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Résumé / Abstract

Ce document présente les recherches menées durant un stage de 6 mois à Ircam Amplify,
dans le cadre du parcours ATIAM. Le sujet étant la génération automatique de jingles audio, per-
mettant à l’utilisateur de contrôler temporellement l’audio généré, différents paradigmes de dif-
fusion ont été explorés. Le format utilisé pour représenter les données audio a également été
étudié, notamment en terme d’efficacité de la génération. L’intégration du contrôle à la génération,
composante primordiale à l’ergonomie d’un tel outil, fait aussi parti de l’analyse.

Une comparaison quantitative et qualitative permet de déterminer que le cadre alliant
meilleurs résultats et plus grande efficacité est le paradigme EDM dans un espace latent continu.
Toutefois, il faudrait consacrer plus de temps à affiner ces résultats. En effet, les entraînements et
l’inférence pour certains modèles prennent énormément de temps (de l’ordre de plusieurs jours
chacun pour certains modèles), ce qui a limité notre développement.

L’implémentation a été rendue la plus complète et modulaire possible, pour en permettre une
réutilisation presque telle quelle dans de futurs travaux. Parmi les pistes qui nous semblent promet-
teuses, nous avons identifié l’amélioration de la qualité des données, la définition de paramètres de
contrôle plus pertinents, et l’utilisation de couches d’attention avec des transformers pour intégrer
le contrôle.

Nous avons fait le choix de rédiger ce document en anglais par souci de cohérence : la dis-
cipline présente de nombreux termes techniques anglophones qu’il aurait été difficile de traduire
sans perdre en intelligibilité.

Mots-clé Apprentissage automatique, diffusion audio, génération conditionnelle, espaces la-
tents

This document presents the research conducted during a 6-month internship at Ircam Amplify,
as part of the ATIAM program. The focus was on the automatic generation of audio jingles, allowing
the user to control the generated audio temporally. Various diffusion paradigms were explored, and
the format used to represent audio data was studied, particularly in terms of generation efficiency.
The integration of control into the generation process, a crucial component for the usability of such
a tool, was also analyzed.

A quantitative and qualitative comparison determined that the framework combining the best
results with the greatest efficiency is the EDM paradigm in a continuous latent space. However,
more time is needed to refine these results. The training and inference for some models take an
enormous amount of time (several days for some models), which limited our development.

The implementation was made as comprehensive and modular as possible, to allow for almost
direct reuse in future work. Among the promising directions we have identified are improving the
quality of the data, defining more relevant control parameters, and using attention layers with
transformers to integrate control.

We chose to write this document in English for the sake of consistency: the field includes
many technical terms in English that would have been difficult to translate into French without
losing clarity.

Keywords Machine learning, audio diffusion, conditional generation, latent spaces
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Chapter 1

Introduction

1.1 Subject overview
Creating an audio jingle is an artistic process, requiring significant control for sound designers.

However, there are often similarities between different jingles, making it interesting to try to speed
up the preliminary phases of sound design. Here, a "jingle" refers to a short soundtrack (less than
10 seconds) composed to accompany a video and embody a sonic identity. The main difference
between a jingle and a music track lies in the time scale: while a track requires coherence over
several minutes, with broad control of parameters, a jingle aims to develop recognizable sounds
with very precise control of parameters over its few seconds. Examples of jingles are available on
the Ircam Amplify website1.

The goal of the internship is to explore various solutions for automatically generating basic
elements that make up audio jingles. This generation must be of high quality and highly controllable
by the user. Specifically, we aim to enable temporal control over the generated audio, meaning
the ability to trace the evolution of a parameter over time.

Audio generation is a well-explored topic in machine learning, with several approaches, each
offering its own advantages and disadvantages. Autoregressive models like WaveNet [Oord et al.
2016] can generate long sequences but may lack coherence over time. GANs (e.g., Fre-GAN [Kim
et al. 2021], MP3net [Broek 2021], EVA-GAN [Liao, Lan, and Zachariah 2024]) offer high-quality
sampling but can be challenging to train due to instability and lack diversity (mode coverage).
Diffusion methods (such as WaveGrad [Chen et al. 2020], DiffWave [Kong et al. 2021], EDMSound
[Zhu et al. 2023], DiffSound [D. Yang et al. 2023]) are also widely used, providing both quality
and coherence, but they often require long sampling times. The third and last category of the
generative learning trilemma (Figure 1.1) is the VAEs2, with fast sampling and good mode coverage
but worse sample quality. Given our goal of generating audio clips of just a few seconds, the
diffusion approach appeared to be the most suitable (reasonable inference time).

1https://soundexperience.ircamamplify.com/
2Variational Auto-Encoders
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Figure 1.1: Generative learning trilemma. Credit: Tackling the Generative Learning Trilemma with
Denoising Diffusion GANs [Xiao, Kreis, and Vahdat 2022]

In this report, we begin by reviewing the various diffusion paradigms that currently exist, as well
as the common control methods. Following this overview, we present our experiments comparing
these different methods, using data that prioritizes modularity over quality. This implementation
was made as modular as possible to facilitate reuse in other contexts. Finally, we present the
results obtained, which were limited by the time available.

1.2 What is diffusion?
Generative diffusion models were inspired by thermodynamics [Sohl-Dickstein et al. 2015],

more precisely by the diffusion of particles in a fluid. The goal is to learn to reverse the diffusion
process to recover the original data from its corrupted version. As developed in [Sohl-Dickstein
et al. 2015], the goal may be to learn the data’s distribution’s probability density (continuous state-
space) or mass (discrete state-space). In the first case, a diffusion model will navigate back and
forth between the data’s probability distribution and a gaussian distribution (Figure 1.2); in the
second one, between the data’s probability mass and a uniform categorical distribution.

Figure 1.2: Example of diffusion process, the model moving to and from data and noise. Credit:
Improving Diffusion Models as an Alternative To GANs, Part 13, A. Vahdat and K. Kreis

Diffusion models have rapidly evolved into a powerful class of generative models for image
synthesis [Ho, Jain, and Abbeel 2020, Nichol and Dhariwal 2021, Karras et al. 2022]. Exten-
sive research has been conducted to make it more stable, realistic, and efficient, for instance by
positioning it in a latent space [Rombach et al. 2022].

Very quickly, diffusion models were used to generate audio. WaveGrad [Chen et al. 2020]
and DiffWave [Kong et al. 2021] adopted the waveform synthesis approach, but this proved to

3https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

Aurélien Manté | Ircam Amplify 4

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/


be very resource-intensive and therefore very slow. Other models have adopted the approach
of synthesizing spectrograms, either complex [Zhu et al. 2023] or mel-spectrograms [D. Yang et
al. 2023, Wu et al. 2023], followed by a phase vocoder to generate the audio. To reduce the
dimensionality of the data, latent diffusion has been introduced by [D. Yang et al. 2023].

1.3 Mode coverage vs sample quality
Controlling the diffusion process is key in making those models useful. Those models then

require a good balance between mode coverage (to better follow the control) and sample fidelity
(synthesis quality). Some solutions have been developed to enable better control of image syn-
thesis while maintaining sample fidelity, like combining a conditional and an unconditional model
[Ho and Salimans 2022] or using a LLM4 [Saharia et al. 2022].

We can distinguish between two types of control: global and local. Global control involves
influencing generation at a macro level, often based on textual input. Local control has a different
meaning depending on whether we are considering image or audio generation. In the case of
images, it involves influencing specific areas in term of the x and y dimensions [Zhao et al. 2023]. In
the case of audio, local conditioning acts along the time dimension to influence synthesis differently
at each point in time [Wu et al. 2023].

For effective control, the model must demonstrate good mode coverage. To ensure this does
not compromise sample fidelity, it is necessary to develop metrics that quantify the fidelity of the
generated data. In image synthesis models, the FID5 is commonly used. For audio synthesis,
this metric has been adapted as the FAD6 [Kilgour et al. 2019]. For reference, the state-of-the-art
MusicControlNet model [Wu et al. 2023] achieves a FAD ranging between 1.12 and 1.51.

4Large Language Model
5Fréchet Inception Distance, https://en.wikipedia.org/wiki/Frechet_inception_distance
6Fréchet Audio Distance
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Chapter 2

Diffusion

2.1 Theoretical background
As seen, diffusion models define a forward and a backward process [Sohl-Dickstein et al.

2015]. The forward process consists in diffusing / adding noise to the original data, to convert it
from a complex distribution to a simple one. No learning is involved in this process. Considering a
data point sampled from a real data distribution x0 ∼ q(x0), the forward process defines a Markov
chain q(xt|xt−1).

The learned backward process consists in restructuring / denoising the data, from the fully
diffused version to, ideally, the original sample. A model pθ(xt−1|xt) is trained to approximate the
probability q(xt−1|xt). Then, by using a random noise as the fully diffused distribution, the model
can generate a new and unseen sample from the data distribution it was trained on.

Here, the amount of noise added defines the "diffusion time" (linking to physics). This time
can be viewed as either a continuous parameter or as predefined (discrete) steps, hence defining
a markov chain (Figure 2.1). The state space of the data also impacts the equations governing
diffusion. This space can be either discrete (mass functions) or continuous (probability density
functions).

Figure 2.1: Forward / noising process (q(xt|xt−1)) and backward / denoising process with a
learned denoising model (pθ(xt−1|xt)) for discrete diffusion timesteps between 0 and T . Credit:

Denoising Diffusion Probabilistic Models [Ho, Jain, and Abbeel 2020]

In 2020, the DDPM1 framework [Ho, Jain, and Abbeel 2020] defined a novel denoising strategy
and a simplified training objective. This model has been used as a foundation in many other papers
[Kong et al. 2021, Saharia et al. 2022, Rombach et al. 2022], thereby becoming a reference.

A different denoising strategy is introduced, shifting the focus from predicting the noise pa-
rameters (gaussian or binomial) at each step to predicting the noise that was added during the
forward diffusion process. In this approach, the model is trained to estimate the noise component
present in a noisy sample at each step of the reverse process.

1Denoising Diffusion Probabilistic Models
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The training objective is reformulated to the mean squared error between the noise added
during the forward process and the noise predicted by the model in the reverse process. This
reweighted variational bound simplifies the training process, making it more efficient and leading to
improved sample quality. This paradigm is presented in detail in subsection 2.2.1 and implemented
under the name DDPM in our code.

In 2022, EDM2 models were developed by [Karras et al. 2022]. They unify diffusion models
by proposing a continuous-time formulation, based on solutions of SDEs3 in the case of gaus-
sian noise, allowing efficient sampling, enabling denoising in just a few steps (state-of-the-art is
achieved with 18 steps in the paper). While those models are equivalent to DDPM models with
infinite timesteps, the latters may be seen as EDM models evaluated at discrete timesteps. They
enable stochastic sampling as well as deterministic sampling, which is equivalent to solving the
ODE4 formulation of the diffusion process. This paradigm is presented in detail in subsection 2.2.2
and implemented under the name EDM in our code.

In discrete state spaces, while [Sohl-Dickstein et al. 2015] developed diffusion models for
binomial distributions [Sohl-Dickstein et al. 2015], they were extended to multinomial distributions
by [Hoogeboom et al. 2021], and later adapted to the DDPM architecture (D3PM5) by [Austin
et al. 2023]. This last paradigm is presented in subsection 2.3.2 and implemented under the
name DiscDPM in our code. Table 2.1 summarizes the different formalisms we have implemented,
classified based on their time and state-space caracteristics.

Discrete time Continuous time

Discrete state-space DiscDPM [Hoogeboom et al.
2021] (2.3.2)

—

Continuous state-space DDPM [Ho, Jain, and Abbeel
2020] (2.2.1)

EDM [Karras et al. 2022]
(2.2.2)

Table 2.1: The diffusion formalisms we have implemented, classified based on their time and
state-space caracteristics

2.2 Diffusion time

2.2.1 Discrete time
The most common discrete-time approach was developed by [Ho, Jain, and Abbeel 2020].

This formalism (DDPM) builds upon the original diffusion probabilistic models [Sohl-Dickstein et
al. 2015] to improve the learning and sampling processes.

Diffusion process

The forward process defines T latent variables x1, . . . ,xT , noised according to a variance
schedule β1, . . . , βT . For continuous density data, Gaussian noise is usually used, and the joint
distribution is:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2.1)

= N
(√

1− βtxt−1, βtI
)

, with βt ∈ [0, 1]∀t ∈ 1, . . . , T (2.2)

2Elucidated Diffusion-based generative Models
3Stochastic Differential Equations
4Ordinary Differential Equation
5Discrete Denoising Diffusion Probabilistic Models
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The reparametrization trick lets us derive a close-form expression to sample from q(xt|x0).
With αt = 1− βt and ᾱt =

∏T
i=1 αi:

xt =
√
ᾱtx0 +

√
1− ᾱtϵϵϵ where ϵϵϵ ∼ N (0, I) (2.3)

q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) (2.4)

Training

The DDPM formalism uses a network to predict the noise added at each timestep instead
of the parameters of this noise (mean and variance). Let ϵθ(x, t) be this noise estimator, then
the objective function defined by [Sohl-Dickstein et al. 2015] may be minimized by minimizing the
simplified loss function defined in eq. 2.5 [Ho, Jain, and Abbeel 2020].

L = Et,q(x0),ϵϵϵ[∥ϵϵϵ− ϵθϵθϵθ(
√
ᾱtx0 +

√
1− ᾱtϵϵϵ, t)∥2] (2.5)

Sampling

The goal of the backward (or reverse) process is to be able to sample from the distribution
q(xt−1|xt). The model was developed such that pθ(xt−1|xt) = N (µµµθ(xt, t), σ

2
t I) with µµµθ(xt, t) =

1√
αt

(
xt − βt√

1−ᾱt
ϵθϵθϵθ(xt, t)

)
. We can thus start with xT ∼ N (0, I) and sample for T steps following

eq. 2.6.

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθϵθϵθ(xt, t)

)
+ σtϵϵϵ with ϵϵϵ ∼ N (0, I) (2.6)

2.2.2 Continuous time
The EDM formalism [Karras et al. 2022] builds on the continuous-time DPM6 equations [Sohl-

Dickstein et al. 2015] to derive SDEs, proposing an effective noise schedule and sampling method.

Diffusion process

In this approach, instead of using a fixed number of discrete time steps, as in traditional DDPM
(see subsection 2.2.1), the diffusion process is modeled as a continuous trajectory, allowing for
SDE / ODE formulation instead of a Markov chain. The SDE formulation for the diffusion process
was precedently developed by [Song et al. 2021] (eq. 2.7).

dx = f(x, t)dt+ g(t)dw (2.7)

where w is the Brownian motion, f(,̇t) and g(t) are respectively the drift and diffusion coefficients
of x.

Stochastic and deterministic sampling

This formulation allows for stochastic sampling (reverse SDE) as well as deterministic sam-
pling (reverse ODE), which can both be computed by estimating the score function. With the
re-parametrization presented in eq. 2.8 and 2.9, and by choosing the scale factor s(t) = 1, the
reverse ODE simplifies to eq. 2.10.

6Diffusion Probabilistic Models
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f(t) =
ṡ(t)

s(t)
(2.8)

g(t) = s(t)
√

2σ̇(t)σ(t) (2.9)

dx = −σ̇(t)σ(t)∇x log pσ(t)(x(t), t)︸ ︷︷ ︸
score function

dt (2.10)

In the EDM formalism, [Karras et al. 2022] define a denoiser Dθ(x, σ) that minimizes the
expected L2 denoising error (eq. 2.11). The target data and the denoiser are linked through the
score function (eq. 2.12).

L = Ey∼pdataEn∼N (0,σ2I∥Dθ(y + n, σ)− y∥22 (2.11)

∇x log p(x, θ) =
Dθ(x, σ(t))− x

σ(t)2
(2.12)

This allows deterministic sampling by solving the probability flow ODE. For stochastic sam-
pling, [Song et al. 2021] propose to add a Langevin diffusion SDE to the ODE in eq. 2.10. Figure
2.2 presents a 1D overview of stochastic vs deterministic sampling, as well as a simplified visual
representation of the diffusion and reverse processes.

Figure 2.2: Overview of score-based generative modeling through SDEs. The data distribution
p0(x) is mapped to a noise distribution with an SDE that can be reversed for sampling. Credit:
Score-Based Generative Modeling through Stochastic Differential Equations [Song et al. 2021]

Optimized sampling

When estimating the flow lines for deterministic sampling, a second order correction of the
estimated gradient proves to allow for bigger time steps, thus faster and better sampling. [Karras
et al. 2022] chose the Heun’s 2nd order method, which only doubles the NFE7 for the denoiser.
This function, taking the form of a trained neural network, represents the most computational cost,
so limiting the NFE to two by denoising step is key for fast sampling.

Choosing the scale factor s(t) and noise schedule σ(t) enables to change the shape of the
flow curves. It is interesting to make them as straight as possible, to allow for bigger time steps
(them being linear). [Karras et al. 2022] suggest to set s(t) = 1 and σ(t) = t in this purpose.

7Number of Function Evaluations
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Preconditioning plays a key role in the quality of the training. [Karras et al. 2022] define weights
that regulate the variance of the samples (cin, cnoise), and allow a form of skip-connection (cskip, cout).
With Fθ(x, σ) the raw network, the denoiser takes the new form presented in eq. 2.13.

Dθ(x, σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x, cnoise(σ)) (2.13)

2.3 State-space
The state-space the diffusion model is evolving in may be discrete or continuous. In our use

case, an example of continous data state-space would be spectrograms (real, complex, ...), data
bins being floating points. While discrete state-spaces are often associated with text data, they
may be useful for audio generation in latent spaces, when the upstream encoder uses vector
quantization. This is for instance the case of Encodec [Défossez et al. 2022], which can produce
both continuous latent codes and discretized ones.

2.3.1 Continuous state-space
When working in continuous state-spaces, the model evaluates probability distributions. This

enables diffusing with Gaussian noise, which simplifies the equations involving the score function.
Moreover, the SDE / ODE approach developed for the EDM formalism [Karras et al. 2022] requires
the state-space to be continuous, since it uses the properties of Gaussian noise.

Thus, the implementations discussed in subsections 2.2.1 (DDPM) and 2.2.2 (EDM) are
based on continuous state-spaces.

2.3.2 Discrete state-space
The original paper on diffusion models included binomial distributions [Sohl-Dickstein et al.

2015], but [Hoogeboom et al. 2021] leveraged this idea to categorical distributions. The key con-
cept is that one data sample x is encoded as a one-hot vector of dimension K equal to the number
of classes (the possible discrete values), which corresponds to the probability mass function for
the underlying data distribution.

Diffusion process

The diffusion process adds noise by smoothing the mass function to a uniform distribution.
Following the DDPM notations (see 2.2.1), with ᾱt =

∏t
i=1 αi, αi = 1− βi, the density probability

at timestep t follows the categorical distribution given in eq. 2.14.

q(xt|x0) = C
(
xt,pᾱt(x0) = ᾱtx0 +

1− ᾱt

K

)
(2.14)

Using Bayes’ rule and the Markovian nature of q, the reverse process may be explicited as in
eq. 2.15. Figure 2.3 illustrates the forward and backward processes.

q(xt−1|xt,x0) = C
(
xt−1,ppost(xt,x0) =

pαt(xt)⊙ pᾱt−1(x0)

C

)
(2.15)

where: pαt(xt)⊙ pᾱt−1(x0) =

(
αtxt +

1− αt

K

)
⊙
(
ᾱt−1x0 +

1− ᾱt−1

K

)
(2.16)

C =

K∑
k=1

[
pαt

(xt)⊙ pᾱt−1
(x0)

]
k

(2.17)
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Figure 2.3: Overview of the multinomial diffusion process. From right to left, q(xt|xt−1) gradually
adds noise to the data. From left to right, a generative model pθ(xt−1|xt) gradually denoises the

signal. Credit: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
[Hoogeboom et al. 2021]

Sampling

Considering we have a trained network Fθ(xt, t) modeling x0, we can model q(xt−1|xt,x0)
from eq. 2.15 as presented in eq. 2.18. A new latent variable is sampled from this updated
categorical distribution at each sampling step.

pθ(xt−1|xt) = q(xt−1|xt, Fθ(xt, t))

= C
(
xt−1,ppost(xt, Fθ(xt, t)) =

pαt
(xt)⊙ pᾱt−1

(Fθ(xt, t))

C

) (2.18)

Training

The network is trained by minimizing the KL divergence8 between the distributions
q(xt−1|xt,x0) and pθ(xt−1|xt) (eq. 2.19).

L =

K∑
k=1

ppost(xt,x0)k log

(
ppost(xt,x0)k

ppost(xt, Fθ(xt, t)k

)
(2.19)

2.4 Control
Controlling diffusion generation is essential to enable practical applications of the model. To

achieve this, several design choices are available. The integration of control into the network
layers has a major impact on the effectiveness of this control and the stability of the training.
In our research, we identified four methods of control integration: affine modulation, channel-
wise concatenation, attention layers using transformers [Vaswani et al. 2023], and conditionally
parametrized convolutions (CondConv) [B. Yang et al. 2020].

Control via modulation involves modulating the latent variable with the output of a control
branch. This modulation can take the form of an affine modulation (FiLM [Perez et al. 2017]) or a
sum operation (Controlnet [Zhang, Rao, and Agrawala 2023]), sometimes including convolutional
layers initialized with zero-weights (zero-convolutions) so that the control is gradually integrated
during training [Zhang, Rao, and Agrawala 2023; Zhao et al. 2023; Wu et al. 2023]. In this case,
using a copy of a pre-trained unconditional generator as control branch seems to yield better results
than randomly initialized weights [Zhang, Rao, and Agrawala 2023].

8Kullback–Leibler divergence, https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
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Chapter 3

Experiments

3.1 Development
Each diffusion formalism developed (DDPM (subsection 2.2.1), EDM (subsection 2.2.2), Dis-

cDPM (subsection 2.3.2)) was tested on the swiss-roll dataset from scikit-learn [Pedregosa et al.
2011]. Results of the DDPM framework with a 4-layer 128-wide MLP1 are presented in Figure 3.1.
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DDPM formalism with MLP backbone model.

Figure 3.1: Samples generated with the DDPM formalism and a MLP backbone model, trained
on the swiss-roll dataset. On the left, samples generated with scikit-learn, on the right, samples

generated with the trained model.

For the DDPM framework, which was the first implemented, we stepped up the complexity by
switching from a MLP to a CNN2, this time on the MNIST dataset [Deng 2012]. As it lead to very
satisfying results (see Figure 3.2), we could start developing larger models on audio data. As the
EDM paradigm yielded similar results, we chose not to show them here.

1MultiLayer Perceptron
2Convolutional Neural Network
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Samples from MNIST Generated samples

Figure 3.2: Samples generated with the DDPM formalism with a CNN backbone model trained
on the MNIST dataset (right) compared to samples from the dataset (left).

The DiscDPM framework was further tested with a small U-Net (see subsection 3.4.1), which
yielded very satisfying results. The successive steps of discrete diffusion carried during sampling
are presented in Figure 3.3. The data it was trained on consists of 2 discrete codes (x and y axes)
of 40 classes, following the swiss-roll pattern.
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Figure 3.3: The successive diffusion steps carried by the DiscDPM framework, trained on 2D
data over 40 classes following the swiss-roll pattern. The prior (initial noise) follows a uniform

distribution over each dimension.

3.2 Control integration
Following the different conditioning strategies determined in section 2.4, we tested different

control methods. Even though conditioning with attention layers seems to be a promising approach
[Hawthorne et al. 2022], especially since it allows control inputs to be of different size than the
variable it is controlling, we did not have time to implement this method nor CondConv layers,
leaving that for future work.

We separated control into two categories: global control and local control. Global control
typically takes the form of style guidance, such as textual input. Local control, in the case of
images, refers to conditioning on specific areas pixel-wise (2D control input). When manipulating
audio, it refers to conditioning that varies over time (1D control input).

We integrated local control using the channel concatenation approach, which proved to be
efficient, while global control was integrated using the FiLM modulation method. However, this
modulation seems to have too much impact on the generation, which led to massively degraded
sampling. Our objective being to enable local control on the generation of basic elements for
jingles, we focused on integrating local control rather than global control, which we eventually did
not use in our experiments.
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3.3 Data
To test different architectures, we needed audio data paired with conditioning data. For this,

we decided to synthesize audio clips from a MIDI database, allowing us to easily create condi-
tioning data. The MIDI database we chose is Lakh [The Lakh MIDI Dataset v0.1 n.d.], and we
exported the audio using the Fluidsynth synthesizer [FluidSynth/fluidsynth 2024] with the Gen-
eral User Soundfont library [https://schristiancollins.com/generaluser.php n.d.]. More information
about the generated data is provided in subsection 3.3.3.

3.3.1 Audio format
Signal processing representations

Our initial goal was to avoid any dependency on other pre-trained or to-be-trained models. To
achieve this, we used a time-frequency representation, in particular the CQT3. The advantage of
CQT over STFT4 is its ability to highlight harmonic relationships, which are crucial in our case of
musical instrument sounds. The chosen parameters, offering the best balance between size and
quality, are as follows:

• minimum frequency of 130.81Hz (corresponding to the C3 MIDI note)

• 36 frequency bins per octave

• 216 bins (range of 6 octaves)

• hop length of 100 samples, with a sampling frequency fs = 24 kHz, so a hop time of 4ms

To not rely on a downstream phase vocoder, the complex CQT data is split across 2 channels
(real and imaginary parts). The model thus operates in 3 dimensions. For 8 s of audio, the data
shape is [C = 2, F = 216, T = 1921]5. This representation may be used with the DDPM and EDM
paradigms (see table 2.1).

Continuous latent state space

The memory usage of the CQT data and the computation time it required quickly became
limiting factors in the development of the models. Therefore, we turned to latent space methods to
compress the information [Rombach et al. 2022]. Though not being the highest-fidelity option for
our specific case, the pre-trained Encodec model [Défossez et al. 2022] allows for efficient data
compression and is a common solution for latent audio spaces.

The encoder part of Encodec outputs 128-dimensional floating point vectors, sampled at 75Hz
(Figure 3.4). In this state-space, one 8s-sample is 2-dimensional and of shape [C = 128, T = 600],
which is around 10 times lighter than the CQT format. The main drawback of using a pre-trained
encoder-decoder architecture is the bias introduced by the data it was trained on. Ultimately, for
the best results, a specific encodec-decoder model could be trained. This representation may be
used with the DDPM and EDM paradigms (see table 2.1).

Discrete latent state space

The Encodec model also includes a vector quantization layer, which further compresses the
data into discrete codes referencing a codebook (see Figure 3.4). The available bandwidths Bw

and the corresponding number of discrete codes nq are presented in table 3.1 [Défossez et al.
2022]. The codes are encoded on 1024 classes, so they take integer values from 0 to 1023.

3Constant Q Transform, https://en.wikipedia.org/wiki/Constant-Q_transform
4Short-Time Fourier Transform, https://en.wikipedia.org/wiki/Short-time_Fourier_transform
5C stands for channels, F for frequencies, T for time
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Bw nq

1.5 kbps 2

3 kbps 4

6 kbps 8

12 kbps 16

24 kbps 32

Table 3.1: The different bandwidths available with the Encodec model and their corresponding
number of discrete codes

For our experiments, we chose a bandwidth of 12 kbps, which leads to 8s-samples of shape
[C = 16, T = 600], 8 times lighter than the continuous latent representation, 80 times lighter than
the CQT representation. However, even though this reduction in size is reflected in the database,
it does not translate to memory usage during training, due to the one-hot-like representation of
categorical distributions (see Section 4.3). This data format is only compatible with the DiscDPM
paradigm (see table 2.1).

Figure 3.4: The architecture of the Encodec model. For continuous latent variables (3.3.1), the
encoder and decoder parts are used, bypassing the quantizer bottleneck. For discrete latent
variables (3.3.1), the quantized vectors are used (different compression levels are available).

Credit: High Fidelity Neural Audio Compression [Défossez et al. 2022]

3.3.2 Control data
The local control features extracted from the MIDI information (see section 3.2) are:

• velocity The velocity of the current note, normalized from [0, 127] to [0, 1]. 1D vector (scalar
along the time dimension). Set to 0 when no note is playing.

• chromas The chroma of the current note, normalized from [0, 11] to [0, 1]. 1D vector (scalar
along the time dimension). Set to 0 when no note is playing.

• instruments The instrument playing the current note, value in [0, 1] defining the activation of
an instrument. 2D matrix, with one dimension for the different instruments (of size 3 in our
case) and one time dimension. Considering our database, the instruments are either fully
activated or deactivated (0 or 1), and there is only one instrument for the whole clip.
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All these controls may be set to −1 for no conditioning. Three examples of control data are
presented in Figure 3.5. It should be noticed that these arbitrary controls have numerous limita-
tions. For instance, the chroma representation cannot include octave information, which creates
ambiguity regarding the actual melody played.

We did not use global control even for conditioning on timbre because, as explained in section
2.4, it had too strong an effect on the generation. Additionally, this approach allows for the timbre
to vary over time.
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Figure 3.5: Examples of control data used for training. From top to bottom, the instrument matrix,
where the ID of the instrument playing is activated while the others are set to 0, the chromas

vector, indicating the global variation in pitch, and the velocity vector, indicating the intensity of
the note played, and if any note is played at all.

3.3.3 Databases
Throughout our research, numerous datasets were exported. The latest versions, which we

use for this report, consist of 8-second mono audio clips. Each clip contains a monophonic melody
(only one note played at a time) performed by one of three instruments: piano, violin, or trumpet.
The notes range from C3 to C5 (notes outside this range in the MIDI database were transposed),
and their velocity is modulated by a sine wave with random frequency and phase to add diversity
(with the frequency varying between 1

8×T and 8
T with T the duration of the audio clip).

Each of these clips is paired with the corresponding control data (see subsection 3.3.2), sam-
pled at the same rate as the audio format (24 kHz for the CQT format, 75Hz for the Encodec latent
codes). The benefits of both a latent representation that compresses the temporal dimension and
the integration of control mechanisms allowing for a different control data size compared to the au-
dio data (such as attention layers) are clear: it is unnecessary to control generation at a precision of
24 kHz, which consumes a significant amount of memory, especially with the CQT representation,
which is already by far the most resource-intensive.

In our code, this database configuration is called PVT6, and comes in 4 data formats:

• PVT-audio, with raw audio clips, useful for the computation of quantitative metrics to evaluate
the quality of the generation (see section 4.2).

• PVT-cqt, with audio data exported in the CQT representation (3.3.1)

• PVT-encodec, with audio data exported in the continuous codes Encodec latent representa-
tion (3.3.1)

6Piano-Violin-Trumpet
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• PVT-disc, with audio data exported in the discrete codes Encodec latent representation
(3.3.1)

All examples are 8s-long. The raw audio dataset contains 50 k examples. The other datasets
contain two splits: the train-dataset of about 100 k examples and the valid-dataset of about 20 k
examples (ratio of 0.2).

Exporting representations from audio data on-the-fly during training was highly suboptimal for
GPU utilization. Therefore, all datasets were exported offline in the compressed npz format. Even
so, data decompression prevented the GPUs from being used to their full computational capacity.
To address this, we switched to TensorFlow’s tfrecord format for serialization, which allows for
saving data in binary and thus enables very fast reading. The only adjustment required was to
include a shapes.txt file to reshape the matrices during data loading.

3.4 Backbone model
We refer to the trainable model within the diffusion process as the backbone model. Our whole

backbone architecture is presented in Figure 3.7.

3.4.1 U-Net
We decided to use a U-Net architecture [Ronneberger, Fischer, and Brox 2015] as our back-

bone model. It appears well-suited for capturing latent representations at different scales through
down- and up-sampling, and it is widely used in the literature [Rombach et al. 2022; Ho, Jain, and
Abbeel 2020; Wu et al. 2023].

This U-Net can be composed of either 1D or 2D convolutions depending on the data format
(2D for CQT, 1D for continuous and discrete codes). The non-linearity function used is SiLU, and
the normalization is GroupNorm with a single group. At each downsampling step, the number
of channels is multiplied by a factor, which is set in the configuration file. We tested our U-Net
implementation with the DDPM formalism as a mock test-case with the swiss-roll dataset to check
its proper functioning (Figure 3.6).

Following [Ronneberger, Fischer, and Brox 2015], the U-Net has a last OutConv convolutional
layer, allowing to spread the data over Cout channels if needed (the original model was developed
for pixel-wise classification, so this layer mapped the representation to the different classes). In the
case of continuous data Cout = Cdata, but in the case of discrete codes, as we need to determine
mass probability functions, the models needs to output the probability over 1024 classes for each
of the 16 input channels (more on this in the subsection 3.4.3).
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Figure 3.6: Samples generated with the DDPM formalism and a U-Net backbone model (with 1D
convolutions), trained on the swiss-roll dataset. On the left, samples generated with scikit-learn,

on the right, samples generated with the trained model.
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3.4.2 Local and global control
The local control branch follows an architecture similar to the first half of the U-Net. The

temporal dimension is halved at each layer to allow for concatenation with the latent representation,
but the number of channels differs. Specifically, we set a fixed number of control channels that
remains constant at each layer, set to 128 channels in our case (configurable).

Even though we have not included global control in our experiments, it was implemented in
our backbone architecture. It takes the form of linear modulation. The branch is composed of MLP
blocks with a Sigmoid function as the output, to serve as an activation mechanism for the different
channels. The output of each MLP is the input of the next one. The complete conditional denoiser
backbone model is schematized in Figure 3.7.
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Figure 3.7: Summary of our conditional denoiser architecture, composed of one U-Net, a local
control branch and a global control branch. The shapes indicated correspond to 1D data (codes
in our case). For 2D data (CQT), a frequency dimension F is added and resampled with the time

dimension T . The down- and up-blocks are as described in [Ronneberger, Fischer, and Brox
2015], i.e. 2 convolution layers with a time-dependent modulation in-between.

3.4.3 U-NetExpand
For the special case of discrete data (the DiscDPM framework), the architecture presented in

Figure 3.7 seemed significantly limited. Indeed, the last upblock outputs Cdata channels (Cdata =
16 in the case of discrete codes), and the convolution layer OutConv is used to create Cdata ×
nclasses = 16 × 1024 = 16384 channels. This extreme last layer was considerably limiting the
model’s performance.

To address this issue, we developed a slightly modified version of the U-Net, where the chan-
nel multiplication factors in the upsampling blocks are not the same as those during the downsam-
pling phase. This allows us to increase the channel dimension throughout the U-Net, avoiding a
situation where the final layer multiplies the number of channels by 1024. In our code, this archi-
tecture is called UNetExpand.
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Chapter 4

Results

4.1 Training
The training was conducted in epochs of 10000 steps, with a learning rate of 10−4, using a

scheduler. We set a maximum of 50 epochs, so 500 k steps. No model reached convergence
within this time, despite the considerable computation time. For each data sample, each control
feature had a 30% change of being set to a uniform −1 tensor, which stands for unconditional
generation.

Quite quickly in the development process, the memory consumption became prohibitive, forc-
ing us to shard the data across 4 GPUs to maintain a reasonable batch size (with CQT data, the
maximum batch size on a single GPU is between 4 and 8). Using the GPU servers at Ircam was
limiting, so we utilized the Jean-Zay computing center, which allowed us to run multiple training
sessions in parallel. Trainings on Jean-Zay servers are launched with slurm scripts, allowing to
launch scripts for up to 100 h (more info on IDRIS’ website1). The wait time to launch a script de-
pends on the traffic and the migration of Jean-Zay’s storage servers during this summer delayed
many trainings, but using this computing center was still a huge time saver overall.

4.2 Metrics
To compare the different frameworks, we needed a metric, and we chose the FAD2 [Kilgour

et al. 2019] as it is commonly used in the literature [Zhu et al. 2023; Wu et al. 2023]. An overview
of the FAD calculation is provided in Figure 4.1. In the original work this metric was developed
for, the goal was to evaluate the performance of an audio denoising model, with the evaluation set
being the enhanced eval. set. In our case, it is a set of samples generated by our model. The large
database of clean music corresponds to our PVT-audio baseline database (see Subsection 3.3.3),
exported with the same parameters as the training dataset. The pre-trained VGGish classification
model then exports embeddings for each set, and the FAD is calculated from the estimation of
multivariate Gaussians for each set of embeddings.

1http://www.idris.fr/jean-zay/gpu/jean-zay-gpu-exec_partition_slurm.html
2Fréchet Audio Distance
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Figure 4.1: FAD computation overview. The enhanced eval. set is in our case the set of
generated samples, and the large database of clean music is the PVT-audio database (see

subsection 3.3.3). Credit: Fréchet Audio Distance: A Metric for Evaluating Music Enhancement
Algorithms [Kilgour et al. 2019]

In our case, the baseline set of clean audio consists of 50 k examples of 4 s each, and the
evaluation set contains 2000 generated examples, also 4 s each. We were forced to choose these
parameters due to inference time and memory usage constraints in the frameworks when using
CQT and discrete code data. For consistency, we calculated the FAD for the continuous code
frameworks using the same parameters. To obtain more precise values, a much larger evaluation
set would be necessary.

For a more comprehensive comparison of the different frameworks, we include the training
time (which depends notably on memory usage), the number of trainable parameters, and the
inference time for a batch when creating the evaluation set for FAD computation.

4.3 Quantitative
The quantitative results were significantly limited by the time available to us. The CQT data

format quickly proved to be too memory-intensive to be usable, so we quickly switched to latent
representations. The CQT data format is still included ni the comparison.

The discrete code format required much more memory than we initially anticipated during
model development. Although the data is encoded on 16 integers, sampled at 75Hz, the need to
generate a one-hot-like tensor for the probability mass function causes memory usage to increase
exponentially with the number of classes. Since Encodec codes are encoded over 1024 classes,
the output of the backbone model is 1024 times larger than the input. This limitation impacts the
number of parameters in the discrete code model, as well as the training and sampling times.
Unfortunately, the EDM paradigm cannot be easily adapted to discrete codes because it relies on
solving SDEs, which inherently require continuous data.

The results are presented in Table 4.1. Unfortunately, the lack of time prevented us from prop-
erly tuning the hyperparameters of the DDPM with continuous codes framework (we were already
mainly using the EDM formalism when we implemented the latent representations). The number
of learnable parameters differs from one framework to the other because of the memory usage it
yields. The CQT and discrete codes data formats faced memory limitations, so the configuration
chosen is the largest possible to train on 16GB GPUs. This choice introduced a huge bias in the
FAD scores, since the lighter models were closer to convergence after the same number of training
steps. We think that is why the EDM-CQT framework scores better FAD-wise even though during
development, we found EDM with continous codes to yield better results. We will train lighter mod-
els and compute their FAD before the defense in order to present a more relevant comparison. Yet,
the training and sampling times being also much shorter, we focused most of our hyperparameter
tuning on this framework, leading to the results presented in Section 4.4.
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The discrete code format does not seem very suitable for this task and shows a poor FAD
score. Although the data itself is lighter, the need to generate from one-hot-like tensors makes it
more challenging to model.

Framework DDPM EDM DDPM EDM DiscDPM

Data format CQT CQT Float.
codes

Float.
codes

Disc.
codes

Learnable parameters 56.9M 56.9M 225.8M 225.8M 87.9M

Batch size / GPU 4 4 16 16 16

Training time (500 k steps) 75.7 h 80.2 h 36.3 h 37.3 h 77.2 h

Inference time (8× 4 s) 1216.2 s 45.0 s 39.6 s 1.6 s 112.8 s

FAD 7.23 4.63 73.84 7.48 48.55

Table 4.1: Quantitative metrics for the different diffusion frameworks, all with a U-Net backbone
model, trained for 500 k. Due to memory limitations and high computational times, the evaluation
set generated for each framework was made up of 2000 examples of 4 s each. The inference time

was measured for batches of size 8 (largest batch size possible for inference with the CQT
format on Ircam’s 12GB GPUs).

Given the significant limitations on quantitative results due to constraints in certain frame-
works, we trained an EDM model on continuous codes with more trainable parameters and for
1M steps. We refer to this model as our best model. Its metrics are presented in Table 4.2. The
efficiency of the EDM framework on continuous codes enabled us to calculate the FAD using an
evaluation set of 20 k examples of 8 s each, providing a more accurate result.

Framework EDM

Data format Float.
codes

Learnable parameters 231.6M

Batch size / GPU 32

Training time (1M steps) 118.4 h

Inference time (64× 8 s) 12.7 s

FAD 4.06

Table 4.2: Quantitative metrics for our best model, trained for 1M steps with a batch size of 32
per GPU. The inference time is provided for reference and should not be compared to the

inference time in Table 4.1, as the batch size and sampling duration are different. The evaluation
set was made up of 20 k generated samples.

4.4 Qualitative
Since we did not implement a metric to monitor the control, we leave this to qualitative ap-

preciation. A comparison between audio samples generated by our models and examples from
the database will be made available on https://anasynth.demos.ircam.fr/jingles. Figure 4.2
shows mel-spectrograms of samples generated by our best model and their associated hand-made
control features. It appears clear that the control feature have a great impact on the generation.
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Figure 4.2: Samples generated by our best model, conditionned by a hand-made control. This
model operating at 75Hz, the sample duration is 8 s.

Partially unconditional generation (Figure 4.3) highlights the limitations of our control features.
Specifically, in addition to the octave ambiguity in chromas, we observed a strong interdependence
between the chroma and velocity features. This likely stems from the fact that the absence of a
note is represented by both a velocity of 0 and a chroma of 0, which corresponds to the C note.
Therefore, conditioning on the 0 chroma has a distinct status compared to other chromas.
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Figure 4.3: 8 s-long samples generated by our best model, partially unconditional, one control
feature being set to −1. This model operating at 75Hz, the sample duration is 8 s.
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4.5 Future work
EDM has been identified as the most effective paradigm, yielding the highest quality results,

but we have only minimally explored the sampling parameters offered by this framework. Specif-
ically, we only performed deterministic sampling, whereas [Karras et al. 2022] demonstrated that
adding stochasticity can result in more realistic generation. Here are the different sampling pa-
rameters from [Karras et al. 2022] and the value we gave them:

• nsteps = 18, the number of denoising steps

• σmin = 0.002, the minimum noise level

• σmax = 80, the maximum noise level

• ρ = 7, parameter controlling the curvature of the gradient lines

• Schurn = 0, parameter controlling the overall amount of stochasticity

• Smin = 0, minimum noise level at which stochasticity is added

• Smax = inf, maximum noise level at which stochasticity is added

• Snoise = 1, gain for the noise added for stochasticity

Samples generated with different Schurn parameters should be compared to see the effect of
stochasticity.

In the pursuit of generating basic elements for audio jingles, it would be necessary to gather
more suitable and higher quality data, as well as to define audio descriptors that are valuable to
sound designers. For example, [Peeters et al. 2011] presents numerous descriptors that could be
useful for this task.

Developing a dedicated encoder-decoder specifically for this task would also be worthwhile.
As we have seen, operating in a latent space is essential for building sufficiently large models,
so this latent space must be well-suited to the data. Tailoring the encoder-decoder to capture the
specific characteristics of audio jingles could lead to better performance, enabling the model to
generate high-quality audio elements.
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Conclusion

Over the course of the 6-month internship, we explored various diffusion-based generative
frameworks, considering both diffusion paradigms (DDPM, EDM, DiscDPM) and data format (CQT,
continuous codes, discrete codes). Unfortunately, we did not have the time to fully develop each
framework to a satisfactory level, but the limitations encountered during development provide valu-
able lessons for future work.

One key takeaway is that diffusion on time-frequency representations like CQT proved
to be computationally infeasible due to excessive memory requirements. Regarding diffusion
paradigms, EDM offers significantly more efficient sampling than DDPM on continuous state
spaces, making it a preferable option. While diffusion on discrete spaces is attractive for many
domains, in the case of vector quantized codes, the large number of classes results in signifi-
cantly higher memory usage compared to continuous codes. When given the choice between a
continuous and discrete space, the continuous space generally appears more suitable.

In our experiments, we found that channel concatenation yielded better results for control
integration compared to affine modulation. While attention-based control mechanisms have shown
promise in other generative models, we did not have the opportunity to thoroughly explore this
approach in our study. Future work could investigate the effectiveness of attention layers for more
versatile control over audio generation, in particular the ability to sample the control at a lower
frequency than the audio data.

Given the importance of operating in a latent space for diffusion, it highlights the potential
benefits of developing and training our own autoencoder. This approach would eliminate the need
to rely on a pre-trained network like Encodec. By specializing the model on audio jingle elements,
we could achieve greater data compression, optimized specifically for the characteristics of jingles,
leading to more efficient and targeted generation.
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