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Summary

The goal of this assessment is the implementation of a parametric sound texture

synthesis, more specifically a crowd, in virtual acoustic environments. Granular and

corpus-based concatenative synthesis were used to generate single streams of gibber-

ish speech. Anechoic speech material was recorded and processed to compose the

corpus. The resulting database was used in a real-time implementation including the

rendering in a binaural virtual acoustic scene. The implementation allows to modify

the density of the crowd, the level of excitement, different speech models and the po-

sition of the sources. Finally, listening tests were conducted to evaluate the synthesis

and the influence of the parameters.

Keywords : crowd synthesis, sound texture, parametric, granular synthesis, corpus-

based concatenative synthesis, virtual acoustics, binaural

Résumé :L’objectif de ce stage est l’implémentation d’une synthèse de son de tex-

ture paramétrable, plus précisément de foule, dans un environnement acoustique

virtuel. La synthèse granulaire et la synthèse concatenative par corpus furent utilisées

afin de générer des signaux de voix parlée incompréhensibles. Des enregistrements

anéchöıques de voix parlée ont été réalisés et traités afin de composer le corpus. La

base de donnée résultante a été utilisée pour l’implémentation en temps réel dans

un espace acoustique virtuel en binaural. L’implémentation réalisée permet de mod-

ifier des paramètres tels que la densité de la foule, son degré d’exctiation, différents

modèles de parole et la position des sources. Enfin, des tests d’écoute ont été menés

afin d’évaluer la synthèse et l’influence de certains paramètres.

Mots-clés : synthèse de foule, sons de texture, paramétrable, syntèse granulaire,

synthèse concatenative par corpus, espace virtuel acoustique, binaural



Introduction: context and purpose

Context of the internship

This work was conducted during an internship as part of the ATIAM Master 2 of

IRCAM. It took place at Technische Universität Berlin, in the Audio Communication

Group under the supervision of Prof. Dr. Stefan Weinzierl, Henrik Von Coler and

Christoph Böhm. Research of the Audio Communication Group is dedicated to the

communication of music and speech in acoustical or electro-acoustical systems. Main

topics of interest of the Audio communication Group are: electro-acoustic record-

ing and reproduction technologies, 3D audio by binaural technology or sound field

synthesis, technologies for composition and realisation of electroacoustic music and

sound art, and empirical approaches to study the reception of media content.

Motivation and purpose of this work

In the past, the creation of so-called soundscapes for application in virtual acoustic

environments has been conducted by recording of real acoustic environments with

binaural recording methods. The application of the MTB-method (Motion- Tracked

Binaural Sound) [1] provides the opportunity to achieve head related recordings for

later use in dynamic binaural synthesis. The main drawback of this method is that

the recordings always have to be done in a setting similar to the desired auralized

environment. Moreover the content of the recording is permanent and cannot be

subsequently changed. An ideal application that calls for the need of sound texture

synthesis are virtual acoustic environments. Indeed, soundscapes in those environ-

ments are playing an important role in providing an immersive and realistic experience

to the user. Moreover, in interactive environments such as computer games, the user

might stay in the same place for an undetermined amount of time. The solution com-

monly used by sound designers would be to prepare recordings for seamless looping.

Nevertheless, this is not a flexible solution. Furthermore it requires hours of record-
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ings to provide a decent variety of soundscapes and extensive data storage in order to

avoid the loop to be distinguished and lead to boring situations for the user. Sound

texture synthesis offers a more dynamic and flexible solution. The aim is here to be

able to synthesize in real-time those sound textures from a reduced amount of data.

The challenge is also to give the sound designer the ability to modify parameters, if

possible, in real-time. For instance, the mood or excitement of a crowd, the density

of rain or the strength of the wind could be modified along with the action.

The goal of this work is to explore a solution for parametric real-time sound texture

synthesis for virtual acoustic environments. Due to other works on virtual acoustic

environments being carried out in parallel at Technische Universität Berlin including

a virtual scene with people, it was considered interesting to focus on crowd synthesis.
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1

State of the art

The aim of this part is the definition of sound texture and summary of the existing

methods for its synthesis. The existing methods for generating crowd synthesis will

also be described. Finally the principles of binaural and virtual acoustics will be

briefly explained.

1.1 Sound texture

Defining sound texture can be a tricky task. In one of the first attempts by Saint-

Arnaud and Popat, 1995 [11], ], it is specified that ”it should exhibit similar char-

acteristics over time, that is, a two-second snippet of a texture should not differ

significantly from another two-second snippet.” As well as being correlated to a wall-

paper in that: ”it can have local structure and randomness, but the characteristics

of the fine structure must remain constant on the large scale.”

In Schwarz, 2011 [2], the following interesting properties are described, also based on

[11] and [12]: Sound textures are formed of basic sound elements, often called atoms,

that follow a high level pattern which can be either periodic, random or both. The

high-level characteristics must remain the same over long time periods. The high-level

pattern must be completely exposed within a few seconds. High-level randomness

can be used, as long as there are enough occurrences within those first few seconds.

This is visualized on Figure 1.1.
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Figure 1.1: Potential information content for speech, music, noise and sound texture,
from [11]

Typical sound texture examples from this definition are rain, crowds, water streams,

wind or fire.

1.2 Synthesis of sound texture

An overview of the existing methods for generating texture sound synthesis will be

listed here. Those were summarized in Schwarz, 2011 [2]. Both granular and concate-

native synthesis which were used for this project will be described in further detail

.

1.2.1 Granular synthesis

Granular synthesis theory was first developed by Gabor in 1947 in the context of

microsound study. Afterwards, it was used in a musical context for producing complex

sounds by Iannis Xenakis in 1958 with the piece Concrete Ph and by Curtis Roads

who implemented the first real-time granular synthesis on computer in 1978. It is

a time domain technique based on the construction of signals by combining very

short sounds called grains. Those grains can be considered as a kind of atomic

sound particles. Their combination is used to generate new sounds, timbres, or sonic

textures. Human perception becomes ineffective in recognizing pitch and amplitude

when sonic events are under a threshold of 50 milliseconds (Whitfield, 1978 as cited

in Fischman [22]). Therefore, typical durations of grains are usually chosen to be

between 10 to 60 milliseconds.
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The grain is composed of two elements: the content and the envelope. Only one grain

itself has a very short duration and as a single entity has no particular sonic interest,

but can lead to interesting results when combined with other grains. Any type of

sound-wave can be used as the content of the grain. The chart on Figure 1.2 sums

up the principle of a simple grain generator.

Figure 1.2: Chart for a simple grain generator with a Gaussian envelope and output
on N channels, from Roads [23]

The envelope determines the duration and the amplitude of the grain. Many types

of envelopes can be chosen, but the most commonly used are: Gaussian, Hanning or

trapezoid.

Figure 1.3: A stream of five grains and Hanning envelopes, Roads [24]

As the grain content is windowed it imposes an amplitude change over the content as

was seen in Figure 1.3. The amplitude follows the shape of the envelope. The choice

of the envelope is crucial for obtaining the desired sound. As an example, short
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linear attack and decay is an interesting choice for preventing clicks being added

to the sound. Changing the form of the grain envelope changes the resulting grain

spectrum, and sharper attacks produce broader bandwidths.

Different instances of time organization of the grains can be used and can lead to

very different results. The principal examples are: synchronous/quasi-synchronous:

variable delay between the grains, asynchronous: stochastic distribution and pitch

synchronous: designed to be synchronous with the frequency of the grain waveform.

More details can be found in Roads [24].

1.2.2 Corpus-based concatenative synthesis

Corpus-based concatenative synthesis could be seen as an extension of granular syn-

thesis. The principle of concatenative corpus-based sound synthesis is to use a large

database of source sounds. This material is segmented into units. Then a unit se-

lection algorithm is used in order to generate a sequence of units to synthesize the

targeted sound. Several methods can be used for the selection. Finally the units are

concatenated.

Advantage of corpus-based concatenative synthesis

In the context of sound texture synthesis, corpus-based concatenative synthesis has

undoubtedly attractive characteristics. Indeed, with usual sound synthesis methods

based on a model of the sound signal, generating all the subtle details of the sound

is typically quite intricate and a lot of information is lost. Concatenative synthesis

allows to preserve those details as the units are actually extracted from real record-

ings containing these features. The sound of a crowd is a perfect example of this

complexity.

Database

The database is built from the audio material itself, the unit segmentation and the

unit descriptors. A relationship between the units can also be stored. The part of

the database that is chosen for one particular synthesis is called the corpus.
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Target

The target is defined according to desired descriptor characteristics. For example an

angry crowd. Then, only a subset of the available database descriptors is used in

order to reach this target. It is also possible to transform the selected units in order

to match the target specification or extend the possibilities of the synthesis. However

it is preferable to use a large database in order to do as little sound transformations

as possible to avoid degrading sound quality.

Selection of unit

Accurately chosen high level descriptors and audio features allow to automatically

extract characteristics from the source sounds and are a powerful tool to classify the

data. It is also possible to use metadata and hand labeling as a method for more

subtle or subjective classification of the corpus. The unit selection algorithm is a key

element for concatenative corpus-based synthesis.

1.2.3 Other methods

Alternative methods for sound texture synthesis that were not used for this work will

be briefly described. More details and substantial references can be found in Schwarz

[2].

Subtractive synthesis

This method consists of filtering noise. It could be seen as the most commonly used

method for sound texture synthesis. This includes techniques that rely on statistical

models. Numerous methods for filtering exist and are summed up in Schwarz [2].

This method can also be completed by the use of additive synthesis, and classic sum

of sinusoidal partials.

Physical modeling

Physical modeling relies on a mathematical model which can be seen as a set of

equations and algorithms to simulate a physical source of sound. The synthesized

waveform of the sound is generated from this model. In [2] a large set of applications

of this method to sound texture are listed.
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Wavelets

This method, applied to sound texture synthesis, uses multiscale decomposition of a

signal into a wavelet coefficient tree. A reorganization of the order of paths from the

tree structure can be done afterwards. Inverse wavelet transform is applied for those

paths in order to re-synthesize a short part of signal. Kersten [5] recently applied

this technique and delivered interesting results in the context of this work that will

be discussed later. Several wavelet related works are also mentioned in Schwarz [2].

1.3 Crowd synthesis

For immersive virtual environments, audio is a crucial element. Its principal role

is the creation of a sound ambiance or soundscape and crowds are one of the most

frequent sound in this framework. [8] is an approach of a full crowd simulation,

including audio. Many interesting elements to be taken into account are specified for

the creation of such environment. When recreating a realistic scene, the perception of

listening to a static or repetitive loop should be primarily avoided. Additionally, the

quality of generated sounds should ensure that listeners recognize the nature of the

sound sources. In [8], the approach chosen for audio is a sample-based concatenative

synthesis, using a set of real speech recordings retrieved from freesound.org. This

work aims to generate the necessary variability to build a realistic sound of a crowd

with a very small set of recordings. The samples used here are directly the sentences

themselves. In this ”talking soundscape”, two types of sound zones are defined: near-

field and diffuse-field. Near-field content consists of voices from individual speakers

located at a short distance from the listener. Those are spatialized accurately and

voice sources are distinguishable with timbre, prosody and timing.

A drastically different approach of crowd synthesis was achieved by Kersten [5] using

wavelet decomposition and hidden Markov model trees. Even though this analysis-

synthesis approach works well for sounds such as water streams, rain or fire, the

intelligible aspect of speech composing crowds is not successfully re-synthesized, and

results in a completely unnatural crowd sound. Sound samples of those can be listened

at [6].
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1.4 Binaural hearing and technology

Through evolution and the need to survive in nature, Humans acquired a powerful

ability to locate the sound in space. Time and level differences between both ears

or spectral information are interpreted by the auditory system as cues for locating

sound sources.

The goal of binaural recording and reproduction technology is to recreate this effect

so that the listener can experience sound localization using headphones.

Head-related transfer function

A head-related transfer function (HRTF) describes the influence of a listeners head

on the sound-field and thereby the influence on the perception of a certain sound

event reaching the listeners ear drums. Diffraction and reflections on elements of the

body such as the head, pinnae and shoulders are taken into account.

HRTFs are defined for each ear. They include information for magnitude and phase

shift. It is a Fourier transform of a head-related impulse response (HRIR). The HRTF

depends mainly on the location of the sound source compared to the position of the

listener [13][14].

Figure 1.4: Filtering of a signal x(t) by two separate transfer functions hLptq and
hRptq [16]

As shown on Figure 1.4, let hLptq and hRptq be the impulse responses in the time
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domain for the left and the right ear respectively. HLpωq and HRpωq in the frequency

domain. xptq is the function corresponding to the pressure of the sound source and

let xLptq and xRptq be the pressure at the left and the right ear respectively.

The pressure at the ears in the time domain as a convolution (˚ will be used) of the

sound signal and the HRIR of the corresponding ear, so for example for the right ear

is:

xL,Rptq “ hL,Rptq˚ xptq “

ż `8

´8

hL,Rpt´ τq xpτqdτ

This then leads in the frequency domain to:

XL,Rpωq “ F phL,Rptq˚ xptqq “ HL,RpωqXpωq

1.5 Virtual acoustic environment

Binaural room impulse response

Reflections that occur in rooms are an important element for spatial auditory percep-

tion. Using this parameter when simulating the virtual acoustic environment leads

to several advantages such as the ability to recreate the spatial auditory perception

in a room or perceiving the distance of the virtual source [15]. It can also prevent

undesirable effects such as perceiving the source from an in-ear position. In order to

take reflections into account, the method is to measure the physical propagation of

sound from the source to the listener. The room and its response to an acoustical

event can be seen as a linear system invariant in time which could be specified by an

impulse response.

Assuming a linear system invariant in time, a room impulse response can describe

the acoustic properties of a room concerning sound propagation and reflections for a

specific source-microphone configuration [36]. Let hjpkq be the set of room impulse

responses (where j, ..,M and with M the total number of microphones), and spkq the

anechoic speech or audio signal, the resulting microphone signals is obtained by:

xjpkq “ spkq˚ hjpkq

To obtain the impulse responses, two methods are generally used: simulation with

geometrical acoustics or measurement in rooms, more details can be consulted in [28].
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An impulse response characterizing a room is called a room impulse response (RIR)

and can be measured with binaural technique to achieve a binaural room impulse

response (BRIR) which includes also spatial information. To make the recorded data

audible the BRIR can be convolved with an arbitrary stimulus.

Simulation

The simulation of sound propagation inside enclosed environments is achieved by ap-

plying methods of geometrical acoustics to imitate realistic behavior. Hybrid acoustic

simulation models can be used to generate the different components of the room im-

pulse response. Typical room impulse response is composed of the direct sound, early

reflections and a reverberation tail as shown on Figure 1.5. For example, the real-time

room acoustics simulation framework RAVEN [5] combines the Image Sources model

(Allen and Berkley (1979) as mentionned in [29]) and a Ray Tracing model (Rokstad,

Strom, and Sorsdal (1968) as mentionned in [29]) to compute impulse responses.

Figure 1.5: Simulation components and their contributions to the room impulse
response, taken from [29]

Auralization

The generated data from the simulation is used afterwards for the auralization.

Kleiner [21] defined auralization the following way in 1993: ”Auralization is the

process of rendering audible, by physical or mathematical modeling, the sound field

of a source in a space, in such a way as to simulate the binaural listening experience

at a given position in the modeled space.” Thus, the character of sound signals which

are generated at the source can be predicted and modified by reinforcement, propa-

gation and transmission in the simulated environment. RAVEN or the SoundScape

Renderer [20] can be used for this purpose.
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2

Strategy and principle of

implementation

2.1 Choice of concatenative corpus-based synthe-

sis

Concatenative corpus-based synthesis has the advantage of offering a large amount

of flexibility in terms of implementation, manipulation and resulting sound which

makes it a particularly interesting tool for exploring the desired ”parametric” aspect

of sound texture. It is also highly suitable in this context as a time-based method.

Another fundamental and interesting aspect of concatenative corpus-based synthesis

is its strong ability to reproduce subtle timbre features. Indeed, the sound is actually

built from the elements of the targeted material itself. This is especially interesting for

crowds where analysis-synthesis methods can sometime fail to restitute the intelligible

aspect of speech. An illustration of this, using hidden Markov tree model and wavelet

decomposition can be heard at the bottom of the web page [6], from the PhD thesis

of Kersten [5] on sound textures.

2.2 Principle

The idea is to employ concatenative granular synthesis where every unit will cor-

respond to a speech unit or syllable. This way every single source will generate a

concatenation of syllables picked in a controlled random way to generate gibberish
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talk. Indeed the aim is to obtain a crowd texture with no comprehensible words.

This leads to the implementation of a granular synthesis where the size of the grain

is the size of the syllable and where no overlap of sample should appear. Each stream

can be seen as one person of the crowd corresponding to one timbre.

Figure 2.1: Flow chart for the crowd synthesis

Figure 2.1 sums up the principal steps of the method developed and implemented

to achieve the crowd synthesis. The next sections of this report will not follow a

chronological order of the work achieved, but the logical order of this chart.
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3

Creation of the corpus for

concatenative corpus-based crowd

synthesis

3.1 Database

The material used is a crucial element for the quality of the synthesis utilizing con-

catenative corpus-based synthesis.

For our purpose, it is important to gather enough material to avoid distinguishable

repetition during the synthesis. Different types of valence or emotion are also nec-

essary for each speaker to create an engaging corpus to explore when selecting the

elements while changing parameters of the synthesis. The recordings also need to be

free of any reverberation as it will be additionally generated in the auralization, and

should not contain any background sounds to allow a clean synthesis. This means

that taking material from movies or public speech recordings is not suitable for our

use.

After an exploration of the available voice and speech databases available on the Web,

the EmoDB [9] database was chosen. It consists of recordings of ten different actors

from Germany, 5 females and 5 males made in the anechoic chamber at Technische

Universität Berlin. Emotional utterances were delivered from a set of 10 different

sentences in German. The actors were instructed to convey the following emotions:

anger, boredom, disgust, anxiety/fear, happiness, sadness. A neutral version was also

recorded.
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The recordings are labeled according to those emotions. It was then necessary to

sort them by speaker and by emotion for the use in the implementation on Pure

Data. One .wav file per speaker with the utterances grouped by emotion. A syllable

segmentation algorithm (described further in 3.3) is applied on those categorized

recordings. This way we obtain a range of syllable onsets sorted by emotion for each

speaker.

This database was a perfect tool for the first implementations and testing the effi-

ciency of corpus-based concatenative synthesis. Nevertheless it suffers some imperfec-

tions. The content is sometimes too short (only two sentences for example) for some

speakers and repetitions could be heard during the listening tests in the wave-field

synthesis studio. Also the data is now available at only 16 kHz sample rate which

is insufficient for our needs. Finally, the fact the utterances were delivered by actors

through instructions resulted in an unnatural feel. Concerning the neutral speech, a

monotonous feel was perceived and the result gave the impression of a crowd reading

out.

3.2 Acquisition of the material for crowd synthesis

In order to improve the result, we decided to record our own source material. Two

recording sessions were planned, each with five speakers with no previous acting

experience. They were students from Technische Universität, 5 males and 5 females.

The recordings were made in the anechoic chamber.

Figure 3.1: Recording of speech material in the anechoic chamber
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Five Neumann TLM103 large diaphragm microphones were used. They were carefully

placed at a sufficient distance in order to avoid proximity effect that comes with the

cardioid polar pattern. This turned out to be a major issue on some of the recordings

used from the EmoDB database. The recordings were made at a 48 kHz sample rate

and 24-bit resolution. The speakers were instructed from outside the chamber with

a playback system.

The choice was made to give as few instructions as possible in order to obtain a

natural feel of the speech material which was one of the dominant characteristic

missing on the previously used audio recordings. As a consequence of this choice,

an extensive amount of post-processing time is required to select the usable material

and extract unintentional artifacts. In a second phase, the speakers were asked to

act out some scenes one by one to induce emotions and different speech tones. For

example, acting like their bike is being stolen or calling the police after an accident.

After selection of the usable data, the recordings were satisfying and sounded more

natural than the EmoDB database previously used.

However, there are several ways to improve the recordings and make them more

efficient for our purpose and which should be taken in account in a similar recording

situation. First, though the platform in the anechoic chamber was fixed with a lot

of care, generous moves were leading to vibrations and unwanted low frequencies in

the recordings. Making sure that the speakers are aware of this in a subtle way, so

that they still continue to act naturally, was decided after few minutes of recording

and successfully improved the quality of the data. Also many simultaneous talking

caused unusable data, for example noisy echoing, giggling, or cutting off the speaker.

Nevertheless, this is hardly preventable when natural behavior is desired.

3.3 Segmentation of data

The first steps of implementation were made using a simple onset detection. This was

made upfront using a basic Matlab algorithm inspired by the first steps of a tempo

detection algorithm. After this, the pseudo-random selection of grains is made within

those onsets and triggered at a random pace between a maximum and minimum value

determined with listening tests. However, this method is not sufficient enough as the

length of the grain is not known which usually leads to gaps or abusive overlap

between two consecutive grains. This is especially inconvenient for crowd synthesis,
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as it results in unnatural speech model.

Thus, we need to be able to detect syllables in the audio recording. For this, we

used an algorithm inspired by a paper on bird species detection by A. Harma [10].

The principle is to look for maxima in the .wav file, and then check before and after

the corresponding time for when the data goes below a certain threshold. Then we

remove the syllable from the data and look for the next maximum. The threshold

was chosen empirically after different tests for the best result. This way we keep the

time of onset for each syllable and its length. This data for the real-time synthesis

is then used in Pure Data. The implementation was made so that after the onset is

randomly selected within the wanted target, the corresponding length of the syllable

is used as the value of a continuously varying delay before the next unit is triggered

for each source. The result is then a consecutive triggering of syllables, in order to

generate gibberish speech.

In Figure 3.2, the result of the syllable segmentation for a short sentence from the

speech corpus is shown, with the corresponding spectrogram. Syllables are the red

segments.

Figure 3.2: Syllable segmentation
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This method offered efficient results. Nevertheless, depending on the threshold and

fluidity of the speech the segmentation sometimes extracts whole words instead of

only syllables. Even though this is still interesting for the synthesis quality as words

are often understandable from crowds, this leads to more distinguishable repetitions

when the material is not large enough. Syllables shorter than 80ms, most of the time

corresponding to mouth noises, clicks or other artifacts were removed.

3.4 Classification of data

3.4.1 Label

A simple way to classify the data is to use manual labeling, consisting of simply

annotating the data according to specified parameters. For example the mood of

the crowd is a good application for this, as automatic detection of mood with audio

features can be a complex topic. For the first version of the implementation, the data

used from the EmoDB database were already including meta-data corresponding

to the mood of each recording. This method is interesting when trying to capture

subtle features or characteristics of the audio material that are too complex for a

purely automatic method. The main drawback is the amount of time required for

executing such an approach and a need for large database, but methods such as [3]

exist for a semi-automatic annotation.

3.4.2 Audio features

Using audio features to detect human moods in speech such as anger, fear, happiness

or sadness is a delicate task and a topic of research of its own. Nevertheless it is pos-

sible to detect simpler behaviors such as the degree of arousal or valence. According

to [26], fundamental frequency and RMS energy are the most revealing audio features

for this topic. The length of the syllables is a piece of data to take into account as

well.

RMS energy

Measuring the RMS energy of the syllables is a basic method to assess the different

level of excitement in the recorded material. Indeed, assuming that the speaker who
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was sat during the recording session was not changing the distance between his mouth

and the microphone. RMS energy is calculated with the following formula:

xrms “

d

1

n

n
ÿ

i“1

x2i

A good example of the use of RMS energy in this context, as mentioned in [26]: sad

speech has less median value and lower spread in RMS energy than that of other

emotions whereas angry and happy speech have higher median values and greater

spread in RMS energy.

Fundamental frequency

Fundamental frequency (F0) is also a crucial feature to evaluate in order to analyze

speech behavior. To determine F0, an algorithm based on a Fourier transform fol-

lowed by a spectral product from which maximum is extracted as the first steps of

Klapuri [27] is used.

According to [26], the mean F0 is lower in sad speech compared to that of neutral

speech and angry and happy speech have higher F0 values and greater variations

compared to that of neutral speech.

Also, simultaneous analysis from RMS energy and fundamental frequency is a really

interesting factor to study for mood classification.

Sorting the data

In order to sort the data, an ideal method would be to pick the grains around a

target RMS energy value with minimum deviation or use a clustering method such

as k-means. The issue in our case is that there are not enough values with signifi-

cant difference from the recordings, so this approach would lead to whether too few

grains for significantly different values (and then lead to repetitions), or not enough

difference from the neutral setting when selecting a target value or limit that allows

to pick more grains. Consequently, only the grains with higher and then lower RMS

energy were selected. The neutral grains are selected around the average value.

This method has the advantage of allowing significant differences of settings con-

cerning the excitement or arousal of the crowd. The drawback is that it also leads
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to some interruptions when selecting two consecutive grains with significant energy

difference.

The first solution to this problem would be acquiring more data with significant

differences concerning the audio features used, that would make the use of clustering

methods possible and interesting. Another solution would be using a more complex

algorithm that takes into account the audio features of the previous grains to avoid

abrupt variations between two consecutive grains within the selected range of the

target.

24



4

Generation of the texture

In this part, the generation of gibberish speech for one speaker/source will be de-

scribed, in terms of model, synthesis and implementation.

4.1 Speech model

With the previous steps of implementation a continuous restless concatenation of

syllables is obtained for each timbre which is perceptually quite far from a realistic

situation, especially when listening with spatialization. Thus a model that includes

the natural pauses of the speaker is needed. For this, a two stages second order

Markov chain models at two different time scales is used.

4.1.1 Markov chain model

A Markov chain is a process that consists of a finite number of states and some known

probabilities Pab, where Pab is the probability of moving from state ”a” to state ”b”.

This can be visualized in a simple way in Figure 4.1:

Figure 4.1: Simple example of a Markov chain model where the state ”a” is ”Talking”
and ”b” is ”Not talking”
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4.1.2 Two stages second order Markov chain model

In our case a second order Markov chain process is used, which means that the state

probability is based on the two previous states. The states here are ”talking” and

”not talking” respectively. For the training, several speeches found on the website

freesound.org were used, with interesting differences in terms of pace or chattiness.

From the analysis and syllable detection of this speech material with the algorithm

detailed in 3.3 A transition matrix is then calculated. This matrix is storing all the

state transitions from the two previous events.

Figure 4.2: Example of the speech model using two stages: syllable time scale and
1000ms time scale

A first training is executed with a time scale of 1000 ms on the whole recording

in order to analyze long term occurrences of pauses or speech. Afterwards, only

sentences are taken into account and concatenated without long pauses and another

analysis is done based on a shorter time scale of 250 ms corresponding approximately

to the average length of a syllable. This second training allows to capture short

pauses from the speaker.

Considering the implementation, longer term occurrences are calculated upfront inde-

pendently, using a metronome. A small randomization of the value of this metronome

with an arbitrary range of values very close to 1000ms (used for the training) can be

used to implement additional irregularity. The syllable sized events are calculated

right after on the condition that the previous stage state is ”talking” at every new

syllable that is triggered.
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Figure 4.3: 10 second sample examples of (A) Speech material used for training and
(B) the resulting synthesis with the model used

An extract of one speech material used for the training and a sample of the generated

synthesis from the model are shown on Figure 4.3

This simple model was implemented on Pure Data and lead to very interesting and

convincing results. A more complex model and training would be a key element to

explore for further improvements.

4.2 Synthesis engine

The base of the implementation is the same as a simple granular synthesis player.

The audio material is stored in arrays on Pure Data. Due to accuracy limitations

when reading long arrays with tabread„.pd from Pure Data, namely about 3 minutes

at 44100 Hz sampling rate, it was decided to store all the concatenated syllables from

the previous stages in different arrays for each single speaker and each selected area

of target from audio features.

The Pure Data object grain„.pd from [7] was used to achieve the playing of the

grain. It takes as input: the position of the grain in samples, the array from which

the grain is taken, the selected envelope to be applied and its desired length. More

details on implementation of granular synthesis can also be found in the Pure Data

tutorial [25]. The choice of envelope was made arbitrarily from the best sounding
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results based on tests made on trapezoid, Hahn, Gaussian and triangular envelopes.

A Gaussian envelope was chosen, providing satisfactory results in terms of fluidity

of the produced gibberish speech while conserving the spectral content of the voice.

The following equation describes the Gaussian curve:

P pxq “
1

σ
?

2π
e´px´µq

2{2σ2

with σ the standard deviation that allows to control the spread of the bell and is for

us the crucial setting and µ the center peak.

The onsets corresponding to the position of the syllables in each array are stored in list

objects. The length values of these syllables are stored in a separate list in the same

order. When a syllable is randomly picked from within an array, its corresponding

length is chosen simultaneously and used for two purposes: as a delay for triggering

the next grain and as the length of the envelope of the current grain. Instead of the

object ”random”, the ”urn” object is used. The “urn” object performs a random

selection within a specified range without duplicate numbers which allows avoiding

repetitions and disturbing stammering artifacts.

All elements listed above and the array corresponding to the corpus of the target

(for example ”excited” syllables) are sent to the grain player in the instant of each

new syllable being triggered. Therefore, a continuous flow of syllables with no gap

or overlap is obtained. This continuous flow is modulated upfront in real-time with

pauses, based on the two stages Markov chain model described in 4.1 resulting in

more realistic and natural generation of gibberish speech.

4.3 Increasing the number of streams of speech

The sources are then duplicated with similar algorithms fed with the .wav files, sorted

onset and corresponding length of syllables equivalent to each of our 10 recorded

speakers. Afterwards, those 10 sources can be multiplied by performing small pitch

shift to modify the timbre and give the illusion of perceiving a wider range of voices.

The pitch modification should be subtle enough in a limited range in order to keep

the ”human” characteristic of the speech. The message seed from Pure Data was

also used in order to make sure every random object is not correlated.
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4.4 Implementation on Pure Data

The implementation of a selection of interesting parts on Pure Data can be consulted

in appendix:

Figure 7.1: One of the stream of speech with comments

Figure 7.2: The main patch

Figure 7.3: The second order Markov chain process

Figure 7.4: The Markov chain model selector

Figure 7.5: The grain player

Figure 7.6: Writing of the Gaussian envelope

Figure 7.7: The control interface
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5

Auralization

As defined in [4] ”the auralization of virtual environments describes the simulation

of sound propagation inside enclosures, where methods of Geometrical Acoustics are

mostly applied for a high quality synthesis of aural stimuli that go along with a certain

realistic behavior.” This part aims to explain how the crowd synthesis is spatialized

for a binaural experience within a virtual acoustic environment.

5.1 First tests with wave-field synthesis

In order to evaluate the quality of the synthesis in a spatialized situation, the first

steps of implementation were tested in the wave-field synthesis studio of the Tech-

nische Universität Berlin. Wave-field synthesis is a spatial audio rendering technique

for virtual acoustic environments. It produces artificial wave fronts synthesized by a

large number, usually arrays, of individually driven speakers. The details will not be

explained here, but the theory can be consulted from [17].
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Figure 5.1: Wave-field synthesis studio of Technische Universität Berlin used for
listening tests

This step was really useful for identifying the imperfections of the synthesis. Some of

these defects were concealed when listening on simple stereo set. The main example

of this is the case of using only one timbre per source. Indeed, to be able to detect

the position of the source allows us to point out lack of fluidity when one source can

use different speakers and timbres. The need to detect syllables instead of simply

onset was more obvious from the listening tests in question as well. Furthermore, it

revealed the need to not synthesize constantly and include pauses for every source to

offer a more realistic feeling and aspire to the speech model described earlier in this

report.

5.2 Implementation in virtual acoustic environment

The goal of this project is the implementation in virtual acoustic environments, and

more precisely in our case: a binaural environment. For this purpose, the SoundScape

Renderer software [20] is used. It is a tool for real-time spatial audio reproduction pro-

viding a large variety of rendering algorithms including binaural techniques. Binaural

resynthesis is more efficient with head tracking. Therefore, the binaural renderers of

the SoundScape Renderer (SSR) include built-in support for a selection of tracking

devices.
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Figure 5.2: Screenshot from the SoundScape Renderer interface and the 30 sources,
the head in the circle displays the head motion

Binaural rendering uses binaural room impulse responses to reproduce the sound

arriving to the listeners ears. A pair of BRIRs is chosen depending on the position

of the listener’s head. These BRIRs are applied to the input signal by convolution.

Users head movement is included using a head-tracking device and is used to select

the right BRIR for each head orientation and make the soundfield remain immobile

and not follow the head motion, resulting in a more immersive and realistic experience

of the virtual environment. The binaural room impulse response (BRIR) used were

calculated upfront from Raven [4] (details in 1.4.4) in the acoustic scene of the Roman

Forum in Rome shown on Figure 5.3. The sources are located on 3 circles around the

listener at 5, 15 and 25 meters. A configuration script file of the scene is written and

specifies the BRIRs used in order to load them into the SSR. Then the 30 outputs

from the Pure Data patch are connected to the 30 inputs of the SSR to obtain the

auralized scene by listening to the SSR output.
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Figure 5.3: Source positions and virtual environment scene simulating the Roman
Forum used for the simulations on RAVEN

5.3 From 30 to 96 streams

This method is limited by the high CPU consumption caused by the 30 convolutions

produced by the SoundScape Renderer (about 80% of the CPU). The synthesis itself

only takes about 10% of CPU usage for those 30 streams. Thus a method to increase

the number of streams without incrementing the number of convolutions is needed.

Two methods were experimented for this purpose.

5.3.1 Summing streams

Three circles respectively located at 5, 15 and 25 meters from the listener are now

used. Each of those circles contains 8 sources placed as in Figure 5.4. Consequently,

the number of convolutions is now reduced to only 24. The first and most basic

method consists in simply summing streams (speakers) at one source.
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Figure 5.4: Schematic representation of the position of the 24 sources over the 3
circles at respectively 5, 15 and 25 meters from the listener

There are numerous possibilities for distribution. In order to make a choice among

them, The assumption is made that the further from the listener the source is, the

more people the space can contain. As an example, the distribution of 96 streams

over the 3 circles of 8 sources from inner to outer circle can be: 2x8 / 4x8 / 6x8.

5.3.2 Amplitude panning

Amplitude panning [19] is another solution for a more sophisticated distribution of

streams over the available sources. The idea is to recreate phantom sources between

two sources with weighted amplitude on each side. This is achieved by distributing the

amplitude of the phantom sources according to the weights in the graph of Figure 5.5.

Figure 5.5: Panning distribution weights, from [18]
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5.3.3 Distribution of the streams over the sources

In order to be able to compare the two methods, the same distribution for both

techniques is used. The effect of placing the streams closer (inner circles 1 and 2) or

further (outer circles 2 and 3) is also evaluated. To test the synthesis, the following

choices of distributions for both methods were used arbitrarily and assuming that the

further the circle is from the listener, the more people can fit in the space.

sources circles sources on inner to outer circle

16 2 8 8

16 3 4 4 8

32 2 16 16

32 3 8 8 16

96 2 32 64

96 3 16 32 48
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6

Listening tests and results

6.1 Set of tested stimuli

It was decided to test all combinations of the following parameters:

streams crowd behavior distribution panning

16 neutral all circles no panning

32 excited 2 inner circles panning

96 quiet 2 outer circles

For 16 sources, there are less streams than sources, so no such technique as panning

was applied. This leads us to 45 different stimuli. The choices for distribution of the

streams over the sources can be consulted in the table of 5.3.3.

The streams were pre-rendered and recorded on Ardour from the anechoic outputs

of the Pure Data implementation. The mix-down to include panning and summing

techniques previously described for the 32 and 96 streams was executed with Matlab

in preparation of the material for 24 channels. In order to create a scene closer to

what someone would hear in a real life situation, an additional subtle background

noise was recorded in a park of Berlin with binaural in-ear microphones. The choice

was made to record in a park to avoid sounds of cars which are not expected for an

historical environment.

6.2 Test procedure

The tests were conducted during one week at the very end of this internship. 17

unpaid participants living in Berlin were attending. Nine of them were native Ger-
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man speakers, the other ones usually had good knowledge of German. More than

half of them were already interested in sound synthesis or soundscape related topcis

thanks to their hobbies or occupation. Notably, 5 of them were familiar with granular

synthesis and 2 others were working as sound editors for radio and documentaries.

The tests occurred in the studios of Audio Communication Group. High quality

headphones (AKG K1000) equipped with a head-tracker were used. The interface

was made on Pure Data and consisted of 45 numbered bangs. Each of them was

sending OSC messages to Ardour in order to play the selected stimulus. Each session

lasted between 30 and 45 minutes.

Figure 6.1: Interface for the listening test sending OSC messages to Ardour

For each stimulus, they were asked to rate:

• Naturalness: From 0 (unnatural) to 7 (natural)

• Excitement: From 0 (calm) to 7 (excited)

• Distance: From 0 (really close) to 7 (distant)

• Evaluate the number of people

The order of the questions (number of the playing crowd) was generated randomly.

Before starting to listen to the audio which was to be rated, the participants had to
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listen a training set of 6 selected samples that illustrated the range of sounds they

were about to rate and make them used to the sounds. This helped to let them get

used to the sounds and additionally, they were also asked to use the training round

to consider the parameters they will have to rate later on.

The end of the questionnaire consisted of an enquiry about the noticeable artifacts

in the material and information about their sound knowledge and experience.

6.3 Results

The full list of results for each stimuli with mean and standard deviation for the

ratings of naturalness, excitement and guess of the number of people is available in

the appendix Table 7.1. In the first place, our main focus concerns the naturalness

evaluation.

Our experiment follows a factorial design, where each observation has data on all

factors, and we are able to look at one factor while observing different levels of

another factor.

Important note: An ANOVA (analysis of variance) analysis would be well suited in

order to evaluate the significance of these factors concerning the listening test results.

Nevertheless the time left after the listening tests was too short to fully understand

and apply this method in a n-factor situation before the deadline of this report. Also,

more participants would be necessary to improve the data. Consequently, the follow-

ing observations are only based on tendencies on variables considered independently

and on Table 7.1.

Naturalness is the most important criterion at this state of the synthesis. The follow-

ing graphs display average, minimum and maximum evaluation, for the four factors

considered independently.
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Figure 6.2: Boxplot with average, first and third quartile in naturalness evaluation
in consideration of the number of sources independently
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Figure 6.3: Boxplot with average, first and third quartile in naturalness evaluation
in consideration of the excitement level independently

39



0

1

2

3

4

5

6

7

Inner circles Outer circles All circles

N
o

te

Figure 6.4: Boxplot with average, first and third quartile in naturalness in consider-
ation of the position on the circles independently
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Figure 6.5: Boxplot with average, first and third quartile in naturalness evaluation
in consideration of the use of panning independently

6.4 Observations and analysis

Firstly, 91% of the stimuli obtained an average rating above the median value of the

scale in term of naturalness.
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Naturalness

The average evaluation of naturalness tends to decrease with the number of streams.

This can be explained by the augmentation of repetitions when multiplying the

streams. The pitch shift could also be a reason.

The position of the sources in the scene seems to have an impact on the perceived

naturalness. Positioning sources on the outer circles or on all circles leads to better

results compared to the settings on the inner circles only. Logically, artifacts and flaws

encountered in the streams synthesis are singled out when the sources are closer.

Quiet settings with a large amount of streams were usually poorly rated. This could

be due to the situation of 96 people whispering which is itself very unusual. This

could be improved by applying a different training for the speech model depending

on the mood or excitement degree. For example, the quiet crowd would probably

exhibit longer pauses.

The use of amplitude panning instead of simply summing streams for the settings

with more streams than sources does not seem to provide substantial improvement.

Perceived artifacts and solutions to improve naturalness

Among the noticed artifacts enquired at the end of the session, two of them were

recurring and can be considered the main reasons of the stimuli being perceived as

unnatural.

The first being the distinguishable repetitions of overly long syllables. The available

data is indeed too small when multiplying the number of sources from the same

material. This is also a consequence of the syllable segmentation algorithm which

can sometimes output lenghty elements (even though every detection above 1000ms

was removed). On the other side, the same long syllables were also mentioned as

participating to the natural feel when no repetition was perceptible. The acquisition

of more material from each speaker, and an improvement of the syllable detection

algorithm could easily solve this problem.

The second annoying artifact was the apparition of sudden grains with really high

RMS energy compared to the preceding grain for the ”excited” settings and close

sources. Very few grains with such properties were available, so the solution would

have been to define a maximum deviation to assure their removal. An algorithm that

takes into account audio features from the previous grains could also offer a solution
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to reaching those grains with such small volume of material. Acquiring larger amount

of material with this kind of high RMS energy during the recordings would also be a

solution to accessing the realms of an extensively excited crowd behavior.

Size of the crowd

A large standard deviation is often observed concerning the evaluation of the size

of the crowd, especially for the 96 streams settings. The proximity of the sources

and the excitement are influential parameters in this perception. Furthermore, this

question could be considered delicate as in most real life situation, not every single

person of the surrounding crowd is talking. Considering the percentage of people

talking is real life situations depending on the excitement level could be included for

improvement.

Excitement

The intended excitement behavior from RMS energy based corpus selection was al-

ways in sync with what the listeners experienced. It is interesting and reasonable

to notice that for the same corpus, when the number of sources is increasing, the

perception of excitement is increasing.
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7

Conclusion and perspectives

Conclusion

In this work, a crowd synthesis method based on granular and corpus-based con-

catenative synthesis was implemented. This method is totally suited for the desired

parametric characteristic of the produced synthesis. Many settings can be changed

with the implemented synthesis: number of people in the crowd, arousal/valence of

the crowd, chattiness according to different speech model and position in the space.

Audio features applied on the grains or hand labeling allows us to classify the data

of the corpus upfront for each speaker. Afterwards, suited algorithms and real-time

synthesis are used to generate single timbre streams of gibberish speeches. Different

pitches and randomization allow us to multiply the number of these streams. Aural-

ization was produced using the SoundScape Renderer, with binaural room impulse

responses pre-calculated on RAVEN. Techniques such as amplitude panning are used

in order to multiply the number of speakers with a constant number of sources to

reduce the number of convolutions.

The resulting synthesis is highly satisfying on many aspects and was well received in

terms of perceived naturalness during the listening tests for most of the settings. With

a very limited amount of audio material, hours of crowd synthesis can be generated,

and different parameters can be changed in real-time. This tool can be especially

exciting and beneficial when applied within the environment of motion picture or

virtual reality where the sound designer would be able to follow the action, and,

for example, change the mood or excitement of the crowd with a slider along with

the progression of the scene. Also, many different types of crowd textures could be

generated with only a small amount of data with no need to own and store hours and
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gigabytes of recordings. The listening tests showed interesting features and confirmed

some ideas for improvement in further implementations. Nevertheless the listening

test results and observations should be reconsidered by using tools such as ANOVA

(analysis of variance) to evaluate the significance of the factors and by conducting

the tests on more participants.

Perspectives

Even though a parametric crowd synthesis that can be considered further than proof-

of-concept resulted from his work, several directions for improvement can be men-

tioned already. First step would be the acquisition of more material for the corpus,

especially including more data for different moods and behaviors. This would al-

low the use of more sophisticated classification tools to lead to significantly wider

range of behaviors and would allow greater degrees of freedom for navigating in the

corpus. Additionally, it would also allow to multiply the number of streams with-

out repetitions. The syllable detection algorithm could also be improved for more

accuracy and to avoid artifacts such as perceived repetitions from exceedingly long

grains. Furthermore, it would be interesting to explore a deeper focus on the use

of audio features to detect extensively complex moods, further than just calm and

excited (differentiating happiness from anger for instance). Finally, it could also be

interesting to incorporate inter-grain audio feature relationships from training on real

speech data into the speech stream generation.

For further development, it would be necessary to explore the possibilities of extension

of this technique to other texture soundscapes such as rain or a conflagration scene.

The major differences would be in considering what are now the sound units, what

parameters could be modified and what model is used for the generation of streams.

Due to complications and limitations from the implementation on Pure Data, moving

on another system could also be considered.
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Appendix

Figure 7.1: One of the 30 streams of speech



Figure 7.2: Main patch
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Figure 7.3: Implementation on Pure Data of second order Markov chain

Figure 7.4: Markov model selector, corresponding to pd subspeech
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Figure 7.5: Grain player: outputs the waveform at the selected onset and with the
selected envelope and length[7]
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Figure 7.6: Gaussian envelope, outputs value and position to tabwrite Pure Data
object [7]
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Figure 7.7: Control interface for choosing the corpus, activating the sources, and
selecting speech model
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Table 7.1: Results of the listening tests
Stim. Streams Behav. Distr. Pan. Excitment Naturalness Size

Mean/7 StdDev Mean/7 StdDev Mean StdDev
1 16 n in NA 1,75 0,77 5,44 1,26 20 16
2 16 e in NA 4,69 1,08 4,75 1,84 34 19
3 16 q in NA 1,31 0,87 4,75 1,57 15 13
4 16 n out NA 1,31 1,25 5,00 2,07 14 7
5 16 e out NA 4,00 1,83 4,75 1,57 49 40
6 16 q out NA 0,69 0,79 5,63 1,67 21 35
7 16 n all NA 1,13 0,62 5,13 1,67 15 10
8 16 e all NA 3,63 1,20 4,19 1,33 41 30
9 16 q all NA 0,50 0,52 5,81 0,83 19 22
10 32 n all pan 2,50 1,10 5,13 1,54 43 36
11 32 e all pan 4,81 1,05 5,44 1,15 65 35
12 32 q all pan 2,13 1,36 4,50 1,32 34 37
13 32 n in pan 3,81 1,22 2,81 1,72 47 42
14 32 e in pan 5,69 0,79 4,75 1,48 75 63
15 32 q in pan 2,69 1,08 3,88 1,50 46 48
16 32 n out pan 2,44 1,26 4,00 1,37 30 17
17 32 e out pan 4,50 1,41 4,63 1,78 101 79
18 32 q out pan 1,88 1,20 5,31 1,49 34 30
19 96 n all pan 4,06 1,24 3,63 1,82 108 164
20 96 e all pan 6,63 0,50 4,88 1,71 198 166
21 96 q all pan 2,88 1,41 3,88 1,67 56 55
22 96 n in pan 4,63 0,96 4,00 1,51 94 73
23 96 e in pan 6,31 0,70 5,56 1,41 283 259
24 96 q in pan 4,31 1,30 3,13 2,03 115 143
25 96 n out pan 4,00 1,21 4,69 1,35 135 140
26 96 e out pan 5,75 0,86 5,25 1,06 218 225
27 96 q out pan 2,19 1,42 3,94 2,02 104 113
28 32 n all sum 2,69 1,20 4,25 1,95 26 20
29 32 e all sum 4,81 1,22 4,88 1,75 83 57
30 32 q all sum 2,00 1,10 4,81 1,47 26 21
31 32 n in sum 3,81 0,54 3,06 1,84 44 36
32 32 e in sum 5,38 1,02 4,63 2,00 77 35
33 32 q in sum 3,31 1,30 3,88 1,93 42 27
34 32 n out sum 2,81 0,91 3,94 1,65 34 15
35 32 e out sum 4,94 1,24 4,50 1,67 119 124
36 32 q out sum 1,38 0,96 5,44 1,75 42 49
37 96 n all sum 3,75 0,77 4,00 1,90 73 55
38 96 e all sum 5,88 1,09 4,69 1,74 208 174
39 96 q all sum 3,25 1,34 3,88 1,63 80 77
40 96 n in sum 4,56 1,03 4,63 1,50 92 70
41 96 e in sum 6,38 0,72 4,50 2,13 229 160
42 96 q in sum 3,88 1,26 3,19 1,87 94 80
43 96 n out sum 3,25 1,39 4,81 1,72 103 85
44 96 e out sum 5,75 0,86 4,88 1,63 200 119
45 96 q out sum 2,75 1,81 3,94 2,17 130 94
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