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Abstract

Many musicians use audio effects to shape their sound to the point that these effects become part of
their sound identity. However, configuring audio effects often requires expert knowledge to find the
correct setting to reach a desired sound. In this report, we present a novel method to automatically
recognize the effect present in a reference sound and find parameters that allow to reproduce its timbre.
This tool aims at helping artists during their creative process to quickly configure effects to reproduce
a chosen sound, making it easier to explore similar sounds afterwards, similarly to what presets offer
but in a much more flexible manner.
We implement a classification algorithm to recognize the audio effect used on a guitar sound and reach
up to 95 % accuracy on the test set. This classifier is also compiled and can be used as a standalone
plugin to analyze a sound and automatically instanciate the correct effect. We also propose a pipeline
to generate a synthetic dataset of guitar sounds processed with randomly configured effects at speeds
unreachable before. We use that dataset to train different neural networks to automatically retrieve
effect’s parameters. We demonstrate that a feature-based approach with typical Music Information
Retrieval (MIR) features compete with a larger Convolutional Neural Network (CNN) trained on
audio spectrograms while being faster to train and requiring far less parameters. Contrary to the
existing literature, making the effects we use differentiable does not allow to improve the performance
of our networks which already propose fair reproduction of unseen audio effects when trained only
in a supervised manner on a loss on the parameters. We further complete our results with an online
perceptual experiment that shows that the proposed approach yields sound matches that are much
better than using random parameters, suggesting that this technique is indeed promising and that
any audio effect could be reproduced by a correctly configured generic effect.

Résumé

Beaucoup de musiciennes et musiciens utilisent des effets audio pour façonner leur son, au point que
ces effets peuvent devenir partie intégrante de leur identité sonore. Pourtant, configurer des effets
nécessite souvent une mâıtrise avancée afin de trouver les réglages permettant d’obtenir le son désiré.
Dans ce rapport, nous présentons une nouvelle méthode pour reconnâıtre automatiquement l’effet
utilisé dans un son de référence et trouver les paramètres permettant de reproduire son timbre. Cet
outil a pour but d’assister les artistes dans leur processus créatif afin de rapidement configurer des ef-
fets pour reproduire le son désiré. Ceci facilitant l’exploration de sons similaires à la référence, comme
peuvent le permettre les préréglages parfois disponibles, mais d’une façon bien plus flexible.
Nous implémentons un algorithme de classification permettant de reconnâıtre l’effet utilisé sur un son
de guitare et atteignons jusqu’à 95% de prédictions correctes sur les données de test. Le classifieur
est également compilé et peut être utilisé comme une application indépendante pour analyser un son
et instancier automatiquement l’effet détecté. Nous proposons également une procédure pour générer
un ensemble de sons de guitare traités par des effets configurés aléatoirement à des vitesses aupar-
avant inatteignables. Nous utilisons par la suite ces nouvelles données pour entrâıner un réseau de
neurones à retrouver automatiquement les paramètres d’un effet. Nous démontrons qu’une approche
basée sur l’extraction de descripteurs audio, comme il est courant en traitement de l’information mu-
sicale, renvoie des résultats comparables à ceux d’un réseau de neurones convolutionnel entrâıné sur
des spectrogrammes ; la première approche étant par ailleurs plus rapide et plus légère à implémenter
et entrâıner que la seconde. Contrairement à la littérature, rendre les effets utilisés différentiables
ne permet pas d’améliorer les performances de nos algorithmes qui parviennent déjà à imiter plutôt
fidèlement des effets jamais rencontrés auparavant. Nous complétons enfin nos résultats par un test
perceptif en ligne qui confirme que l’approche évaluée est une large amélioration sur l’utilisation de
paramètres aléatoires, suggérant ainsi que la technique proposée est prometteuse et qu’il est effective-
ment possible de reproduire n’importe quel effet par un effet générique correctement configuré.
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I would like to thank my supervisor Gaëtan for supporting my project and for many fruitful discussions.
I would also like to thank Alain, Bernardo, Cyran and Georges for all their relevant suggestions and
helpful comments on my work. Many thanks go to Hugo who offered me to implement my work as a
VST plugin. Thank you to Aura for thoroughly proofreading my work.

I am grateful to the whole music team for their interest in my work, it was a great source of motivation.

Finally, I would like to thank all members of Sony CSL for their kindness and making me feel welcome.
It was a pleasure to come to work every day.

II



Contents

Abstract I

Acknowledgements II

Table of Contents III

Acronyms V

List of Figures VI

List of Tables VII

1 Introduction 1
1.1 Sony CSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Audio Effects in Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theoretical Background 5
2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Linear Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 State of the Art 12
3.1 Audio effects emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 White-box modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Black-box modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Gray-box modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Effect recognition and parameters estimation . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Effect recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Differentiable audio effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Audio effect Recognition 16
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Implemented Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Complete version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III



4.3.2 Simplified Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.4 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Compiled version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Estimation of effect parameters 25
5.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 Added features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Implemented architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Simple regression network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4 Effect class conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.5 Classifier on synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.1 Simple MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.3 Perceptual experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.4 Power and Size requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion 38

Bibliography 39

A Audio effects 42

B Classification 44

C Regression 47

IV



Acronyms

k-NN k-Nearest Neighbors

AM Amplitude Modulation

CNN Convolutional Neural Network
CPU Central Processing Unit
CSL Computer Science Laboratories

DAW Digital Audio Workstation

FD Finite Differences
FFT Fast-Fourier Transform
FiLM Feature-wise Linear Modulation
Fx effects

GPU Graphics Processing Unit

LFO Low-Frequency Oscillator

MFCC Mel-Frequency Cepstral Coefficient
MFCCs Mel-Frequency Cepstral Coefficients
MIR Music Information Retrieval
MLP Multi-Layer Perceptron
MRSTFT Multi-Resolution STFT
MSE Mean-Squared Error

OvA One-Versus-All
OvO One-Versus-One

ReLU Rectified Linear Unit
RMS Root-Mean Square

SPSA Simultaneous Perturbation Stochastic Ap-
proximation

STFT Short-Time Fourier Transform
SVM Support Vector Machine

V



List of Figures

1.1 Physical and Digital effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Summary diagram of the internship objective. . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 k-NN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 SVM illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Kernel of a convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Stride in a convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Dilation in a convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Effect classes in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Spectral moments extracted from a distorted guitar sound. . . . . . . . . . . . . . . . 18
4.3 Spectral roll-off example for a distorted guitar sound. . . . . . . . . . . . . . . . . . . . 19
4.4 Summary diagram of the Classifier network. . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 JUCE plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Proposed pipeline for Distortion emulation . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Implementations of the MLP regression network . . . . . . . . . . . . . . . . . . . . . 28
5.3 Principle of Residual networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Regression CNN summary diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Confusion matrix of the complete classifier on the synthetic dataset . . . . . . . . . . . 31
5.6 Confusion matrix of the simplified classifier on the synthetic dataset . . . . . . . . . . 32
5.7 Confusion matrix of the mixed classifier on the synthetic dataset . . . . . . . . . . . . 33
5.8 Screenshot of the online experiment interface . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Boxplots of the online perceptual experiment . . . . . . . . . . . . . . . . . . . . . . . 36

B.1 Confusion matrices of the classification experiments on 11 effects. . . . . . . . . . . . . 45
B.2 Confusion matrices of classification on aggregated classes . . . . . . . . . . . . . . . . 46

C.1 Architecture of the AutoFx model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.2 Output of the last FiLM layers depending on conditioning. . . . . . . . . . . . . . . . 50

VI



List of Tables

2.1 Possible outcomes of a binary classification problem. . . . . . . . . . . . . . . . . . . . 5

4.1 Preliminary classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Aggregated effects class of the original dataset. . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Training time and energy consumption of classification models . . . . . . . . . . . . . 22

5.1 Size and power requirements of the regression models . . . . . . . . . . . . . . . . . . . 37

A.1 Audio effects cheatsheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.1 Classification features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C.1 Regression features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
C.2 Regression networks results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

VII



Chapter 1

Introduction

1.1 Sony CSL

I conducted my internship at Sony Computer Science Laboratories (CSL) Paris. These lab-
oratories belong to Sony France which is itself a part of Sony Europe Limited. Contrary to
most laboratories in the industry, Sony CSL Paris is a research laboratory with no incentive to design
products that could be sold afterwards. This allows the researchers to focus on topics interesting to
the community without constraints on releasing commercial software.
I was an intern in the Music Team under the supervision of Dr. Gaëtan Hadjeres for a project tai-
lored to my personal interests. I proposed to design a tool to help artists automatically configure their
sound when practising or composing a new song, inspired by the difficulties I personally encounter as
a guitarist. This idea was completely in line with what the Music team now aims to achieve which
is to help the artists composing more easily by offering them new tools to develop their creativity.
Examples of past and ongoing releases and collaborations are available on the official website of the
team: https://cslmusicteam.sony.fr/.

During my internship I was fairly autonomous and free to try the approaches that felt interesting and
promising. I made a few presentations to the team to share my progress and got the opportunity to
exchange with artists on the tool I was designing. I was also able to collaborate with other members
of the team to combine my work with theirs or so that they could help me design an interface for my
project. This internship was a great experience that allowed me to thrive and confirm my wish to
pursue my career in research.

1.2 Audio Effects in Music

The timbre of a sound can be defined as anything that is not its pitch or its loudness. Reproducing
the timbre of another sound is a situation that can arise frequently when manipulating audio. One
may want to change the voice of a speech recording to resemble the one of a famous actor or a sound
engineer could need to modify a recording done with older tools to match the characteristics of new
takes. Those tasks ultimately come down to timbre reproduction and they can sometimes be done
using audio effects.

In this report, I call audio effect any process that is used to alter a sound in a creative way. Those
effects (Fx) can present themselves as hardware processing units1 such as guitar effect pedals. They
can also be digital and available as plug-ins that can be standalone – no other software is required to
use the effect – or included in a Digital Audio Workstation (DAW)2 (see Figure 1.1).

1It is relevant to note that hardware does not imply analog processing and that even effects in physical hardware can
be digital.

2A DAW is a software used by musicians/sound engineers to record or edit songs and that usually allows to add
effects on tracks, control effect parameters through time or manipulate MIDI clips. See for example Ableton, FL Studio
(Proprietary) or Ardour (Open-source).

1
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Figure 1.1: A voice processing effect pedal (left) and a digital Chorus plugin (right).

Inspired by the existing literature, I classify audio Fx into three broad categories:

• Non-linear: an effect that includes a non-linearity to add harmonics to the input sound. The
general principle of such effects is usually to multiply the input signal by a gain (often called
Drive) before applying a saturating function on the signal’s amplitude to forbid it exceeding
a given threshold. This saturation step enriches the spectral content of the signal by adding
high frequency harmonics. It can be done digitally with hard-clipping functions, soft-clipping
functions (hyperbolic tangent for instance) or using hardware equipment such as a vacuum
tube or diodes. Examples of such effects are Overdrive, Distortion, Fuzz, available under many
different forms and with huge variety. Another non-linear effect well-known to sound engineers
is Compression, which is usually not used as a way to alter timbre – even though it can be done
[1];

• Modulation: Fx that use signal modulation to enhance the input signal. It can be Amplitude
Modulation (AM) for effects such as Tremolo or Frequency Modulation (FM) for Chorus, Flanger
or Vibrato. Though not based on Frequency Modulation, the Phaser effect can also be included
in this category. It is perceptually close to the flanger effect but it is based on iterative filtering
of the input signal by all-pass filters;

• Ambient: Fx that recreate the feeling of being in a given physical space. This includes in
particular Reverb which recreates the reverberation of a room. The effect can be implemented
digitally from the impulse response of a room or using theoretical formulas. It can even be an
analog emulation like Spring reverb where an electric signal (the sound recorded by a microphone)
is converted by magnetic transducers into mechanical vibrations of a spring which will increase
the decay of the signal and add many reflections.
Another typical ambient effect is Delay or Echo which duplicates the input signal and add it
back to the original after waiting for a chosen duration and usually after reducing its volume.
I also include in ambient Fx Equalization which allows altering the repartition of spectral content
in a sound and can be used to completely change the perception of a sound.

A short description of several audio effects can be found Table A.1, along with their use cases and the
way they are usually implemented.

Audio Fx are used almost everywhere in current music. Modern instruments allow for simple use of
Fx because they record electrical signals, electric guitar players for instance often use effect pedals
to completely transform their sound. This gives access to a huge variety of sounds, from the mellow
sounds of psychedelic rock to the harsh distorted sounds of metal music. Effect pedals are so important
that guitarists can spend a lot of time turning them on and off on stage, to the point that a genre
called Shoegaze has been invented.

2



However, guitarists are not the only musicians to use Fx. Vocalists can use them too for improving
their performance. Most produced vocals now use reverb at some point to blend the vocals with the
rest of the music. Some vocal effects can also be used to create a signature sound, one of the most
recognizable effect being Antares’ Autotune.
Keyboardists can also be heavy Fx users since many synthesizer sounds are obtained through several
layers of Fx to completely reshape the original sound produced.
Besides, audio Fx are well known to sound engineers that use them when mixing tracks for reshaping
sounds or balancing them. Fx are also present in live music to make sure that all instruments are
correctly heard in the concert venue, for instance using compression to restrain the attack of loud
drum sounds that might otherwise drown the other instruments’ sounds.

The ubiquity of Fx means that most beginner musicians and producers must learn how to use
them. Having a home-studio setup to compose and records tracks is now fairly accessible and a
plethora of quality audio Fx is available freely on the internet. However, understanding how to choose
the parameters of those effects is a lifelong learning process that may require complex theoretical
knowledge [2]. Such difficulties can hinder the creative process of artists who may not want to spend
a lot of their time tweaking effects instead of composing/playing/recording.

For this reason, a tool that automatically configures Fx according to a reference sound could help
artists focus on creativity and explore whole new sounds way more easily. This is the goal I set myself
for this internship, it is summarized by the diagram presented Figure 1.2: the artist chooses a reference
sound that has a timbre they like due to some processing effects; the designed tool extracts the effect(s)
used and find optimal parameters for a generic Fx rack to reproduce the perceptual characteristics
of the reference sound; the artist then connect their instrument to their computer through a sound
interface and forwards the dry/unprocessed3 signal through the newly configured effect or effects rack,
reproducing the reference sound in no time.

Our tool

Dry Sound

Reference sound

Predicted Fx and
parameters 

Fx rack

Input sound with timbre
 of reference sound

Figure 1.2: Summary diagram of the internship objective.

3In musical jargon, a ”dry” sound is synonymous to a clean sound, i.e. a sound that have not been processed in any
way. The counterpart being a ”wet” sound, hence many effects having a ”Dry/Wet” knob.
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1.3 Report outline

The solution we implement is two-fold. The first part is a classification algorithm to recognize the
effect used in a audio signal while the second is a regression algorithm to find parameters that allow
to reproduce the reference sound timbre. This separation is due to the final objective that is to obtain
a standalone plugin that could be used by artists in their creative process and is inspired by what is
usually done by human experts to do a similar task. The first algorithm recognizes the effect used and
informs the user who then has the choice to stop the processing here and implement their own effects
or let the second algorithm configure effects to reproduce the reference timbre.

In this report, we thus begin with a theoretical background on classification algorithms and neural
networks that can be used for classification or regression.
We then present the state of the art on the tasks of effects reproduction, recognition of audio effects
and retrieval of effects parameters. We will in particular adress how audio effects can be associated
to neural networks.
The next chapter focuses on the algorithms we implemented for the classification of audio effects
and their recognition in audio samples. This work is conducted on guitar sounds because it is the
instrument that originally inspired the goal of that internship and because of data availability. We
discuss the results obtained and explain the simplifying assumptions that are made to combine the
classification algorithm with the regression network.
After recognizing the effect present, our goal is to retrieve its parameters. The corresponding chapter
describes the implemented algorithms for this task and present the difficulties encountered. Quanti-
tative results are transcribed and the answers to an online perceptual experiment are reported.
Finally, we recall what failed and succeeded in this internship, what results are of interest to the
research community and what could be done in the future to improve this work.

The code of this internship is publicly available at:

https://github.com/adhooge/AutoFX

Sound examples are available on the accompanying website:

https://adhooge.github.io/AutoFX/

4
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Chapter 2

Theoretical Background

This work implements neural networks and other machine learning algorithms for classification or
regression. The following section is a short introduction to the theoretical notions behind the imple-
mented architectures and will hopefully give the reader enough understanding of the field’s basis.

2.1 Classification

Classification problems can arise in many different fields and contexts. For instance in biology, it can
be interesting to predict if a person is subject to a specific illness based on a set of measures like weight,
height, age... For sorting purposes, one might also want to design an algorithm that automatically
recognizes if the house pet in a picture is a dog, a cat, a bird or a rat.

Those two examples already illustrate the variety that can exist in classification tasks. In the first
example, only two outcomes are possible: whether the person is sick or not, this is called Binary
Classification; in the second example, four possible classes exist and even more could be considered,
the problem being thus called Multiclass Classification. Besides, it is likely that classes will not be
represented equally in a random panel. For house pet recognition, more people own dogs or cats than
birds or rats and data is thus likely to be unbalanced. This is not necessarily an issue but it should be
known before implementing a classification algorithm, for instance to keep that ratio when splitting
the data into smaller sets.
More importantly, when aiming at detecting cancer for example, an algorithm that always predict
an absence of cancer would be right around 95% of the time since in a completely random panel of
persons approximately 5% have cancer 1. Taken out of context, a 95% accuracy is an impressing score.
However, in such a task, False Negatives (a person not diagnosed with cancer while they have one)
are really dangerous and should happen as rarely as possible. For this reason, several metrics exist to
assess the performance of classification algorithms and are presented hereafter.

Metrics

We begin with only considering a problem of Binary Classification. In that case, the possible outcomes
are recalled Table 2.1.

Predicted class

1 0

Actual class

1
True Positive

(TP)

False Negative

(FN)

0
False Positive

(FP)

True Negative

(TN)

Table 2.1: Possible outcomes of a binary classification problem.

13.8 million French people live with a diagnosed cancer https://www.fondation-arc.org/cancer/

le-cancer-en-chiffres-france-et-monde

5
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Using these notations, we can define:

• the Precision:

P =
TP

TP + FP
(2.1)

• the Recall:

R =
TP

TP + FN
(2.2)

• the F-score:

F = 2× P ×R
P +R

(2.3)

All those metrics are between 0 and 1 with 1 being the best score. Precision assesses the capacity
of the classifier to avoid False-Positives while Recall measures if the classifier misses any actual positive
sample. The F-score is the harmonic mean of Precision and Recall, it is used when both metrics are
important and need to be combined in a single value.
Using those metrics allows to mitigate results of a classifier and assess what is relevant depending on
the task at hand. With the previous cancer-detection example, Recall is the most important score
since we want people with cancer to be correctly diagnosed. Ideally, Precision should also be high to
avoid false alarms but in that case a confirming test could be done to compensate for a low precision.
In a Multiclass classification problem, those metrics can be used on each class independently or can
be averaged across classes if a value for the complete classifier is necessary.
In the following sections, now that we have seen how to evaluate the performance of a classifier, we
present common classification algorithms and their theoretical principles.

2.1.1 k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a simple technique for classifying samples of data. Based
on training data consisting of pairs (data, class) that are stored by the classifier, each new sample is
assigned a class based on its k nearest neighbors.
To identify those nearest neighbors, a distance d needs to be defined, it can be a simple absolute
distance or more complex functions depending on the data. The neighbors can then be weighted to
classify the new sample, either uniformly i.e. all neighbors weigh the same or by distance where each
neighbor weighs 1/d.
When the data is sparse, an alternative can be to define a radius instead of a number k of neighbors
to find. When using a radius, all neighbors in this radius are used to classify the new sample.The
main steps of the k-NN algorithm are summarized Figure 2.1. It should be noted that this algorithm
requires high computational resources and that its performance is highly dependent on the chosen
distance, making it a good fit to specific problems where the data distribution is at least partially
known beforehand.

Classified data points

New data point
Neighbors

The nearest neighbors of the
new data point are detected

The new data point is assigned a
new class based on its neighbors

Figure 2.1: Steps of the k-NN algorithm to classify new data samples.
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2.1.2 Support Vector Machines

A Support Vector Machine (SVM) is another classification algorithm that aims at finding the best
boundary between two sets of samples, best referring in that case to the boundary that maximizes
the distance between the classes’ frontiers defined by the so-called support vectors. Let us consider a
binary classification example for simpler analysis.
We consider a dataset of n training samples (x⃗1, c1), (x⃗2, c2), . . . , (x⃗n, cn) where the x⃗i are vectors of
coordinates and ci is the assigned class of each data point, either +1 or −1. The algorithm objective is
to find the maximum-margin hyperplane to split the data points according to their class. A hyperplane
is entirely defined by its normal vector w⃗ as the set of points that satisfies:

⟨w⃗, x⃗⟩ − b = 0 (2.4)

where ⟨., .⟩ denotes the scalar product and b
||w⃗|| is the offset of the hyperplane to the origin with

||w⃗|| =
√
⟨w⃗, w⃗⟩. The algorithm then must define two hyperplanes by the following equation:

⟨w⃗, x⃗⟩ − b = ±1 (2.5)

Any data point on or above the +1 hyperplane belongs to the class +1 and any data point on or below
the −1 hyperplane belongs to the class −1, which can be written as:

⟨w⃗, x⃗i⟩ − b ≥ +1 if ci = +1 (2.6)

⟨w⃗, x⃗i⟩ − b ≤ −1 if ci = −1 (2.7)

Let x⃗+ and x⃗− verify ⟨w⃗, x⃗±⟩ − b = ±1, the margin between the two hyperplanes can be obtained
as:

margin =

〈
x⃗+ − x⃗−,

w⃗

||w⃗||

〉
(2.8)

=
⟨x⃗+, w⃗⟩ − ⟨x⃗−, w⃗⟩

||w⃗||
(2.9)

=
1 + b− (−1 + b)

||w⃗||
(2.10)

=
2

||w⃗||
(2.11)

To maximize the margin, it is thus necessary to minimize ||w⃗|| which is the optimization objective
used to fit a SVM. It is important to maximize this margin because, in the case of linearly separable
data, there exists an infinity of hyperplanes that can correctly separate the data in its two classes but
new data points are more likely to be misclassified if the decision boundary is closer to one class than
the other. All notations and important notions are summarized Figure 2.2.

If the data to classify is not linearly separable or when there is some overlap between classes,
improvements such as the kernel trick can be used to maintain the SVM efficiency. I advise the
interested readers to look into more complete resources2 for explanations of those techniques.

From binary to multiclass classification

A SVM is designed for binary classification problems. However, it can be generalized to multiclass
classification problems using One-Versus-One (OvO) or One-Versus-All (OvA) problem splitting which
choice depends on the problem at hand.

2For instance: https://ocw.mit.edu/courses/6-034-artificial-intelligence-fall-2010/resources/

lecture-16-learning-support-vector-machines/
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Optimal Hyperplane

Support vectors

Figure 2.2: Data points separated by an optimal hyperplane (plain line) that maximizes the width 2
||w⃗||

between the hyperplanes going through the support vectors (dashed lines). The coordinates vector of

each datapoint is x⃗i =
(
x
(i)
1 , x

(i)
2

)
.

In the case of a OvO approach, one binary classifiers is trained for each possible pair of classes and
the final class is the one that received the most votes. If there are N classes, this technique requires
N(N − 1)/2 classifiers making it costly when the number of classes increases.
In a OvA approach, N binary classifiers are trained to answer the question Does this sample belong
to class ci or does it actually belong to any other class? with 1 ≤ i ≤ N . The data sample is then
directly assigned to the class with the maximum probability. This technique requires less classifiers
than OvO but might not be efficient in all situations because the comparison between one class and
all the others can be ”unfair”.

2.1.3 Linear Perceptron

A Linear perceptron is another algorithm that can be used for binary classification tasks. It aims at
learning a function

f(x) =

{
+1 if w.x+ b > 0

−1 else
(2.12)

where x is the input vector, w is a weight vector that is learned during training and b is a bias
coefficient. w and b are updated to minimize the classification error of the M input samples:

ε =
M∑
i=1

||f(xi)− ci||d (2.13)

where ci is the actual class of the sample and ||.||d is the chosen distance metric.
This algorithm can be generalized to multiclass classification in the case where the output is a vec-
tor and the assigned class is the argmax of that vector. In that case, b becomes a vector andw a matrix.

8



2.2 Neural Networks

A linear perceptron is a very simple type of neural network. Neural networks need to be trained on a
task to learn how to complete it. In this section, we explain how neural networks are trained before
describing more complex neural network architectures.

2.2.1 Training

Loss functions

A neural network of any architecture needs to be trained to progress towards the desired minimum.
For this reason, the first step is to define a loss function. This function will quantify how wrong or
how right the network is by comparing its predictions to the ground truth. For a classifier network for
instance, we want to compare the predicted class of an input sample to its actual class. We could use
Accuracy, Precision or Recall as a loss function but it is expected of a loss function to drop towards
zero as the network gets better. For this reason, the loss usually used for classification problems is
the Cross-entropy loss defined as:

Lcross-entropy = −
k∑

i=1

ti ln yi (2.14)

where t = (t1, . . . , tk) is the target one-hot vector where all coordinates are 0 except the correct
class that is a 1 and y = (y1, . . . , yk) is the predicted output by the neural network where yi is the
probability of the input sample to belong to class i.
In other reconstruction or regression problem, a simple Mean-Square Error Loss (MSE loss) can
be used to compare how close the reconstruction x̂ is to the original input x according to the formula:

LMSE =
n∑

i=1

|xi − x̂i|2 (2.15)

Backpropagation

The loss function is the first step for training a neural network by backpropagation. This technique
consists in updating each weight wk,ℓ accordingly to the partial derivative of the loss function with
respect to the weight:

w
(i+1)
k,ℓ = w

(i)
k,ℓ − η

∂L
∂wk,ℓ

(2.16)

the quantity η is a tuning parameter called the Learning rate and will scale how much the network
is updated after each training step, the derivative being usually obtained via the chain rule. This
update is similarly applied to any coefficient that needs to be optimized. This shows the main difficulty
when it comes to neural networks which is that they should implement differentiable processing for
backpropagating gradients. If any operation is not differentiable, it will stop the backpropagation of
the gradients because the chain rule cannot be carried on until the end.

Activation functions

The output values of a layer are only constrained by the weights of that layer but sometimes it is
necessary to return a value in a given range. For instance, when a network is expected to predict
the probability of a variable, its output must be between 0 and 1. It could be attained by adding
optimisation constraints during the training procedure but the most efficient way is to pass the output
through a function that has an image set restricted to [0, 1] like a Logistic function (sometimes
called Sigmoid function):

logistic(x) =
1

1 + e−x
(2.17)
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Many different activation functions exist3 and they can also be added between layers to modify the
coefficients values before sending them to the next layer. One common activation function between
layers is the Rectified Linear Unit (ReLU) or small variations of it:

ReLU(x) = max(0, x) (2.18)

This activation function has the specificity to stop the backpropagation of gradients whenever a
value is negative and it is plebiscited because it is fast to compute and has no upper-bound.

2.2.2 Multi-Layer Perceptron

A more powerful version of the Linear Perceptron is the Multi-Layer Perceptron (MLP) that contains
at least one hidden layer i.e. a layer that acts neither on the input or the output but on an internal
variable that is forwarded to the next layer. That algorithm can learn complex non-linear functions
that can be used for non-linearly separable classification or regression problems. If a MLP has h
hidden layers, it has h weight vectors wi and bias coefficients bi where 1 ≤ i ≤ h so that the output
of a single layer is:

ℓi(x) = gi(wi.x+ bi) (2.19)

where gi is an activation function used to map the output of the layer i to another space.
The output of the entire network is thus:

ŷ(x) = f(wh.gh−1(wh−1.gh−2(· · · g1(w1x+ b1) · · · ) + bh−2) + bh−1) + bh) (2.20)

where ŷ(x) is the network estimation of the desired output y(x) associated to the input x. f is the
final activation function of the network.
A neural network is optimized to reduce the prediction error between ŷ and y quantified by a Loss
function. To do so, the weight are all updated by backpropagation.

2.2.3 Convolutional neural networks

The simple fully-connected linear networks (another name given to MLP) perform well on a number
of tasks but usually fail to adress more complex problems such as audio or image recognition. For
tasks requiring somewhat higher-level analysis, a Convolutional Neural Network (CNN) can be used.
The main building block of a CNN is a Convolutional layer which consists in applying a filter on
an area of the input data. The size of that area is defined by the so-called kernel-size and will be
map to a single value of the output data, as illustrated Figure 2.3. The kernel can be a simple average
filter but it can also be more complex with for instance learnable weights in neural networks.

Input

Kernel

Output

Figure 2.3: Principle of a convolutional layer in the case of a 3× 3 kernel.

3See for instance https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
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Several control parameters exist to modify the output produced. For instance, the stride determines
how the filter will move from one area to the next, as shown Figure 2.4. Changing the stride controls
the overlap between each iteration of the filter and can even be set to skip entirely some values of the
input (if the stride is higher than the kernel size). Since the stride impacts the size of the output, it
is often used as a way to downsample the input data. It should also be noted that the input can be
padded to make sure that beginning and end values are not treated differently than middle values.

Stride 1

Kernel Stride 2

Stride 3

Figure 2.4: Outputs produced by convolutional layers with different strides. A colored arrow represents
the area on which the kernel is applied to obtain the corresponding output cell.

Finally, another parameter called dilation can be used to modify how the convolution kernel is
applied, see Figure 2.5. This parameter allows to increase the receptive field of a CNN which is the
input area represented by a single output cell.

Input Kernel

Dilation = 0

Dilation = 1

Figure 2.5: The dilation factor modifies how the kernel is applied to the input by skipping some cells.

In a CNN, the convolutional layers filters have fixed parameters (kernel size, dilation, padding,
stride) but the weights are learnable. Besides, to increase dimensionality, it is common to add channels
to the output by multiplying the number of filters and thus the number of learnable parameters. In
that case, the input is processed as many times as there are channels but with other filter to obtain
different feature maps that might capture different aspects of the input data.
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Chapter 3

State of the Art

In this section, we will begin by discussing how audio effects are usually emulated in the literature.
We will then present how audio effects can be automatically recognized from audio before tackling the
issue of retrieving parameters of those effects. Finally we will present how audio effects can be made
differentiable to include them in neural networks.

3.1 Audio effects emulation

Reproducing audio effects in a digital framework is an important research field that works on filling
the gap in the industry between analog implementations and digital equivalents. This is in fact related
to the never-ending conflict that opposes artists in favor of analog audio processing and artists using
Analog-to-Digital Converters (ADC) to use digital hardware and software. Without taking any side,
it should be noted that obtaining digital emulation of audio effects – but also synthesizers – can be
useful for keeping a trace of legendary circuits that are no longer produced.

When it comes to digitally reproducing an audio effect, all approaches can usually be splitted into
three categories that are: White-box, Black-box and Gray-box modelling. Each one of those
can then be differentiable or not depending on the implementation.

3.1.1 White-box modelling

This technique is the oldest and consists in reproducing the functioning of an effect from theoretical
knowledge. When the physical equations or the transfer function of a processing unit are known, they
can be reimplemented in a digital framework and should thus guarantee the reproduction of the audio
effect. This is of course limited to some extent because, especially when focusing on circuits with
non-linear elements such as diodes or vacuum tubes, solving huge and complex equation systems can
be untractable. Researchers thus have to make simplifying assumptions to reduce the complexity of
their model, which also reduces its fidelity to the reference effect.

However, when a good theoretical model can be obtained, this approach yields good results as it can be
observed in [3] where the researchers successfully reproduce the response of the Red Llama overdrive
effect based on the analysis of its electronics.
Even though it is not a modulation of an existing effect, a similar approach from [4] shows that the
non-linearity existing in a bistable system – a system with two equilibrium points – can be used as a
distortion effect when implementing its physical equations.
Using a modal approach, [5] reproduces the behavior of a spring reverb. The author however notes
that, even though the effect itself can be used in real-time, retrieving its parameters is computationally
costly and must be done beforehand. This is not necessarily a problem but this observation supports
the idea that working with complex physical equations can lead to important computational load.
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Akin to white-box modelling, the theoretical knowledge of physical systems and phenomena can be
used to propose new approaches to obtain a desired effect. [6] proposes a generalization of the Moog
ladder filter with state-variable filters that allows for more control and can also model other circuits
such as the Octave CAT filter. Similarly, nonlinear biquad filters can be used for analog modelling, as
it is studied in [7].

3.1.2 Black-box modelling

Black-box modelling, as its name suggests, is a solution where the effect emulator is a black box i.e. its
internal functioning is not known. The only constraint for a black-box model is that processing a sound
with the original system or its black-box emulation should give the same output. Such approaches
are more common since the advance of machine learning because neural networks allow reproducing
complex systems that would be difficult to model with white-box modelling. It should however be
noted that neural networks are usually used at the expense of explainability.
Black-box models can be used to emulate tube amplifiers, as it is proposed in [8] where the authors
focus on adding control to the black-box model for improved usability. In [9], the authors give a
thorough analysis of the existing literature of deep learning methods for modelling audio effects and
propose a new architecture for the emulation of non-linear effects and the Leslie Speaker Cabinet, a
modulation effect obtained by the rotation of a speaker inside a cabinet.

It is interesting to observe that neural networks can be used to add audio effects to sounds but also
the opposite: removing them. For instance, [10] presents a neural network that can remove distortion
effects on musical signals. Such possibilities are particularly interesting for timbre transfer tasks or
sound morphing where the goal is to match the audio characteristics of a reference sound with an input
sound. Considering the situation where the input sound is processed with an effect and the reference
sound is already processed with another effect, it might be easier to use an intermediate clean sound
instead of trying to morph directly the input sound to the reference style.

3.1.3 Gray-box modelling

Mixing both previous approach, gray-box modelling1 consists in combining knowledge of the actual
system, often obtained through measurements, with modelling techniques not necessarily representing
the actual physical principle of the system. For instance, [11] models distortion circuits using a
feedforward neural network with a predefined receptive field N representing the number of previous
samples that are used to predict the next sample n. That receptive field is determined based on linear
impulse responses of the effects, obtained with a swept-sine technique.

Gray-box modelling can also be done without any neural network: [12] uses a Wiener-Hammerstein
model to emulates guitar amplifiers, its parameters being tuned during an optimisation phase to match
the real system’s responses to sine sweeps. In [13], the authors use a Chebyshev non-linear model fitted
with a synchronized swept sine method and show that it can efficiently reproduce the processing of
an overdrive pedal.

3.2 Effect recognition and parameters estimation

3.2.1 Effect recognition

When the effect is known beforehand, it is possible to choose the best approach to emulate it. However,
if the audio effect is unknown, it must be identified before carrying on with its emulation. The specific
case of recognizing guitar audio effects have been studied in two different papers [14, 15] by Stein et
al. For this task, a new dataset of recordings of guitar and bass single notes processed with 11 different
effects has been assembled. The authors extract carefully designed audio features that are then used
to classify the samples with a Support Vector Machine (SVM). A high accuracy is obtained, either on
audio with a single effect or with multiple cascaded effects as it is often the case in reality.

1The use of that term is not systematic in the literature and can sometimes be included in black-box modelling.
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A similar approach had been proposed in 2008 in [16] enabling automatic classification of guitar
sounds, suggesting that fitting an SVM on audio features is well suited for audio classification tasks.
Finally, should the situation arise where the processing unit is available but needs to be classified,
[17] propose several input-output measurements that can be used to extract features that directly
identify effect classes. Similarly, [18] directly builds upon [14] and demonstrates which features are
most important when it comes to recognizing guitar effects. In particular, this paper studies the use
of a Bag of Audio Words approach, inspired by Neural Language Processing.

3.2.2 Parameters estimation

After identifying the effect used on a processed sound, it can be useful to retrieve the parameters that
were configured to obtain that sound. This topic has also been studied thoroughly in the literature
like in [19] where the authors aims at reproducing the audio mastering process of a musical track
— the mastering is the last step before releasing a song, it consists in minor corrections in loudness
and equalization to ensure the track will sound correctly on any listening device. The implemented
network predicts coefficients based on the input magnitude spectrum to apply dynamic range com-
pression that emulates professional mastering. That prediction of parameters for mastering is a way
to allow beginners to quickly obtain correctly mastered tracks without having to practice and under-
stand complex techniques while still enabling learning and improvements from experts because the
parameters are meaningful and can be modified afterwards. Similarly, in [20], the authors design an
algorithm to extract features from a reference sound which are then used as input to a regression
model for predicting the parameters of a dynamic range compressor. The overall system is trained on
a feature loss and the features of the original input sound are also computed and given to the model
for better adaptability.

Some papers focus particularly on equalization, such as [21] where the author uses a neural network
to predict the parameters of a parametric equalizer. The network is trained on a spectral loss instead
of the usual parametric loss, a choice that appears to give perceptually closer results to the reference
sound. Besides, this paper uses a differentiable implementation of biquad filters that permits training
the network in an end-to-end fashion. Shallow2 neural networks can also be used to ease the process of
fitting the gain response of a graphic equalizer more efficiently than traditional optimization methods,
as studied in [22, 23].

Not unlike the objective of this internship, [24] design a neural network that recognizes digital imple-
mentations of effect pedals and retrieve their parameters from audio spectrograms. The authors focus
on non-linear effects and show that a convolutional neural network can retrieve the two parameters
of the studied effects with little error. [25] adresses almost the same problem with the difference that
it does not focus specifically on non-linear effects but rather tries to retrieve the parameters of one
effect of each ”main category”: distortion for non-linear effects, delay for ambient effects and tremolo
for modulation effects. Besides, the authors choose to manually design features for each effect and
directly use a shallow network to process them instead of using a bigger convolutional neural network.
Interestingly, it appears that this approach yields comparable results to [24], showing that adding a
priori knowledge to an algorithm can greatly reduce its size and computational load.

Automatically retrieving the parameters of audio effects is closely related to finding synthesizer con-
figurations to obtain a desired sound. Such a task can indeed be complicated since most synthesizers
have several dozens of parameters and the sound space exploration is often restricted to using presets,
which are long to create. Neural networks can be used to quickly retrieve parameters for sound match-
ing, and can be more efficient than exploration algorithms like genetic algorithms, as it is presented in
[26]. Focusing on the idea of improving user experience, [27] proposes a helper tool called Synthassist
to find a sound by vocal query. The user imitates the desired sound and, through features analysis
and user feedback, the system returns parameters for the synthesizer to produce the desired sound.

2A network is called shallow when it has few hidden layers, as opposed to deep neural networks
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This proposition can be linked to [28] where the authors offer to greatly simplify the process
of exploring the capabilities of a commercial synthesizer. Through Variational Auto-Encoders and
Normalizing Flows, audio examples generated by the instrument are mapped to a latent space which
is itself linked to another space representing the way parameters affect the sound. Such representations
allow to easily find parameters to obtain a desired sound, for instance by vocal query; or to suggest
new sounds resembling a first one based on their proximity in the latent spaces.

3.3 Differentiable audio effects

Audio effects have many existing implementations but are usually not differentiable, meaning that it
is not possible to mathematically predict how a change in the input and the parameters will affect the
output. While it is common and not a problem to musicians who will quickly understand the effect’s
variations after a few listening experiments, it is an issue to neural networks that need quantitative
information on how to change the parameters’ prediction to minimize the final error between two audio
files. To enable such training, the audio effects have to be made differentiable. As it is summarized
in [29], several approaches exist to do so, the first one being to manually implements a differentiable
version of the effect. This is for instance what is done in [30] where the authors propose a tool to
realize automatic DJ transitions between tracks. Such a task usually requires (at least) an equalizer
and faders3 and the researchers have therefore implemented those processors in a differentiable manner
based on their knowledge of the signal processing principles involved. This approach, like white-box
modelling for effects emulation, is powerful but requires thorough knowledge of the studied systems,
making it usually harder to implement. Another paper using that technique is [31]: this paper
introduces a differentiable implementation of an additive synthesizer that is trained to reproduce the
sound of a reference recording. The parameters’ estimation network is trained on a combination of a
parametric loss and a spectral loss between the reference sound and the produced output. Besides,
the authors use two different datasets to improve their system performance: an in-domain dataset
consisting of sounds produced by the synthesizer itself and an out-of-domain dataset containing sounds
produced by other synthesizers. The first dataset allows the estimator network to learn how the
additive synthesizer’s parameters affect the audio produced while the second dataset is used to help
the system generalize to unseen sounds which it might not be able to actually produce, in which case
the closest match is to be attained.
Instead of manually implementing a processor that is exactly differentiable, another possibility is
to approximate the gradients of the effect being used. This is the approach chosen in [1] where
the effect is considered as a black box and its gradient is obtained by Simultaneous Perturbation
Stochastic Approximation (SPSA) which consists in randomly adding a perturbation to the input
parameters of the effect and computing the gradient of the output with respect to these parameters.
This technique appears to be an efficient alternative to Finite Differences, reducing computational
load without compromising the quality of the estimate too much. Using this approach, the authors
can train end-to-end models to complete tasks such as tube amplifier emulation, non-speech sound
removal or automatic music mastering. In particular, it should be noted that the proposed system
still permits user control because the predicted parameters are inputs to actual audio plugins that can
be used in a DAW.
Finally, the last possibility to make an effect differentiable is to use a neural proxy, i.e. a neural
network that is pre-trained to match the response of a chosen effect, just like what can be done for black-
box modelling. Because the effect is reproduced by a neural network, its processing is differentiable
and the effect can thus be part of a larger network that needs to be trained on an audio loss. For
instance, Steinmetz et al present in [32] a framework for automatic multitrack mixing which predicts
parameters for a neural proxy of a typical mixing effects chain: Equalizer, Compressor and Reverb. In
order to use a custom loss function compatible with stereo audio, the effect chain must be differentiable
so that the model can learn how the effects modify the sound. To do so, they train a neural network
to emulate the processing of a real effect chain with added conditioning in order to have a final model
that can be controlled more easily through common parameters even though it is a blackbox.

3For DJs and sound engineers, a fader is the sliding knob that controls the volume of a track.
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Chapter 4

Audio effect Recognition

In this section we present our work on task of recognizing audio effects from audio. We begin with
presenting the dataset used and the features considered and then compare several classification algo-
rithms. We finally evaluate the results of our models on different subsets and variations of the original
data.

4.1 Data

4.1.1 Dataset

The classification task is performed on the Fraunhofer IDMT-SMT Audio Effects dataset1 presented in
[14]. This dataset, specifically created for the classification task in the accompanying paper, consists
of recordings of bass and electric guitars playing each single note on the fretboard from the open
string (that can be considered as the 0th fret) to the 12th fret. Those recordings of 2 seconds each
(with approximately 0.5 second of silence at the beginning) have a 44.1 kHz sample rate and have been
repeated three times with different settings. Each recording is then processed through an audio effect
unit belonging to one of the Effect class presented Figure 4.1 with three different parameter settings.
These effects are digital, the data augmentation process being done with a DAW.

Ambient FX Modulation FX Non-linear 
Processing FX 

Feedback
Delay

Slapback
Delay

Reverb

Chorus

Flanger

Phaser

Tremolo

Vibrato

Distortion

Overdrive

Figure 4.1: Effect classes in the dataset. Figure reproduced from [14].

Sound examples from the dataset are available on the accompanying webpage:

https://adhooge.github.io/AutoFX/

This dataset also includes polyphonic guitar sounds obtained by combining up to five single note
recordings (in accordance to common chord fingerings) for further data augmentation.

1The dataset is freely available online: https://www.idmt.fraunhofer.de/en/publications/datasets/audio_

effects.html
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4.1.2 Features

For the task of audio Fx recognition and classification, I have implemented the framework presented in
[14]. The classification is feature-based so, to that end, I compute the Short-Time Fourier Transform
(STFT) of each sound and compute features from the magnitude spectrum.
Let N be the size of the Fourier transform, M the number of frames and Fs the sampling rate. The
amplitude of the k-th frequency bin at frame m is hereby noted Am[k] with 0 ≤ m < M and 0 ≤ k ≤ N

2
where N is chosen to be a power of 2 to benefit from the Fast-Fourier Transform (FFT) algorithm.

Considering the spectrum as a probability distribution which values are the frequencies

f [k] =
k.Fs

N
(4.1)

and probabilities are the normalized amplitudes

am[k] =
Am[k]∑(N+1)/2

k=0 Am[k]
(4.2)

I obtain the following features for each frame m:

• Spectral Centroid:

µm =
2

N + 1

N/2∑
k=0

f [k]am[k] (4.3)

• Spectral Spread:

σ2
m =

2

N + 1

N/2∑
k=0

(f [k]− µm)2am[k] (4.4)

• Spectral Skewness:

M3,m =
2

N + 1

N/2∑
k=0

(f [k]− µm)3am[k] (4.5)

• Spectral Kurtosis:

M4,m =
2

N + 1

N/2∑
k=0

(f [k]− µm)4am[k] (4.6)

Example values of those features extracted on a distorted guitar sound are presented Figure 4.2.
Those features capture the energy repartition and the overall shape of the magnitude spectrum, which
can help identify different sounds.

I also compute the Spectral Slope which is the slope of the linear regression of the spectrum, defined
by:

slopem =
N+1
2

∑(N+1)/2
k=0 f [k]am[k]−

∑(N+1)/2
k=0 f [k]

∑(N+1)/2
k=0 am[k]

N+1
2

∑(N+1)/2
k=0 f2[k]−

(∑(N+1)/2
k=0 f [k]

)2 (4.7)

Another feature that can be used to study the energy repartition in a spectrum is the spectral roll-off.
It is defined as the frequency so that 95% of the signal’s energy is contained below that frequency.
Intuitively, this feature could help recognize distortion sounds because their added harmonics should
increase the energy in high frequencies, therefore increasing the spectral roll-off. An example result is
shown Figure 4.3.
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Figure 4.2: Spectral moments extracted from a distorted guitar sound.

The amount of frame-to-frame energy fluctuation in time, called the spectral flux, is also relevant
to compute and can be defined by the following formula:

ϕm =
∑
k

1/q

√
|Am[k]−Am−1[k]|q (4.8)

where q is an arbitrary power factor. This feature can for instance help identify tremolo effects that
will affect the amplitude faster than the natural decay of the notes.

I also compute the Spectral flatness of the spectrum, that quantifies its noisiness. It is defined as the
geometric mean of the spectrum over its arithmetic mean.
Finally, those features are accompanied by the first 10 Mel-Frequency Cepstral Coefficients (MFCCs)
obtained by a 128-bands Mel-Spectrogram. These coefficients are related to the inner periodicity of the
magnitude spectrum and should be related to perceptual characteristics because of the use of the Mel
scale. That scale is based on psychoacoustics measurements and link a mel-frequency m to a hertzian
frequency f according to the following formulas:

m = 1127 ln

(
1 +

f

700

)
(4.9)

f = 700×
(
exp

( m

1127

)
− 1

)
(4.10)

Those features and others that can help recognizing timbre are described in further details in [33, 34].

4.1.3 Functionals

The previous features are obtained as frame-wise vectors. They could be used directly as input to
the classifier but this would require a very large network which would be difficult to fit. Besides,
since there is only one correct answer for the entire sound, using frame-wise values is not necessarily
relevant. Instead, it is more efficient to use functionals, i.e. functions to reduce the frame-wise vectors
to scalars. Those can be very simple such as max, min or average.
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Figure 4.3: Spectral roll-off example for a distorted guitar sound.

They can also be more complex to capture temporal variation for instance doing linear or quadratic
regression or retrieving the maximum FFT frequency bin of a feature.
For effect recognition, I take the first four moments – mean, variance, skewness, kurtosis – of
each feature considering its time evolution as different probabilistic realizations of a random variable.
I also compute the minimum and maximum values of each feature.
For the MFCC, I only take the frame-wise mean and maximum of each coefficient.

To capture more information, the delta coefficients δfm = fm+1 − fm of each feature f for 0 ≤ m ≤
M − 1are also computed before applying functionals. Besides, to eliminate the dependence to pitch
of the spectral moments (the higher a note, the higher its spectral centroid, in most cases), they are
also duplicated and normalized by the pitch of the note before going through the functionals.

Applying those functionals on the features yields a vector of 163 values for each data sample, a
summary of that feature vector is given Table B.1. Computing those features takes approximately
35ms for a 1.5 s (almost 43× real-time) sound with a sampling rate of 22 050Hz.

4.2 Implemented Architectures

First experiments were done using the scikit-learn framework for quick implementation and testing.
Building upon what is done in [14], I implemented a k-Nearest Neighbors classifier, a Support Vector
Machine and a Multi-Layer Perceptron. Those experiments were used as a proof of concept and guided
the choice of the final solution for the proposed application. Main results on the monophonic guitar
sounds (Guitar Mono, GM) and the complete dataset (Full) are summarized Table 4.1.

These results are not as good as what is obtained in [14] but we use less features than in that
paper and do not perform any feature reduction before training. Since this was only a preliminary
test, we did not focus on further improving its accuracy. That first experiment already shows that a
k-NN is not accurate enough even though it is fitted extremely fast. The SVM and the MLP perform
similarly with a slight advantage to the SVM algorithm that is also fitted faster on the dataset.
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k-NN SVM MLP

G
u
it
ar

M
on

o Accuracy (%) 67.1 91.7 89.6

Fitting time 3ms 6.4 s 12 s

Inference time 3.6ms 0.32ms 0.074ms

Model size 21.6MB 6.9MB 429 kB

F
u
ll
d
at
as
et Accuracy (%) 62.7 92.1 90.7

Fitting time 7ms 75 s 93 s

Inference time 9.5ms 2.5ms 0.087ms

Model size 57.8MB 20.2MB 434 kB

Table 4.1: Summary results of preliminary classification experiments on a left out test set.

However, it appears that the MLP is the fastest when it comes to inference time, while also being
the lightest when saved (using the Python’s library pickle). This is likely due to the fact that a
k-NN or a SVM must store data points to classify new samples. This consequently increases both
the required memory space for saving such a model and the inference time because the stored data
samples have to be compared to the new input. On the other hand, training a neural network like the
MLP initially costs more time and energy but, once it is trained, only the resulting weights need to
be saved, making the final model very lightweight and fast. Finally, this experiment also shows that,
except for the k-NN model, the accuracy increases slightly when using the bigger dataset. It could
be due to the fact that the SVM model benefits from better support vectors while the MLP takes
advantage from having more training data.

The final objective being to implement the proposed tool as a DAW plugin, it was important to be
able to compile the trained model for later use. Though this can be done in scikit-learn through the
ONNX standard2, we reimplemented the classifier in pytorch for easier compatibility with the rest of
our work and because compiling models to use them in C/C++ is quite straightforward in pytorch

using TorchScript. Besides, since performance were similar between SVMs and MLPs and because
it is way easier to implement a perceptron than a SVM in a neural network framework – even though
it can be done [35] – I reimplemented the classifier as a Multi-Layer Perceptron with one hidden layer
in PyTorch. A summary diagram of the network is shown Figure 4.4.

Features

(163, 1)
(100, 1)

Hidden Layer Network prediction

(11, 1)

Activation

Softmax

Class probabilities

Label

(11, 1)

Negative log-
likelihood

log

Figure 4.4: Summary diagram of the Classifier network.

2onnx.ai
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The model is trained on the Audio-effects dataset. All audio are cut to their onset using a fixed
energy threshold attack detection method [33], normalized in amplitude and resampled to 22 050Hz.
Before training, all features are scaled to have zero-mean and unity standard deviation. The scaler is
kept for later inference since all inputs need to be scaled in the same way for the classifier to function
properly.
The network uses a Sigmoid activation and an Adam optimizer with (β1, β2) = (0.9, 0.999) and a
learning rate η = 0.002. Batch size is 256 and I use a Negative Log-Likelihood loss. The output
layer of my network is a Softmax layer which, given a n-dimensional vector x, will rescale it so that
all values are between 0 and 1 and sum to 1 according to the following equation:

Softmax(x)i =
expxi∑n
j=1 expxj

for 1 ≤ i ≤ n (4.11)

This rescaling allows considering the output directly as a probability vector of the sound belonging
to each class.
Then, I compute the log of the probability vector to apply the Negative Log-Likelihood function
defined as:

LNLL(y, logp) = − 1

N

N∑
n=1

logpn,yn (4.12)

Where y is the target vector containing the class index for each input sample, p is the probability
matrix returned by the network and N is the batch size. This definition holds when using an mean
reduction over batches.
Combining the softmax layer to the NLL-loss, we obtain a log-loss or cross-entropy loss defined as:

Llog(y,p) = − 1

N

N∑
n=1

C∑
c=1

yn,c log(pn,c) (4.13)

where C is the total number of classes.

For training, validation and testing, I use a 0.8-0.1-0.1 split of the entire dataset which corresponds to
approximately 500 sounds per class in validation and test and around 4500 sounds per class in Train.
The parameters were optimized using 9-fold cross-validation. This means that the remaining data
after removing the test dataset is split into 9 random blocks, one is kept as a validation dataset and
the network is trained on the eight remaining blocks. After doing a complete training and evaluating
the network’s performance on the validation set, the process is repeated using another block as the
validation set until 9 iterations have been done. This technique is a way to present more robust results
because it allows to mitigates the assumption that the network might have gotten ”lucky” because
the training set was particularly helpful or the validation set somehow ”easy” to classify. Repeating
this experiment with different hyper-parameters allow to choose the best values for each of them.

4.3 Results

4.3.1 Complete version

The first implementation of the classifier was similar to what is done in [14] and would classify samples
in the 11 effect categories that are present in the dataset. Implementations have been done on either
the complete dataset or only monophonic guitar sounds. Training could last up to 100 epochs with
a possible early-stopping if the validation loss did not decrease for 10 epochs. Results for both
experiments on the test set are shown Figure B.1 as confusion matrices where each sample is shown on
a row corresponding to its actual label and a column corresponding to the predicted label. Therefore,
the higher the values on the diagonal of the confusion matrix, the better the classifier is.
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The results show that a high accuracy is attained in both experiments and that modulation effects
are the hardest to classify, some confusion happening between Chorus, Flanger, Phaser and Vibrato.
This is not surprising since those effects can sound similar and are based on similar physical principles.

4.3.2 Simplified Version

It has been shown that the classifier performs well on the entire dataset. However, the rest of that
internship adresses a reduced problem due to time and difficulty constraints. Indeed, further work is
restricted to monophonic guitar sounds and to aggregated effects class due to implementation choices
that are explained in subsection 5.3.5. That aggregation is summarized in Table 4.2

Fx class Aggregated Fx class

Dry Dry

Feedback Delay
Delay

Slapback Delay

Reverb Reverb

Chorus

Modulation
Phaser
Flanger
Vibrato

Tremolo Tremolo

Overdrive
Distortion

Distortion

Table 4.2: Aggregated effects class of the original dataset.

As one would expect, better results are obtained on this simpler problem, as can be observed on
the confusion matrices Figure B.2. An accuracy of up to 97% is reached on the monophonic guitar
set.

4.3.3 Energy consumption

To refine the analysis of the models’ performance, I monitor their energetical consumption using two
Python libraries: CarbonTracker[36] and pyRAPL[37]. These libraries allow tracking the energy used
by the Central Processing Unit (CPU) and the Graphics Processing Unit (GPU) while running code.
The energy consumption for training each model is given Table 4.3. Training was conducted on a
NVIDIA GeForce GTX 1080 Ti GPU.

Model Training time (s) Energy consumption (Wh)

Complete GM 120 5.2
Complete Full 255 13
Simplified GM 96 3.8
Simplified Full 208 10

Table 4.3: Training time and energy consumption for training the studied models. Complete refers to
training on all 11 effect classes while simplified refers to using aggregated classes.

Those models are very light and energy-efficient since their consumption during training is comparable
to a low-energy LED light3 lit up for an hour. However, this analysis does not take into account the
fact that the features of the training dataset have to be computed, which also requires energy.

3A LED light usually has a power of ∼ 10W, https://izi-by-edf.fr/blog/led-rentabilite/ (in French)
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Indeed, pyRAPL measurements suggests that processing the monophonic guitar set requires 13Wh,
or 48Wh for the full dataset (even though those values are probably higher than reality because they
include the consumption of all software running on the computer like the Operating System or the
Integrated Development Environment - IDE - used). The computation of the features indeed does
increase the overall consumption of the models up to 6 times but the features only need to be computed
once while the training is likely to happen multiple times for hyper-parameters tuning for instance.

4.3.4 Feature Importance

Even if the classification results are ultimately what really matters, it is interesting to study which
features have the most impact on the classification task. To assess such impact, I perform Random
Feature Permutation which is a technique suggested in [38] consisting of evaluating a fitted model on
a test set while randomly exchanging values of a feature between samples. Doing so is supposedly
better than removing the feature entirely or setting it to an arbitrary meaningless value because it
allows keeping the fitted model unchanged while ensuring that the values still fill the expected range.
Even though the exact values differ between the evaluated models: Full dataset or Guitar Mono,
Aggregated classes of original classes; the observed trends are similar and commented hereafter.

On average, permuting a feature leads to an accuracy drop between 1% and 2% and similar drop in
each class precision or recall. However, a deeper analysis shows that some features appear responsible
to 15% up to 20% of the model’s accuracy. This is the case of the averaged spectral flux, the averaged
spectral flatness or the kurtosis of the δ spectral flux.

When looking at Precision and Recall for more details, it appears that all classes do not react equally
when a feature is shuffled. The Distortion and Overdrive classes – or the corresponding aggregated
class – are fairly robust to feature permutation and drop at worst by ∼ 5% when the averaged spectral
flux is shuffled. Other classes are more sensitive and shuffling their most important feature lead to
metrics dropping by at least 30% up to 55%. While the feature may vary from one effect to another,
analyzing the top values regarding metrics loss shows that the spectral flux (its average in particular)
and the δ spectral flux (especially the kurtosis and skewness) are highly important. The spectral slope
and its frame-wise variation also appear meaningful though to a lesser end, along with the averaged
spectral centroid and the first three MFCCs.
Interestingly, shuffling some features increases the accuracy of the model. This should not be related
to the random shuffling since those values stay negative when averaging metrics over 10 repetitions
of the permutation procedure. It so appears that shuffling the spectral skewness normalized by pitch
could increase the accuracy by 0.1%.

Because these observations are made on the test set, it is not possible to directly predict how
removing a feature before training would impact the results. However, it appears that some features
are clearly more important than others in this task, that the most relevant features for an effect class
are not necessarily identical to those of another class and finally that some features could be removed
with no performance drop or maybe even an increase on some metrics.

4.4 Compiled version

Since the final objective of that internship is to obtain a plugin implementing the proposed tool, we
needed to compile the classifier model to be able to integrate it to a C++ program. This required
reimplementing all feature extraction functions in Pytorch and ensuring they are compatible with
Torchscript. The feature computation was at first done using librosa [39] which cannot be compiled
using Pytorch’s utility. Once the implementation could be compiled, we chose a pre-trained model to
load in a JUCE4 program.

4JUCE is a framework for designing audio plugins https://juce.com/
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The JUCE plugin was designed and coded by Hugo Prat and allows to drag-and-drop a sound file
which is then processed by the classifier, its output being used to instanciate the detected effect, as
shown Figure 4.5.

Figure 4.5: Home screen of the JUCE plugin (top) and the resulting interface after a sound has been
processed (bottom).
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Chapter 5

Estimation of effect parameters

5.1 Proposed approach

This internship aims at designing a tool that estimates effects’ parameters to reproduce the timbre of
a reference sound. However, the main difficulty is that the effect actually used in the reference sound
is supposedly unknown and in particular not available for upcoming processing. This prior hypothesis
motivates the fact that I choose specific plugins that aims at emulating any other effect unit of the
same type. This directly yields the following assumption: the chosen solution can emulate any effect
belonging to its effect class. Such an assumption can be criticized but is necessary to reduce the task’s
complexity and will be assessed by a perceptual experiment in subsection 5.4.3.

The chosen effect proxies are taken from the pedalboard library [40] that implements JUCE
audio processing plugins (among other features) in Python. The study is conducted on a reduced set
of effects to reduce the task’s complexity but one effect for each main effect category is implemented
to evaluate the generalization capabilities of the chosen approach.

The first plugin used is pedalboard.Chorus that obviously implements a Chorus effect but not only,
as the documentation states:

To get classic chorus sounds try to use a centre delay time around 7-8 ms with a low
feedback volume and a low depth. This effect can also be used as a flanger with a lower
centre delay time and a lot of feedback, and as a vibrato effect if the mix value is 1.

For this reason, this single plugin is used to emulate Chorus, Flanger, Vibrato and Phaser effects – even
though it is not mentioned in the documentation Phaser have been added because of its perceptual
similarity to Flanger. The plugin can be controlled by five parameters:

• rate_hz: the rate of the oscillator modulating the delayed signal, from 0.1Hz to 10Hz;

• delay_ms: center delay in milliseconds of the modulated signal, from 0ms to 20ms;

• feedback: volume of the delayed signal ∈ [0, 1];

• depth: amplitude of the modulation signal ∈ [0, 1];

• mix: from 0 for full dry to 1 for full wet.

Both Slapback and Feedback Delay are reproduced using pedalboard.Delay which features three
control parameters:

• delay_seconds: the time delay between each echo, from 0 to 1 s;

• feedback: the volume ratio between each echo and the previous one ∈ [0, 1];

• mix: the processed/dry signal ratio of the output signal ∈ [0, 1].
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It is expected that such a plugin will have difficulties emulating delays with hard slapbacks (a single
repetition that quickly fades out) because it is not designed to do so. We still use that approach in
the lack of a better one.

Finally Overdrive and Distortion are emulated using a combination of plugins. The library
pedalboard includes a pedalboard.Distortion plugin, but it is simply a hyperbolic tangent wave-
shaper with a drive_db parameter controlling the input gain. Though efficient for a simple distortion
effect, such an implementation fails to reproduce the wide variety of distortion effects that exists.
Inspired by the circuit analysis of famous distortion pedals [41] I propose to add two filters after the
waveshaper, as shown Figure 5.1.

Tanh waveshaper 

High-Shelf Filter

Cutoff frequency
G

ain

Q

Low-Shelf Filter

Cutoff frequency
G

ain

Q

Figure 5.1: Proposed pipeline for Distortion emulation

The filters are shelf filters which do not completely cut high or low frequencies but rather alter
the frequencies amplitude with a controllable resonance around a cutoff frequency switching from one
gain value to another. This pipeline seems to successfully reproduce a variety of distortion sounds1.

5.2 Data

To the best of our knowledge, no dataset exist for the task of retrieving audio effects parameters. To
that end, I have designed a pipeline to generate data samples consisting of:

• a clean sound of a single note;

• a set of uniformly sampled random parameters;

• the corresponding processed sound.

For each parameter of each effect, a parameter range is manually defined to produce sounds that
are ”realistic” i.e. similar to what could be obtained from real processing units. For training and
prediction purposes, all parameters are normalized to the range [0, 1] and values are rounded to the
hundredth since a finer resolution may only be useful to expert users. This first implementation focuses
on monophonic guitar sounds for simplicity. All clean monophonic guitar sounds from the IDMT-SMT
dataset (I include sounds only processed by an Equalization or Amp simulation) are used to produce
processed sounds through data augmentation. This amounts to 1872 recordings for a total duration
of approx. 47 minutes without silence. It is then very fast and easy to process the clean dataset with
the data augmentation pipeline thanks to the pedalboard library: the entire clean set is processed in
approx. 9 s which is more than 300× real-time. For each effect, the clean dataset is processed entirely
20 times, leading to 37440 files per Fx, or 15.6 hours of audio.

1Synthetic sound examples are available on https://adhooge.github.io/AutoFX/
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It should be noted that each sample has random parameters so the dataset includes 37440 theoret-
ically different set of parameters. We consider more important to explore a wide range of parameter
values than having many different inputs going through an effect unit with the same parameters. The
chosen approach could lead the network to make mistakes when a given parameter set is applied to
notes of pitch or timbre not seen during training but results suggest that the chosen method for data
augmentation is enough. For size and memory constraints, all files are downsampled from 44.1 kHz to
22 050Hz, leading to a final dataset of 8.5GB.

5.2.1 Added features

Inspired by [25] where the authors successfully retrieve effect parameters from a limited set of hand-
crafted features, we also extract features from the input samples to use them as added information in
the implemented models.
To help the evaluation of modulation effects, I extract the pitch-curve of the input sound i.e. the
detected fundamental frequency in frames of 0.01 s using torchaudio. I also compute the unwrapped
phase of the maximum frequency bin from the spectrogram of the data sample, along with its
frame-wiseRoot-Mean Square (RMS) energy. I accompany those features of their frame-to-frame
fluctuations to study their evolution through time before applying several functionals:

• I extract the two highest values of the Fourier Transform of the padded feature vectors along
with the corresponding frequency bins, this allows to detect if a feature is periodic, the second
maximum being added for robustness in case a spurious detection occured;

• I compute the Standard Deviation and the Skewness of the RMS features as they have been
observed to help retrieving delay parameters.

To further help retrieving parameters of delay effects, I retrieve five onsets and their corresponding
activations using the Superflux algorithm presented in [42]. This method suppresses vibrato by track-
ing frequency peaks with a maximum filterbank instead of simply considering the framewise energy
difference of each frequency bin.
Finally, to help retrieving distortion parameters, I compute the temporal average of the 10 first MFCCs.
This amounts to 48 features that are summarized Table C.1.

For compatibility with the rest of my work, all feature computations are reimplemented in PyTorch
and made compatible with parallel computing to limit any slowdown during training. Implementation
details are available on the accompanying repository: https://github.com/adhooge/AutoFX.

5.3 Implemented architectures

5.3.1 Simple regression network

Since classification is done on audio features with a MLP, we also use a simple MLP as a baseline
for our regression task. Experiments are done with a varying number of hidden layers and different
configurations to assess how well such a simple model can perform. The tested implementations are
shown Figure 5.2.

The features are those already computed for the classification task as described in subsection 4.1.2,
additional features are the ones described in subsection 5.2.1 while the conditioning encodes additional
information on the input sound, as it is explained subsection 5.3.4. The predicted parameters are rep-
resented as a single vector with 15 values containing the 5 Chorus parameters, the 3 Delay parameters
and the 7 Distortion parameters. During training, the gradient is only backpropagated for the param-
eters of the actual effect class so that the network is not trained to zero the parameters of the unused
effects. By doing so, we ensure that the computational power of the network is completely directed
towards the task at hand.
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Figure 5.2: Tested implementations of a simple MLP network for regression. The additional features
presented subsection 5.2.1 and optional conditioning can be added. The number and the size of the
hidden layers can also be changed.

5.3.2 Convolutional Neural Networks

Input

Layer 1

Layer 2

+

Output

Identity 
connection

Figure 5.3: Principle of Residual
networks. Here the identity con-
nection skips a layer because this
is what we have implemented and
what is done in the original paper
[43] but it could occur directly after
each layer.

The Convolutional Neural Network (CNN) I implemented uses
residual learning and is thus often called a Residual Network
(Resnet) in the litterature. It has been proposed in [43] and
enables easier training especially for very deep neural networks .
The motivation to such residual learning, illustrated Figure 5.3,
is assuming that by adding an identity connection between layers
in the network it will focus on learning residual information
instead of reproducing an identity function if necessary. We
made the choice of using a Resnet instead of a simple CNN
because it trained slightly faster at no supplementary cost.

5.3.3 Training strategies

Supervised Learning

A first training approach is to implement Supervised Learn-
ing. Supervised learning refers to training procedures where a
correct answer, or label, exists and is known beforehand. It is a
form of training that is often preferred when available because
having an actual ground-truth for the model’s predictions allow
to use a loss and a training objective that is directly meaningful
to the task at hand. However, supervised learning requires a
dataset with annotations that are most of the time written by
human experts, making them costly and usually smaller than
datasets without annotations.
Fortunately, in our case, the data is generated synthetically so it
can be automatically labelled at no additional cost and without
any size constraint.
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For this reason, that training strategy is the main one we use in our work, for training on In-Domain
sounds, i.e. sounds that are obtained from the effects being studied (similarly to what is done in [31]).
Training on such sounds ensure that there actually is a right answer for the predicted parameters and
that the system can reproduce the reference sound exactly.
In that situation, the loss we use is a Mean-Squared Error (MSE) loss function to ensure that the
network minimizes the distance between its predictions and the actual parameters. We also monitor
the absolute distance between each prediction and parameter value to assess if the quality of the
regression depends on the parameters.

Unsupervised Learning

Consequently, Unsupervised Learning refers to a training procedure where no ground-truth exists
for the input data samples. This situation is common when working with huge datasets and is usually
the first phase of training a model, to benefit from the amount of data, before finetuning on a smaller
dataset in a supervised manner to refine the model to the task studied. Here, we reverse the original
procedure, using unsupervised learning on another dataset to finetune our model and hopefully enable
better generalization capabilities.
The second dataset used is actually the same used for the classification task (see subsection 4.1.1)
because it contains processed guitar notes for which the original clean sound is available. We call those
sounds Out-of-Domain sounds because they have not been produced by the effects we implement,
which implies that it might be impossible to reproduce their timbre. This terminology and training
strategy is also inspired by [31] where the authors begin by training their model in a supervised manner
on In-Domain sounds with a parameter loss (because the ground-truth values for the parameters are
available). Afterwards, they gradually introduce a spectral loss to free themselves from requiring
labels and finally train in an unsupervised manner on an out-of-domain dataset to make the model
generalize to unseen sounds similar to what could be queried by an actual user.
In my case, the spectral loss I use is a Multi-Resolution STFT (MRSTFT) loss which was firstly
introduced in [44] and included in the Python’s library auraloss [45]. This loss has been introduced
because changing the parameters of a STFT (like the window size, the number of frequency bins or the
hop size) yields different spectrograms with varying time and frequency resolutions. For this reason,
when comparing two sounds, it is interesting to see how the comparison holds at different scales. This
is the principle of the MRSTFT loss that averages contributions of spectrogram losses

Lmag(x, x̂) =
1

N
||log |STFT(x)| − log |STFT(x̂)|||1 (5.1)

where N is the FFT size and ||.||1 is the L1 norm. The MRSTFT loss is thus defined by:

LMRSTFT(x, x̂) =
1

M

M∑
m=1

L(m)
mag(x, x̂) (5.2)

with M the number of losses computed. In our implementation, a loss on the phase-spectrograms
is also computed and the FFT sizes used are [64, 128, 256, 512, 1024, 2048] with 25% overlap between
frames, no zero-padding and a Hann window.

5.3.4 Effect class conditioning

In our work, the effect is classified before its parameters are inferred in order to reduce the quantity
of information the Regressor Network must learn. Though the Regressor Network could be trained
without any knowledge shared from the Classifier, improved performance can be attained through
conditioning
One solution to generalize could be to train one network per Fx considered but this has several down-
sides. First of all, it is time and energy consuming because several networks would have to be trained
for extensive durations. But, more importantly, the obtained networks would not even be guaranteed
to work better than a single network trained on all Fx since Multi-Task Learning has been shown
to improve results in a variety of use cases [46].
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For this reason, we keep the original Regressor Network and use the Fx Class information as a condi-
tioning input added to alter the produced output.

One simple way to add conditioning to a neural network can be to concatenate the new information
to the original input, this is for instance how conditioning is added to the MLP used for regression.
However, while this approach makes sense when the conditioning is added to a vector of features of
rather short size, simply concatenating new information to input samples is usually not recommended.
Indeed, for the CNN models, the input is a batch of audio spectrograms. In that case, one can see how
blindly concatenating conditioning data to the input would be rather inefficient. The conditioning is
a high-level information that should weigh more in the model’s processing than the temporal values
of frequency bins. Furthermore, applying a convolutional kernel on both a spectrogram excerpt and
conditioning values will yield unpredictable results.

For this reason, we use Feature-wise Linear Modulation (FiLM) layers. Perez et al. introduced this
technique in [47] for visual tasks where a convolutional neural network extracts features that are con-
ditioned by a question-analysing recurrent network.
Let C be the conditioning input, it can be of any shape relevant to the task at hand. In our case,
it will be a vector of probabilities from the classifier network representing how likely the sample is
to belong to each effect class. The FiLM layer aims at deriving from C two arrays γ and β whose
shapes are identical the output of the FiLM-ed layer of the original network. Let F be the feature-map
obtained after a layer of the FiLM-ed network, it is modified by the FiLM layer like so:

FiLM(F|γ, β) = γ ◦ F+ β (5.3)

or

FiLM(F|C) = γ(C) ◦ F+ β(C) (5.4)

where ◦ denotes the element-wise product. The principle is to apply an affine transformation on
the feature-map extracted by a network to zero some features, change their relative scaling or maybe
even change their sign. Intuitively, the original network is expected to extract some features relevant
to the task at hand from the input data and the FiLM layers are used to mitigate those features and
modify them accordingly to conditioning information.

The overall implementation of the CNN, including the two possible training procedures and the added
conditioning, is summarized Figure 5.4.

5.3.5 Classifier on synthetic dataset

On real sounds, the Fx class is known beforehand. However, on synthetic sounds — i.e. clean sounds
processed by pedalboard— there is no properly defined Fx class. This is due to the fact that the effects
we use to generate the synthetic data can emulate several different effect classes. For instance, the
custom distortion pipeline we implement should reproduce Overdrive or Distortion sounds depending
on the settings, while the pedalboard.Chorus plugin is used to produce Chorus, Flanger, Vibrato
and Phaser sounds. To distinguish between those specific effects, we could manually define parameter
ranges that are associated to specific effect classes, but this approach is difficult to implement because
there is no clear transition from one effect to another.
To circumvent that problem, we use the pre-trained classifier to obtain the conditioning values for
each sample. This is in accordance with the overall pipeline we want to implement where the sound
is firstly classified before computing effect parameters.
Consequently, we began with directly classifying synthetic sounds with the classifier trained on all
effects (but only monophonic guitar sounds since the synthetic dataset is only guitar mono) as it
is presented subsection 4.3.1. The results, summarized Figure 5.5, show that many sounds were
misclassified, causing the algorithm to instanciate the wrong effect.
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Figure 5.4: Summary diagram of the regression network’s implementation with a ResNet. FCL stands
for Fully-Connected Layer, a simple linear layer like the ones used in MLPs.

Figure 5.5: Confusion matrix of the classifier trained on all effects applied to the synthetic dataset. The
synthetic effects are considered as a single class so Slapback Delay represents all Delay sounds, Chorus
represents Modulation and Distortion includes all the sounds produced with the Custom Distortion
pipeline.
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To improve the classifier performance, we simplify the problem using aggregated classes in accor-
dance to the way the synthetic data is generated. The aggregated classes are shown Table 4.2 and
the confusion matrix of the classifier pre-trained on aggregated classes and applied to the synthetic
dataset is shown Figure 5.6.
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Figure 5.6: Classification results of the classifier trained on aggregated classes (see subsection 4.3.2)
on the synthetic datasets. The three bottom rows are empty because the synthetic dataset does not
contain those effects.

Even in that simplified situation, many sounds are misclassified. Those results suggest that the
classifier trained on the IDMT-SMT dataset fails to generalize to unseen effects. Indeed, while it is
plausible that some samples are classified as Dry because the effects can be configured in a way that
almost does not change the input signal, a majority of Distortion sounds are classified as Modulation
while almost half Delay and Modulation samples are also misclassified. Nevertheless, those results are
of interest because they suggest that the dataset presented in [14] might not include enough variety to
allow generalization, or that the effects considered have specific characteristics that identify them and
are not seen on other effects. The features of the IDMT dataset could also be restricted to a range
that does not represent the reality of audio effects, causing new sounds to have inconsistent feature
values when rescaled like the training sounds. This is an important observation because that dataset
is the reference for the classification of guitar effects but in the absence of another similar datasets,
the classifiers are usually not tested on completely new effects.

To still have conditioning for training the regression network, I train a new classifier on aggregated
classes and on an unbalanced dataset that include synthetic sounds. Doing so solves the misclassi-
fication issue on synthetic sounds, as it can be seen Figure 5.7. The accuracy reaches 96.7% on the
synthetic dataset and only a few misclassifications occur.
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Figure 5.7: Confusion matrix of the classifier trained on the mix dataset for the synthetic data. The
three bottom rows are empty because the synthetic dataset does not contain those effects.

5.4 Results

5.4.1 Simple MLP

The first experiments were conducted with the MLP network to have baseline results on the regression
task under scrutiny. Several variations of the network have been tested, with a varying number of
hidden layers, added conditioning or added features. All models were trained with a batch size of 64, a
hidden layer size of 100, ReLU activation between layers and a final Sigmoid activation. The training
ended when the validation loss stopped decreasing for 3 epochs.
We observed that the number of hidden layers does not really change the performance of the models
but a model with 5 hidden layers trained slightly faster than models with 1 or 10 hidden layers so we
set the number of hidden layers to 5 for further experiments.
Enabling conditioning and additional features neither had much impact on the training or validation
losses. We decided to keep all three variations of the MLP to assess their performance in a perceptual
experiment.

5.4.2 Convolutional Neural Network

The main network under study is a large Resnet dubbed AutoFx. Its architecture is summarized in
Figure C.1. The training was done with a batch size of 64, an Adam optimizer [48] with a learning
rate η = 0.0001 and (β1, β2) = (0.9, 0.999) and the input spectrograms were obtained with an FFT
size of 1024 with 25% overlap and a Hann window. The network is trained for 20 epochs with an MSE
Loss on the parameters prediction.
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Two main trainings are conducted: one with additional features and one without. A summary of their
performance on the test set with the simple MLP for comparison is shown Table C.2.
The AutoFX networks have the best performance, in particular the version with added features which
has the lowest MSE Loss. When it comes to individual absolute distance, all parameters are predicted
with less than 0.1 error (except for Q-hi with one MLP model) which is the usual precision for tuning
physical effect pedals. Interestingly, no model performs best on all parameters. The best model has
a low prediction distance for all parameters and the best score for 7 out of 15 parameters but some
parameters are better predicted by other models. Another noticeable result is that the lowest distance
on the parameters ranges from 0.0065 (rate) to 0.066 (Q-hi) which suggests, as it was expected, that
some parameters are harder to predict than others. Audio examples of reconstructions from the test
set are available on the accompanying webpage 2.
Out of curiosity, we also observed the coefficients generated by the FiLM layer on the last convo-
lutional layer of the network when changing the conditioning. The γ and β values are represented
Figure C.2. While its impossible to deduce anything directly concerning the input audio with these
representations, it appears that the conditioning has an impact on the FiLM layers and consequently
on the implemented network. We observe that the proposed γ and β matrices are dependent on the
conditioning effect: a delay conditioning leads to a positive bias and an almost entirely negative γ
while this is the opposite for modulation and distortion. Besides, one can see that the conditioning
matrices of modulation and distortion do not have their maximum values on the same coefficients,
which confirm that the FiLM layers exploit the conditioning information.

Finetuning attempts

Inspired by [9], we used SPSA to make the pedalboard’s effects differentiable to be able to train the
implemented model end-to-end on a spectral loss. Similarly to what is done in [31], the supervised
training on the parameter loss was gradually changed to unsupervised training on a spectral loss.
This approach would allow to train the network on out-of-domain sounds once the spectral loss has
completely replaced the parameter loss, allowing for better generalization.
However, we tested many different ways to finetune the model: gradually introduce the spectral
loss while reducing the parameter loss; switch from parameter loss to spectral loss with different
hyperparameters; train on the spectral loss while freezing some layers... None of the tested approaches
worked for finetuning the model. The network would always end up unlearning what it could do
before adding the spectral loss, only returning clean sounds as it appeared to be a local minimum of
the spectral loss.
Further tests in the simple case of finding the parameters to match a single audio file suggest that the
differentiation technique used for the effects is not suited to our problem. Indeed, some parameters
have more impact than others on the output sound of the effects and SPSA is highly sensitive to such
issues. Because all parameters are perturbed at the same time to approximate the gradient, the sound
can be mostly affected by a main parameter and the computed gradient will not reflect the impact of
smaller parameters. This might have been avoided by using a FD algorithm but, as it has been said
before, it requires more computational power and would thus slow the training down. We did not
have the time to implement that approximation scheme to test this hypothesis.

5.4.3 Perceptual experiment

This internship has been the opportunity for me to implement my first online perceptual experiment.
We used the WebMUSHRA repository3 [49] that proposes a framework to quickly implement listening tests
through .yaml configuration files and a PHP web server. We used it to implement a MUSHRA-like
listening test on a personal webserver, a screenshot from the experiment is shown Figure 5.8.

During this experiment, the participants are proposed a reference sound processed with an audio
effect from the IDMT-SMT dataset. It is thus an Out-of-Domain sound, never seen by the networks
and that might be impossible to reproduce.

2https://adhooge.github.io/AutoFX/
3https://github.com/audiolabs/webMUSHRA
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Figure 5.8: Screenshot of the online experiment interface. The user can listen to the reference sound
and the proposed reconstructions as many times as necessary and rate them from 0 (Bad) to 100
(Excellent).

The parameters to reproduce that effect are predicted by each model and used to process the clean
sound (available from the dataset), the obtained sounds are then proposed to the participants who
are expected to rate the quality of the reconstruction from 0 (Bad) to 100 (Excellent). As it is
common in perceptual experiments, and mandatory in MUSHRA listening tests, the reference is also
included in the sounds to rate. This is to ensure that the task is correctly understood and to provide a
higher bound to compare other ratings to. I also added sounds reconstructed with random parameters
uniformly sampled in the predefined ranges to use as a lower bound.
The participants were asked to rate 10 sounds for each effect class: Modulation, Delay and Distortion.
For each sound, 5 reconstructions were proposed from the following models4:

• 163NC: MLP model trained on the 163 classification features with No Conditioning;

• 163C: MLP model trained on the 163 classification features with added Conditioning;

• 211C: MLP model trained on 211 features (the classification features and the added regression
features) with Conditioning;

• AutoFX: CNN model with FiLM conditioning but no additional features;

• AutoFX-F: CNN model with FiLM conditioning and added features.

The test pages were randomized as were the reconstruction sounds to ensure fairness during the
rating process. 17 persons aged from 20 to 54 years old, most with a background in music either
through their work or because they practice an instrument participated in the online experiments. A
summary of the ratings is shown Figure 5.9. All proposed models perform better than using random
parameters and some perform quite well compared to the reference that is almost always rated at 100.
Indeed, most models have a median rating around 60 with the best model being around 65, the lower
bound being 30, the median rating of the random samples.

4Sounds used in the experiment are available on the accompanying website.
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Figure 5.9: Boxplots of the online perceptual experiment. The orange line is the median rating for
each category while the box itself represents the first and third quartiles. The whiskers extend the
box by 1.5 times the Inter-Quartile Range (the size of the box) on each side and the empty circles are
outliers, points that are outside the range covered by the whiskers.

Those results are interesting as they show that well-defined features with a light network can
perform better than a deep network with much more parameters. However, it also appears that the
best network is the biggest, a compromise then have to be find between ease of training, size of the
trained model and inference time.

This experiment was the first of its kind I implemented, though efficient and interesting, some issues
have been brought to my attention that will be useful for future experiments. First of all, many
participants told me that the experiment was very long and actually much longer than my estimation.
For future experiments we should reduce the number of samples to rate and probably also limit the
number of reconstructions, 5 models to evaluate at once being to much. Several participants also
reached out to ask for clarifications on the rating procedure, we should thus work on making the
experiment more understandable with maybe a few examples to explain what is expected. Finally and
even though it is not something we can change easily, some participants wanted to do the experiment
on their phone (with headphones) but the website proposed by webMUSHRA is not responsive and
cannot be used on a phone, some sounds being unreachable. Nevertheless, this was an enriching
experience that I plan on using for future work to make better experiments.
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5.4.4 Power and Size requirements

To further compare the implemented architectures, similarly to what we did for the classification
models, we measured the energy consumption required to train the models on an Nvidia GeForce
GTX 1080 Ti GPU, the size of the models and the inference time with an Intel i7 CPU. Those results
are summarized Table 5.1.

Model Training time Energy Consumption Model size Number of parameters Inference time

AutoFX 100 min 0.560 kWh 44.1MB 3.7M 21.4ms

MLP-163 19 min 0.0649 kWh 852 kB 58.9k 0.18ms

MLP-211 12 min 0.0401 kWh 911 kB 63.7k 0.18ms

Table 5.1: Size and power requirements of the regression models. MLP-163 and MLP-211 refer to the
versions of the MLP network with conditioning and either 163 or 211 features.

As one can see and as it could be expected, the AutoFX model is the longer to train and the greedier
regarding size and energy. For comparison, it takes approximately 10Wh to charge a smartphone so the
MLP models’ trainings require as much energy as charging a smartphone 4 to 6 times while training the
AutoFX model is equivalent to charging the same smartphone 56 times. While these consumptions
are very low compared to recent neural networks that are trained for weeks on GPU clusters, it
is interesting to see how the AutoFX model requires more energy for performance improvements
that are noticeable but not outstanding. Besides, it is also slower at inference time and the saved
model is heavier than its MLP counterparts. To be fair, the inference of the model itself is not the
longer operation when analyzing a new sound: computing its additional features will indeed take
approximately 50ms. Nevertheless, processing a new sound under 0.1 s is still very fast and would
not be noticeable by the user, which is reassuring for the objective of implementing the models as a
plugin in DAWs.
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Chapter 6

Conclusion

In this report, we presented this internship’s work that was to develop a tool to assist musicians in
their creative process by automatically recognizing audio effects and retrieving their parameters. Af-
ter a short explanation of the theoretical notions involved, we commented the existing literature on
the topic of timbre reproduction and audio effects emulation. We then introduced our work firstly
with the architectures we implemented for the recognition and classification of audio effects on guitar
sounds. We analyzed the performance of the tested algorithms on different sets and with different
configurations before evaluating the energetical needs of our models. Next, we moved on to the task of
retrieving effect parameters and shared the experiments we conducted, the difficulties we encountered
and commented the results of our models both quantitatively and qualitatively through an online
perceptual experiment we designed.

Even though the initial objective of the internship is not complete, we got the opportunity to test
several approaches and the obtained results are promising and suggest that the chosen method could
work. Guitar effects can be identified and classified by extracting audio features and using a simple
classification network. We also successfully realized a compiled version of that network, which is the
first to designing a plugin that could actually be used by artists. Our work also sheds lights on the
limits of the IDMT-SMT Audio effects dataset and suggests that a classifier performing well on that
dataset would not necessarily work on new audio effects.
Furthermore, our pipeline to generate synthetic data demonstrates the potential of Spotify’s pedalboard
library for audio effects related tasks.
We also show that finding the parameters of an effect from an audio spectrogram or a set of audio
features is feasible with good accuracy with rather small neural networks. Interestingly, our perceptual
experiment suggests that generic audio effects can be used to emulate any other effect of the same
type as long as they are correctly configured. The sound matching will not be perfect but could be
sufficient to assist artists who want to obtain a specific sound.

Had we gotten more time, we could have tested new differentiation techniques of audio effects to
finetune the AutoFX model. It would also be interesting to implement the last effects present in the
dataset to see if the observations hold to more and more complex datasets. Another improvement
would be to generalize to other instruments than monophonic guitars or to work on melodies instead
of single notes to get closer to real use cases. Besides, we considered audio processed by a single
effect, which is also far from real-life situations. Future work could focus on generalizing the approach
to chain of effects. To the best of our knowledge, this situation has already been studied for effects
classification [15] but never for parameters estimation.
Finally, the regression network is compileable so it would be possible to finish the AutoFX plugin and
release a first version of it quite easily.
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Appendix B

Classification

Feature Applied functionnals

Spectral Centroid min, max, mean, variance, skewness, kurtosis
Spectral Spread min, max, mean, variance, skewness, kurtosis
Spectral Skewness min, max, mean, variance, skewness, kurtosis
Spectral Kurtosis min, max, mean, variance, skewness, kurtosis
Spectral Slope min, max, mean, variance, skewness, kurtosis
Spectral Roll-off min, max, mean, variance, skewness, kurtosis
Spectral Flux min, max, mean, variance, skewness, kurtosis
Spectral Flatness min, max, mean, variance, skewness, kurtosis
δSpectral Centroid min, max, mean, variance, skewness, kurtosis
δSpectral Spread min, max, mean, variance, skewness, kurtosis
δSpectral Skewness min, max, mean, variance, skewness, kurtosis
δSpectral Kurtosis min, max, mean, variance, skewness, kurtosis
δSpectral Slope min, max, mean, variance, skewness, kurtosis
δSpectral Roll-off min, max, mean, variance, skewness, kurtosis
δSpectral Flux max, mean, variance, skewness, kurtosis
δSpectral Flatness min, max, mean, variance, skewness, kurtosis
10 first MFCCs max, mean
Spectral Centroid / pitch min, max, mean, variance, skewness, kurtosis
Spectral Spread / pitch min, max, mean, variance, skewness, kurtosis
Spectral Skewness / pitch min, max, mean, variance, skewness, kurtosis
Spectral Kurtosis / pitch min, max, mean, variance, skewness, kurtosis
Spectral Slope / pitch min, max, mean, variance, skewness, kurtosis
Spectral Roll-off / pitch min, max, mean, variance, skewness, kurtosis
Spectral Flux / pitch min, max, mean, variance, skewness, kurtosis
Spectral Flatness / pitch min, max, mean, variance, skewness, kurtosis

Table B.1: Classification features. The minimum of δSpectral flux is discarded because it is always
zero.
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Figure B.1: Confusion matrices of the classification experiments on 11 effects.
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Figure B.2: Confusion matrices on the test set with aggregated classes. Since the aggregated dataset
is no longer balanced, rows are normalized by the number of actual samples for each class.
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Appendix C

Regression

Feature Applied functionals

Pitch 2 FFT max bins, 2 FFT max bins values

Unwrapped phase of the
maximum frequency bin

2 FFT max bins, 2 FFT max bins values

RMS energy 2 FFT max bins, 2 FFT max bins values,
variance, skewness

δPitch 2 FFT max bins, 2 FFT max bins values

δUnwrapped phase of
the maximum frequency
bin

2 FFT max bins, 2 FFT max bins values

δRMS energy 2 FFT max bins, 2 FFT max bins values,
variance, skewness

5 Onsets timestamps, activations

10 MFCCs mean

Table C.1: Regression features.
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Conv2d(1, 64, 7, 2, 3)

BatchNorm2d

ReLU

MaxPool2d(3, 2, 1)

ResNetBlock(64, 64, 3, 1, 1) FiLM
Conv2d(in, out, k, 2, p)

BatchNorm2d

Conv2d(out, out, k, 1, p)

ReLU

BatchNorm2d

ReLU

+

ReLU

FiLM

ResNetBlock(in, out, k, 2, p) 
with Downsampler 

Conv2d(in, out, k, 1, p)

BatchNorm2d

Conv2d(out, out, k, 1, p)

ReLU

BatchNorm2d

ReLU

+

ReLU

FiLM

ResNetBlock(in, out, k, 1, p)

ResNetBlock(64, 64, 3, 1, 1) FiLM

Conv2d(in, out, k, 2, p)

BatchNorm2d

Downsampler

ResNetBlock(64, 128, 3, 2, 1) 
with Downsampler 

FiLM

ResNetBlock(128, 128, 3, 1, 1) FiLM
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with Downsampler 

FiLM

ResNetBlock(256, 256, 3, 1, 1) FiLM

AvgPool2d(8)

Linear

Sigmoid

Figure C.1: Architecture of the AutoFx Model (left) and building blocks of said model (right). The
parameters in Conv2d are, from left to right: number of input channels, number of output channels,
kernel size, stride and padding. Dilation is always set to 1.
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Modulation Delay Distortion

Modulation Delay Distortion

Figure C.2: Output of the last FiLM layers depending on conditioning.
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