical Diffusion autoencoders

The development of hierarchical diffusion auto-encoders (HDAE) [3] introduced a novel
approach to hierarchical latent representation within the diffusion framework. Arguing
that the original DAE formulation [13] could offer a more comprehensive representation of
semantic features, HDAE postulates that feature maps at various depths in the encoder
network capture distinct levels of abstraction. Consequently, semantic codes are extracted
at different layers of the encoder, each representing progressively higher-order features, that
can be integrated into the conditional deterministic U-Net denoising process for enhanced
generation and manipulation (See fig. . This formalism introduces a finer control over
the semantic representations, exploiting the coarse-to-fine and low-level-to-high-level feature
hierarchy of the semantic encoder [3].

The article introduces various formulations of HDAE, using different types of encoders
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HDAE(E) | HDAE(U)

Figure 15: hierarchical diffusion auto-encoder, from [3], with a simple encoder (left) and a
U-Net encoder (right)

for enhanced semantic separation (See fig. . Additionaly, and beyond showing better
reconstruction perfomances than traditional DAE, experiments involving various manip-
ulations like style mixing and interpolation have proven the semantic space to include
comprehensive features. For example, different inputs from different encoding sources
can be combined at their respective depth level to influence the generation result (See fig.
. The feature disentanglement showed in this article hence demonstrates a powerful
manipulation technique that might also work on audio.

’

Semantic Real Image B Layout A +
Layout A Detail B

Figure 16: Multimodal semantic image synthesis, taken from
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3 Multi-scale spectral diffusion auto-encoder

In this section, we introduce our proposal and detail the reasoning behind its conception.
Directly using a diffusion model to generate latent codes and perform manipulations is
limited by entanglement in the high-level latent features, that remain beyond the scope
of usual labels for conditioning. However, we showed previously that DAEs [13] and
more recently HDAEs [3] are able to extract a semantically meaningful representation
of the data that is used to guide the inference process. Yet, current researches have
mostly pursued text-to-music applications [19], or obtaining more accurate audio codecs
[14]. Although the technical performances of such results are impressive, their creative
impact and control capabilities are strongly limited from a musical point of view. As dis-
cussed in the introduction of this work, we believe that relevant levels of audio information
about the sound structure and character pertain to different temporal and frequential scales.

In order to manipulate audio and ultimately control the generative process, we seek to
design both a model and training process that reflect these compositional time-frequency
aspects. Hence, motivated by its hierarchical structure, we propose to extend the HDAE
formulation with a novel multi-scale spectral diffusion auto-encoder formalism, working on
different levels of quantification to allow for expressive hierarchical control.

3.1 Model definition

Our objective is to encode an audio signal into three hierarchical representations, progres-
sively capturing increasing levels of detail, and leverage these representations as conditioning
inputs for a U-Net denoiser Dy. Similarly to HDAE [3], the semantic vectors are used to
guide the diffusion process in its decoding phase. Hence, the low-dimensional semantic
vector, which is expected to mostly contain structural information is utilized near the
U-Net bottleneck, where the compression ratio is highest. In contrast, the finer-grained
details, expected to be represented by the less-compressed higher-level semantic vector, are
applied at the top layers of the U-Net. Our complete workflow is illustrated on figure
These successive semantic vectors can be grouped into a single Zp;erarchical, leading to the
following variant of the EDM [43] formulation

L= ]Ea,y,n[)\(o') H De(y +n, o, Zhierarchical) - y||%] (38)

However, we think it is essential to integrate hierarchical separation at the core of the
encoding process, as learning these representations with identical training processes offers
no guarantee a priori that the model will appropriately allocate features across the correct
levels of abstraction. Therefore, we choose to work with a spectral representation of the
audio, leading to a more structured and interpretable representation compared to raw
waveform data. Indeed, a time-frequency organization of sound is particularly well-suited
for multi-scale analysis, facilitating feature extraction across varying temporal and frequency
resolutions. Hence, our encoding process starts by mapping the original audio waveform
into three spectral representations, obtained by first transforming the audio signal into
a Mel-Spectrogram, and then successively downsampling this representation into coarser
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ones. Denoting x the original audio signal, the multi-scales representations X1, Xo, X3 are
obtained following

x3 = MelSpechigh-res(X)
Xy = MelSpecidres(X) = downsample(Xs) (39)
X1 = MelSpecioy-res(Xx) = downsample(Xsa)

To project these representations into informative condition vectors, we design encoders Fjy,

E3, Ej3 that progressively reduce the input dimensionality while preserving its temporal
structure. These encoders map X1, X2, X3 into latent representations hy, ho and hg

hy = Ey(X1)
he = E2(X2) (40)
h3 = E3(X3)

However, our design choice for the three representations may still induce redundancy, as X3
inherently holds all the information found in both x; and X5. Thus, there is no intrinsic
motivation for h; and ho to contain meaningful independent features. To ensure proper
hierarchical separation, we apply a slight refinement of the learned features ho, and hs
before using them as conditioning information. At each representation level k € [[1, 3] we
do hy, = hy, + upsample(hg_1) (and initialize h; = hy), allowing them to capture finer
variations around the low-level features rather than encoding the same information. The
U-Net denoiser is finally conditioned with these modified latent vectors l~11, }Nzg, and hs.

To further ensure that all representations are meaningful, we implement a progressive
training scheme, drawing inspiration from Progressive growing of GANs developped by
Karras et al. |23|. Hence, we propose our own multi-stage training sequence to support this
hierarchical learning process. Specifically, we start by only training the encoder E; which
takes a partial representation of the original data as input. Then, we progressively introduce
details at each subsequent level k£ + 1 by freezing Ei, ..., Ex and training only Ejy.q. This
strategy ensures that each encoder is optimized for its respective scale of representation,
leading to a more disentangled and structured latent space.

When used for inference, the model is designed to operate with multiple input samples.
Indeed, we can provide three distinct audio for at each level, each chosen for a specific
structural or timbral characteristic. In that case, the model functions as a neural sampler
capable of selecting and integrating the corresponding hierarchical features from each
snippet, providing a powerful audio manipulation tool. Furthermore, by training prior
generative models to sample from these ordered latent spaces, we can establish a generative
framework that enables novel, controllable sampling. Manipulating these latent spaces
offers a new dimension of control in neural synthesis, potentially allowing for more precise
and creative audio generation.
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Diffusion Audio Codec!
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Zreconstructed

Figure 17: The complete workflow of our model proposal.

3.2 Architecture details

In this section, we detail our architectural and hyperparameter ChOiCGSD

e Our diffusion network Dy is a U-Net including skip connections with five encoding
and decoding stages. This network uses 1D convolutions instead of the original 2D
convolutions of the original article [49], and we apply a time compression of factor 2
at each level. Conditioning information from the semantic encoder is applied at levels
1, 3, and 5 in the decoding process, letting one decoding stage between each. As the
latent vectors are time-dependent, conditioning is done through simple concatenation
with the current signal being processed, while noise levels are inserted into the network
using adaptive group normalization [56].

e The spectral representations we utilize are Mel spectrograms. To enhance feature
separation, we apply downsampling with a factor of 2 on both the time and frequency
scales for each new signal.

e All encoders Eq, Fy and F3 are built with 2D convolutions that also downsample the
time scale by a factor 2 at each stage, and are designed for their output to be easily
concatenated with the U-net stage they correspond to.

!The complete code is available at |https: //github.com/AlfredPichard/ multiscale—spectral—DAEl
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4 Experiments and results

Evaluating our model is a critical step to ensure that it performs adequately in musical
applicative scenarios. In this section, we aim to validate the effectiveness of our approach,
by targeting its robustness and generalization of the proposed architecture. To thoroughly
assess our model, we focus on three key aspects: reconstruction quality, feature analysis and
manipulation capabilities. Evaluating reconstruction quality is crucial to determine how
accurately the model can recreate the original signal from its compressed representation.
High-quality reconstruction indicates that the model effectively preserves essential informa-
tion during the encoding and decoding processes, and is fundamental for potential artistic
applications. For the latent analysis, we chose two salient features at different hierarchical
level for each dataset and analyse how these features are distributed within the different
encoders latent spaces. Finally, we evaluate the manipulation capabilities of our approach,
by targeting specific transforms such as pitch or timbre modification. This assessment
reflects the core objective of our model and its practical utility in music production. For
each evaluation, we compare the performances of our model against a baseline HDAE
method to determine their relative effectiveness.

4.1 Experimental setup

Dataset

For our experiments, we used the NSynth [10] and Slakh [57] datasets. Considered as a
benchmark in the audio deep learning field, Nsynth is composed of 305,979 musical notes
from ten different instruments, which allow our reconstruction process to be evaluated on a
large variety of sounds. Slakh provides 2100 synthesized track stems providing full pieces
for different instruments, which can extend our evaluation process on audio manipulation.
We retain only the individual tracks of non-percussive instruments, leading to more than
200 hours of audio. Although these datasets are not suited for artistic applications, using
them offers objective frameworks that simplify our evaluations, thanks to the accompanying
metadata they provide, such as pitch for NSynth and full midi score for Slakh.

Baseline

As a baseline method, we adapted the HDAE approach [3] to audio data. Specifically, we
employ 1D convolutions instead of the 2D convolutions typically used for images. Addi-
tionally, since sound contains temporal information, our semantic vectors must reflect this
characteristic to effectively reconstruct the data. Consequently, the latent representations
generated by the semantic encoder are time-dependent, with each representation compress-
ing information at a distinct temporal level. We specifically designed this formulation of
HDAE with three hierarchical encoding levels to ensure a fair comparison with our model.

Training Details

As mentioned in section |3| we rely on a neural audio codec to compress the raw waveform
into a representation of lower dimensionality, reducing the computational complexity of
the generation. We employ the recently proposed Music2Latent [14], which compresses
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44.1 kHz audio into 10 Hz latent codes with 64 channels. We train both models on codes
corresponding to 3-seconds long audio chunks, each for the same number of steps. We use the

Adam optimizer 24| with a learning rate of 5e — 5. For the full-resolution Mel-Spectrogram,
we use a hop length of 256, FFT and window size of 1024, and 128 Mel bands.

4.2 Audio reconstruction

Before delving into feature analysis and assessing the control capabilities of our proposed
architecture, we first focus on estimating reconstruction quality. We use the generic Fréchet
Audio Distance (FAD) [58] method, which compares embeddings extracted from original
and reconstructed audio using a pretrained model, such as CLAP [18|, to measure the
distance between the original and generated distributions. The FAD is particularly useful
for evaluating generative audio models, offering a quantitative measure of how closely the
generated audio resembles real audio samples. These results are displayed in table [1] We
observe that our models obtain strongly better reconstruction than the HDAE baseline on
Slakh, and performs equivalently on NSynth.

FAD Score |

NSynth Slakh
HDAE 0.55 0.55
Ours 0.56 0.41

Table 1: Comparison of FAD scores between the baseline HDAE and our proposed approach.

4.3 Feature analysis

We built our proposed model with the very goal of disentangling low-level (e.g., notes and
onsets) and high-level (e.g., timbre or instruments) features in the distinct latent spaces
of our different encoders. In this section, we conduct several experiments to observe and
analyze the structure of the latent spaces of our model. A common method for evaluating
learned features in deep learning is to train small neural networks, often called probes or
auziliary networks, which take representations as inputs, and are then trained to extract
specific information from the representations (e.g pitch, melody, instrument). Reaching a
high validation score for one of these tasks indicates that the representation contains the
necessary information for the prediction. Oppositely, lower accuracy would suggest that the
model has not encoded those features in that specific representation. Hence, this approach
lets us assess how well the learned features capture various aspects of the audio data.

In our case, we train probes on each different latent representations to classify two distinct
features. As low-level feature, we focus on the pitch of the note played for NSynth and the
whole melody in the case of the Slakh dataset. For both dataset, we focus on instrument
labels as high-level feature.
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To predict single pitch or instrument labels, we train a MLP network on time averages
of the latent representations using a cross-entropy loss. We treat melody extraction as a
temporal multi-label classification problem, and follow the methodology presented in [59].
Namely, we start by resampling the representation to match the length of the sequence of
labels. Then, we use a two-layer BiLSTM followed by a linear layer, and train the model to
extract melody from the resampled representation using binary cross-entropy (BCE) loss.
We present our results for the Nsynth and Slakh datasets in tables[2|and respectively.

Pitch prediction 1 ‘ Instrument 1
hi  hy hz  Codec|hi  hy hz  Codec
HDAE 96% 85% 8% 99% 83% 26%

97% 99%

Ours 76% 82% 87% 97% 94% 94%

Table 2: Comparison of classification accuracy for MLP classifiers trained on the three
encoders representations hi, he and hs.

Melody prediction | ‘ Instrument 1

hy ho h3 Codec | by hy  hg  Codec
HDAE 0.007 0.009 0.022 0.002 97% 4T% 14% 99%
Ours 0.015 0.006 0.006 91% 86% 79% ’

Table 3: Comparison of classification scores for classifiers trained on the three encoders
representations for the Slakh dataset. For melody prediction, the BCE loss value is reported
instead of accuracy.

For the NSynth dataset, we can observe different behaviours for the HDAE baseline and our
proposed model. The hq and hs representations for HDAE capture most pitch and timbre
information, whereas hs has relatively low predictability scores. Interestingly, our model
separates well pitch information, mainly captured in the representation hg, while timbre
is captured in the high level representation hi. We observe a similar trend for our model
trained on Slakh, with a better prediction of the melody on the h3 and he codes, while
the high-level feature h; exhibits the highest accuracy for instrument prediction. HDAE
behaves similarly, with the low-level dimension hg capturing very little information for both
melody and instrument.

The latent codes from the codec should contain all the pitch and timbre information as
they can be used to reconstruct almost perfectly the audio samples from the two datasets.
The very high prediction scores obtained by the classifier probes on those latent codes
demonstrate that our evaluation method is able to correctly detect the presence (or absence)
of the pitch and timbre features within the multiple representations.
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Next, we employ the UMAP algorithm to vizualize the underlying data manifolds
of each hierarchical representation. UMAP is a versatile and efficient algorithm for di-
mensionality reduction, offering useful insights into the structure of complex datasets. It
projects high-dimensional data onto a low-dimensional manifold maintaining both local
neighborhoods and global relationships. For both our model and HDAE, we plot pitch and
instrument labels on top of the UMAP projection to outline how the different features are
organised in the latent space.

We present the UMAP visualizations generated from the analysis of the HDAE latent spaces
on the Slakh dataset, highlighting the distribution by instrument (fig. . Additional
UMAP visualizations are provided in the appendix (see appendix.

instrument instrument instrument

« Strings

+  Guitar

« COrgan

* Synth Pad
» Strings {continued)
«  Synth Lead
« Brass

+ FReed

«  Bass

« PFiano

« Ppe

Figure 18: UMAP anlaysis of the HDAE latent spaces. The graph on the left corresponds
to representation hi, in the middle hy and on the right hg.

This analysis reveals that the highest-level latent space exhibits clustered instrument
representations. This suggests that this feature is likely captured by this latent space and
indicates that this level has effectively learned to encode this information. Oppositely, the
two other representations seem not to contain a specific instrument-based organization.

4.4 Latent manipulations

After analysing how the pitch and timbre information are distributed inside the different
hierarchical representations of the two models, we must evaluate the performance of our
approach in generation. As our goal is to build a generative model with disentangled
representation spaces, mixing representations from different audio sources should generate
new realistic signals that preserve the features from each source. For instance, we observed
in the previous section that for our proposed model, h; mainly captures timbre, whereas ho
and hg focus on the melodic content. Hence, we evaluate in this section whether, when
conditioning our model using h; from a sample x1, and hy and hz from a sample xo, the
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generated output matches the timbral properties of x1, and the melody of x5. For each
dataset and model, we generate samples by swapping one attribute with that of another
sample, denoted as the target, while keeping the other two untouched. For the generated
audio, we evaluate the timbre similarity, as well as accuracy of the melodic content with
respect to the attributes of the target.

To assess timbre similarity, we employ the metric introduced in SS-VAE [61]. This method
uses a triplet network trained to identify whether samples are played by the same instrument,
based on Mel-frequency cepstral coefficients 2-13. We rely on the official implementation
and learn the metric using the Mixing-Secrets 4 dataset [62]. For both datasets, we extract
the midi transcription of the generated audios using BasicPitch [63], and compare it with
that of all three inputs. For Slakh, we compute the similarity between melodies by using the
Fl-score from the mir_eval package |64|. For NSynth, we compute the accuracy between
the pitch of the generated audio and that of x1, xo and x3.

Pitch accuracy 1 ‘ Timbre similarity 1
hi  ha hs  Rec. |h1  hy hg  Rec

HDAE 0.29 0.06 0.01 0.74|059 074 0.69 0.97
Ours 0.03 0.06 0.16 047 | 0.61 0.62 0.84 0.95

Table 4: Comparison of transfer scores for Nsynth dataset on the three representations hq,
ho and hg, with a reconstruction reference Rec.

Melody F1-score 1 ‘ Timbre similarity 1
hl hQ h3 Rec. ‘ h1 h2 h3 Rec.

HDAE 0.039 0.047 0.025 0.18 | 0.81 0.60 0.58 0.93
Ours 0.090 0.055 0.022 0.27 | 0.63 0.62 0.75 0.95

Table 5: Comparison of transfer scores for Slakh dataset on the representations hi, ho and
hs, with a reconstruction reference Rec.

On the Slakh dataset, we observe a coherent behaviour between our previous feature analysis
and the generation performance. Indeed, hs obtains the highest score in terms of timbre
similarity, meanwhile h; has the most impact on the generated melody. Interestingly, on
Nsynth the last layer hs seems to have a large effect on both timbre and pitch. As NSynth
is a very simple dataset, where each sample correspond to a single note, pitch can be seen
as a high-level feature, quite similar to timbre. It would be interesting to investigate how
other temporal descriptors with a finer temporal definition, such as the envelope of the note
played, are potentially captured by the lower-level latent variables. It is also important to
note that both melody accuracy and timbre similarity metrics are affected by the audio
quality of the generated samples, as both evaluation methods rely on pretrained neural
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networks that might not be robust to noise and low quality samples. Our evaluation could
benefit from a perceptive study with specific focus on timbral and melodic similarities.

The HDAE model does not exhibit a clear trend in the effect of latent manipulations on
timbre and melody, although h; and hy seem to share most of the effect on the generated
sample features. We observe that on top of improved reconstruction accuracy, our proposed
model seems to be a more robust solution to perform independent attribute manipulation,
and represents a promising tool for musical applications such as sample editing.
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5 Discussion

5.1 Contributions and limitations

This research aimed to design a model that captures the hierarchical structure of music,
providing a controllable tool for composition. Leveraging recent advancements inside the
diffusion framework, such as DAE and HDAE, we initially explored the application of
hierarchical approaches from image manipulation to audio synthesis. Our initial adaptation
of HDAE to audio was driven by the expectation that the disentanglement observed in
image data would similarly enhance audio representations.

However, we discovered significant differences in the structural hierarchies of audio and
image data, which informed us to develop a novel approach tailored specifically for audio
signals. This new model integrates key elements from HDAE while addressing the unique
characteristics of audio through signal processing techniques. Furthermore, we introduced
a progressive training strategy to effectively disentangle the various latent representations
inherent in audio data.

An essential aspect of our work involved establishing a suitable evaluation framework, as
traditional testing methods are not well-adapted to our objectives. Additionally, the numer-
ous hyperparameters involved require careful optimization to achieve optimal performance.
Ongoing evaluation efforts will be critical in guiding future improvements and ensuring
the model’s practical applicability in music composition. However, even if our model faces
limitations primarily due to its training complexity and the challenge of effective evaluation,
we observed that it provides a promising latent separation, and the comparison to our
baseline highlights the positive results of our approach.

5.2 Future work

In conclusion, while our evaluation process incorporates promising concepts, it still requires
refinement to more accurately measure the effectiveness of our proposed model. Improving
the evaluation framework will be a critical next step to fully validate and optimize the ideas
we have developed.

Once we establish robust evaluation methods, the next logical progression is to train our
model on real musical data rather than relying on benchmark datasets. This shift will pave
the way for creative applications, allowing us to test and challenge our model in real-world,
artistic contexts.

Looking ahead, developing priors for the various latent spaces in our model would enable
the sampling of latent vectors, transforming our approach into a fully generative and
manipulable framework. This extension is an exciting direction for future exploration, with
significant potential for creative and innovative uses in music composition.
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