
SORBONNE UNIVERSITÉ/ TÉLÉCOM PARISTECH/ IRCAM
Faculty of Computer Science

SAR / ATIAM

MASTER’S THESIS

Deep Reinforcement Learning for the
Design of Musical Interaction

Author:
Bavo VAN KERREBROECK

Supervisor:
Frédéric BEVILACQUA

Hugo SCURTO

Thesis written during an internship at

IRCAM, UMR STMS 9912
Paris 75004, France

ISMM team
(12/02/2018 - 10/08/2018)

20th August 2018

i

Abstract
This research is situated on the cross-roads of several broad and widely interpreted terms

such as exploration, artificial intelligence, interaction and music. It investigates to what
extent an intelligent system can aid a user in the exploration of a musical space. The research
took place in the context of the PhD thesis of Hugo Scurto who proposes to use the technique
of reinforcement learning to address this challenge. It allows to create an adaptive agent that
evolves over time and does not require labels or representative examples to learn through
the use of a feedback signal. In addition, learning takes into account the environment’s state
transitions which brings the learning closer to the dynamics inherent in the exploration of a
musical space.

More specific, this research adds the use of deep reinforcement learning to the agent.
It allows to generalise learning to unexplored areas and thus to extend the application of
reinforcement learning to high-dimensional spaces. In this report, it is shown that simple
methods such as DTAMER outperform more complicated ones on a generic problem setting.
Tile coding is used as a simple and efficient new technique for density estimation to construct
an exploration bonus [6] and improve the exploration strategy of the agent.

Also, this research proposes several novel user controls to interact with the agent to im-
prove learning and the user experience. Evaluative, instructive and exploration controls
are formalised extending existing interactive deep reinforcement learning methods and are
shown to bring new, useful, usable and attractive affordances to the user. The variation of
uses and interaction modes with the agent is demonstrated, as well as a quantitative evalu-
ation of user feedback consistency and exploration density. While the application was posit-
ively received by users, the agent’s learning during user interaction remained inconclusive.
This was mainly due to new parameter settings to improve the agent’s reactivity, user feed-
back inconsistencies and variance in user exploration strategies. Future work could entail
the search for proper parameter settings based on earlier provided user feedback, testing
the exploration of different musical spaces, new exploration visualisations and other user
controls.

This report starts with a technical analysis of specific algorithms followed by several pro-
positions for the human-computer interaction and an experimental evaluation involving 14
participants. Overall, it was shown that the use of interactive machine learning techniques
such as interactive deep reinforcement learning provide exciting new directions for research
and have an added and complementary value next to standard ways of manual exploration.
Also, using an intelligent partner entails new modes of interaction and offers opportunities
to shape and create an improved user experience. A final version of the application will be
used for an installation at the upcoming ISMIR 20181 conference in Paris.

Keywords: deep reinforcement learning, music, exploration, human-computer interac-
tion

1http://ismir2018.ircam.fr/

ii

Résumé
Cette recherche se situe aux intersection de plusieurs termes largement interprétés tels

que l’exploration, l’intelligence artificielle, l’interaction et la musique. Il étudie dans quelle
mesure un système intelligent peut aider un utilisateur à explorer un espace musical. La
recherche a eu lieu dans le cadre de la thèse de doctorat de Hugo Scurto qui propose
d’utiliser la technique de l’apprentissage par renforcement pour relever ce défi. Cette tech-
nique permet de créer un agent adaptatif qui évolue avec le temps et qui ne nécessite pas
d’étiquettes ou d’exemples représentatifs à apprendre en utilisant un signal de récompense.
En outre, l’apprentissage prend en compte les transitions d’état de l’environnement, ce qui
rapproche l’apprentissage de la dynamique inhérente à l’exploration d’un espace musical.

Plus précisément, cette recherche ajoute l’utilisation d’un apprentissage par renforce-
ment profond à l’agent. Il permet de généraliser l’apprentissage à des domaines inexplorés
et d’étendre ainsi l’application de l’apprentissage par renforcement aux espaces de grande
dimension. Dans ce rapport, il est montré que des méthodes simples telles que DTAMER
sont plus performantes que les méthodes plus complexes sur un problème générique. Le
codage en mosaïque est utilisé comme une nouvelle technique simple et efficace pour
l’estimation de la densité afin de construire un bonus d’exploration [6] et d’améliorer la
stratégie d’exploration de l’agent.

En outre, cette recherche propose plusieurs nouveaux contrôles utilisateur pour interagir
avec l’agent afin d’améliorer l’apprentissage et l’expérience utilisateur. Des contrôles
d’évaluation, d’instruction et d’exploration sont formalisés pour étendre les méthodes in-
teractives d’apprentissage renforcement profond existantes. Ils sont montrés pour apporter
de nouvelles affordances utiles, utilisables et attrayantes à l’utilisateur. La variation des util-
isations et des modes d’interaction avec l’agent est démontrée, de même qu’une évaluation
quantitative de la cohérence des récompenses des utilisateurs et de la densité d’exploration.
Bien que l’application ait été positivement reçue par les utilisateurs, l’apprentissage de
l’agent pendant l’interaction avec l’utilisateur n’a pas été concluant. La principale raison de
cette mise en garde est l’utilisation d’un nouveau paramétrage pour améliorer la réactivité
de l’agent lors de l’interaction avec l’utilisateur. Futurs travaux pourraient impliquer la
recherche de paramètres appropriés basés sur les récompenses des utilisateurs précédents,
le test de différents espaces musicaux à explorer, de nouvelles visualisations d’exploration
et d’autres contrôles utilisateurs.

Ce rapport commence par une analyse technique d’algorithmes spécifiques suivie de
plusieurs propositions pour l’interaction homme-machine et une évaluation expérimentale
impliquant 14 participants. Globalement, il a été démontré que l’utilisation de techniques
d’apprentissage par renforcement interactif et profond fournit de nouvelles pistes de recher-
che intéressantes et offre une valeur ajoutée et complémentaire aux méthodes classiques
d’exploration manuelle. En outre, l’utilisation d’un partenaire intelligent implique de nou-
veaux modes d’interaction et offre des possibilités de façonner et de créer une expérience
utilisateur améliorée. Une version finale de l’application sera utilisée pour une installation
lors de la prochaine conférence ISMIR 2018 2 à Paris.

Mots clés: apprentisage par renforcement profond, musique, exploration, interaction
homme-machine

2http://ismir2018.ircam.fr/

iii

Acknowledgements
My biggest thanks goes out to my supervisors Frédéric Bevilacqua and Hugo Scurto for giv-
ing me the opportunity of this internship. Thank you also for the hours discussing ideas
and abstract concepts such as exploration, creativity and interaction. I believe these dis-
cussions will continue to have an impact on my work. A very big thanks also to Benjamin
Matuszewski whom I have often called my hidden third supervisor. Thank you for all our
talks and looking forward to bundle forces on something completely useless one day. Finally,
a very big thanks to the ATIAM master coordination and my other classmates. You made
this year at this extraordinary place possible and for this I will remain forever grateful.

iv

List of Abbreviations

ANN Artificial Neural Network
DRL Deep Reinforcement Learning
DTAMER Deep TAMER
DQN Deep Q-Network
FM Frequency Modulation
HL Hidden Layer
HCI Human Computer Interaction
IRL Interactive Reinforcement Learning
IML Interactive Machine Learning
ISMM { Sound Music Movement } Interaction
MSE Mean Squared Error
NIME New Interfaces for Musical Expression
RL Reinforcement Learning
SGD Stochastic Gradient Descent
VST Virtual Studio Technology

v

List of Figures

2.1 General reinforcement learning model . 8
2.2 RL model overview . 13
2.3 Deep reinforcement learning ANN overview 16

3.1 Interactive and non-interactive deep reinforcement learning model 19
3.2 State trajectories during training . 22
3.3 Evolution of state(-action) functions during training 22
3.4 DRL networks after training . 23
3.5 Density estimation using tile-coding . 27
3.6 COACH training run . 28

4.1 User-agent-environment architecture . 31
4.2 User interface . 31
4.3 Agent architecture . 32
4.4 Evaluative controls in a 2-dimensional state space 32
4.5 Instructive controls . 33
4.6 Exploration controls . 33
4.7 After training interaction: model . 35
4.8 Mixed manual-agent version of the IDRL . 35

5.1 Experiment process flow . 37
5.2 User evaluation of user controls . 38
5.3 Frequency of user controls (x-axis: participants, y-axis: relative and absolute

count) . 39
5.4 User controls over time (x-axis: interaction phase, y-axis: relative and absolute

count) . 40
5.5 Saved sounds statistics . 41
5.6 (Uniform) PCA overview of feedback and presets for participant 1 (left) and

14 (right) . 41
5.7 (Proper) PCA overview of feedback for participant 8 42
5.8 (Global) PCA overview of feedback for participant 6 (left) and 8 (right) 42
5.9 Agent trajectories for participants 6,8 and 14 43
5.10 Agent trajectories for participant 6 . 43
5.11 Histograms of Euclidean distance between superlike and superdislike state-

vectors for user 14 (left) and user 10 (right) . 44
5.12 Density weights for different participants . 44
5.13 Participant feedback and trajectory distances 45
5.14 Participant feedback and trajectory distances 46

E.1 Massive VST . 57

vi

List of Tables

2.1 Deep TAMER Atari Bowling game specifications 17

3.1 Basic model parameters . 21
3.2 Hyperparameter ranges . 24
3.3 Evaluation of hyperparameters for DSARSA, DDQN and A2C models 24
3.4 ’Optimal’ model parameters . 25
3.5 Interactive DRL model parameters . 28
3.6 Evaluation of Interactive DRL . 28

4.1 User interaction controls . 32

5.1 User experience measures and adjectives . 38
5.2 Results ANOVA-analysis user experience questionnaire 38
5.3 Agent trajectories density distribution statistics 44
5.4 User trained agent mean distance differences between trajectories’ start-end

state and feedback (250 trajectories of length 600 with random starting states 46

C.1 DTAMER experiment parameter settings . 53

D.1 DSARSA hyperparameter search training results 55
D.2 DTAMER hyperparameter search training results 56

G.1 User questionnaire results for agent and manual exploration of 14 users (1. =
Agent, 2. = Manual) . 59

vii

Contents

Abstract i

List of Abbreviations iv

List of Figures v

List of Tables vi

Introduction 1

1 Background 2
1.1 Context . 2
1.2 Research Question . 3
1.3 Motivation . 4

1.3.1 Human-Computer Interaction . 4
1.3.2 Interactive Machine Learning . 5
1.3.3 New Interfaces for Musical Expression 6

2 Reinforcement Learning: State-of-the-Art 8
2.1 Theoretical Basis . 8
2.2 Characteristics . 11
2.3 Reinforcement Learning with Function Approximation 12
2.4 Deep Reinforcement Learning . 14
2.5 Interactive Reinforcement Learning . 16
2.6 Challenges . 18

3 Model Development 19
3.1 Problem Formalisation . 19
3.2 Analysis of Deep Reinforcement Learning . 21

3.2.1 Base Models . 21
3.2.2 Network Training . 24

3.3 Analysis of Interactive Deep Reinforcement Learning 26
3.3.1 Remaining Challenges . 26
3.3.2 Interactive Models and Evaluation . 26

3.4 Discussion and Future Work . 29

4 Design of the User Interaction 30
4.1 The Application . 30
4.2 Interaction Controls . 31
4.3 Additional Features . 34

5 Experiment and Evaluation 36
5.1 Experimental Set-up and Process . 36
5.2 User Experience and Interaction . 37
5.3 User Presets and Exploration . 41
5.4 Agent’s Learning . 43
5.5 Discussion and Future Work . 46

6 Conclusion 48

viii

A Policy Improvement Theorem and Optimality 49

B Policy Gradient Theorem 51

C Algorithms and Parameter Settings 53

D Hyperparameter Training Results 55

E VST 57

F User Questionnaire 58

G User Experience Questionnaire Results 59

Bibliography 60

ix

To my little sister,
who loved discovering music

1

Introduction

Exploration is something inherent to our lives and allows us to discover new things. How-
ever, when confronted with the sometimes overwhelming complexities that surround us,
we might lose sight of the bigger picture and miss out on interesting new discoveries. Also,
starting an exploratory journey, it is often difficult to structure our exploration, be efficient
and keep track of past experience. Consider the case of a digital instrument. Exploring such
a large and combinatorial possibility space with non-linear dimensional relations using an
often complex interface can be a daunting task. Especially when a user is inexperienced or
when dimensional relations change with every new sound or preset mapping. Even more, in
such a context, a user is often more occupied with a parametric understanding and more ana-
lytical approach instead of focusing on the original result of the exploration namely sound.
We can postulate that such an interaction and associated mindset limits discovery, innovat-
ive thinking and creativity.

This research investigates to what extent an intelligent system can help a user in the
exploration of a timbral space. The objectives of this thesis are to apply and analyse state-
of-the-art reinforcement learning models to construct these intelligent systems and design
and investigate the human-machine interaction. To this end, this thesis proposes several
improvements to an existing reinforcement learning model using interaction controls spe-
cifically aimed towards the application of musical exploration.

Two chapters will start this report providing a background and the state-of-the-art. Next,
a chapter will focus on the technical and algorithmic side followed by a chapter on the user
and the human-machine interaction. Finally, a chapter will present an experiment and its
results to evaluate an interactive reinforcement learning model. Specifically, the outline of
this report is as follows:

Chapter 1: This chapter presents the context of this work as well as first arguments for the
methods used. The research question will be presented followed by an extended motivation
for this work based on the existing literature.

Chapter 2: This chapter presents the state-of-the-art in the field of reinforcement learning. It
will present new developments such as deep and interactive reinforcement learning as well
as discuss current challenges and characteristics. Methods presented here will be used in
the next chapter to perform the first analyses related to the musical application.

Chapter 3: The actual use-case is formalised here followed by two technical analyses. First,
an analysis of three deep reinforcement learning models is presented to compare their
strengths and weaknesses related to our musical application. Second, three interactive
models are evaluated leveraging insights gained from analyses earlier on.

Chapter 4: This chapter presents and discusses user controls added to a final model from
the state-of-the-art. These controls represent the main contribution of this research to the
existing literature.

Chapter 5: Finally, this chapter presents the experimental set-up used to evaluate the model
obtained so far. It presents an analysis of the user experience, the human-computer inter-
action as well as the technical model. The analysis is based on the sounds and trajectories
obtained during exploration, the user feedback consistency and the system’s learning
overall.

This thesis is written during an internship in the {Sound Music Movement} Interaction
(ISMM) team at IRCAM under the supervision of Hugo Scurto (PhD candidate in ISMM)
and Frédéric Bevilacqua (head of ISMM). It took place in the context of the PhD thesis of
Hugo Scurto entitled ’Design of musical interaction by co-exploration’.

2

Chapter 1

Background

This chapter presents the context, explains the research question and motivates the relevance
of this work. After reading this chapter, it should be clear that interactive deep reinforcement
learning methods have a validity and unexplored potential as a tool in the (creative) explor-
ation of a musical space.

1.1 Context

Computer science and more specifically machine learning represent the domain for this re-
search. This work will link into the domain of Human-Computer Interaction (HCI), New
Interfaces for Musical Expression (NIME) and Sound and Music computing as well.

A use case Consider a user wanting to play a digital music instrument or VST with over
50 knobs, sliders and input screens. One application of this research would be to have the
resulting model and algorithm act as an ’artificial partner’ next to the user and instrument.
This in the sense of recently proposed paradigms ‘computer-as-partner’ [5] or ‘creative tool’
[19]. The partner would have control over and explore various knob, slider and input screen
settings while the user would provide positive or negative feedback over the resulting sound
or timbre and potentially control some of the partner’s settings. User’s feedback would be
incorporated into the partner‘s exploration strategy and the possible timbral space would be
explored more efficiently while also improving the user experience.

Interactive machine learning Recently, new interactive approaches based on machine
learning techniques have been introduced and studied in the domain of NIME. Approaches
such as ‘learning by demonstration’ introduced by Caramiaux and Françoise have shown
how it is possible to allow users to create new gestural controls based on machine learn-
ing techniques using the interactive recording of gestural templates [7][23]. However,
while these approaches have proven the usefulness of machine learning techniques in
the development of NIME, they also showed the interest of supporting users during both
the demonstration (training the model) as well as exploration phase (playing with the
model). Learning would then occur from the first moment of interaction and users would
be provided with feedback on the learned model during for example the learning of a
gesture-sound relationship. These artificial partners have shown to have more capacity than
purely in an instructive sense or as a tool to recognise, map or represent data and could also
serve as a partner in the creative exploration of a musical space [19] [66].

Reinforcement learning To address the exploration task of a musical space, the PhD thesis
of Hugo Scurto proposes to use the reinforcement learning class of machine learning tech-
niques. In this class, an agent learns from feedback received during interactions (taking
actions) with an environment in a certain state [73]. The use of reinforcement learning al-
lows to create an adaptive system through the use of the agent that is learning and evolving
over time. Next, a user is introduced that interacts with the agent and environment provid-
ing for example the feedback for a machine exploring a musical environment. As such, a
new co-exploratory relation between user and machine appears, where the first is exploring
a possible timbral space and the latter exploring a parameter space. For example, the user

Chapter 1. Background 3

could explore possible sound timbres while the machine explores a parameter space of a
digital instrument. Applications of this interactive reinforcement learning paradigm have
already shown to be promising in a simple environment with well-defined non-musical,
non-creative rules [38], in a simple musical environment focused on rhythm [16] or on mu-
sical tension [41]. Non-interactive reinforcement learning has also been used to construct
co-improvisers next to a musician [12] [25] or for musical melody generation [35].

Supervised learning One of the biggest difficulties for reinforcement learning remains the
so-called ‘curse of dimensionality’. As the algorithm learns from interactions with the envir-
onment, it becomes infeasible to perform a full exploration of an environment with increas-
ing parameter space dimensions. The algorithm thus needs to generalise knowledge of past
experience to unexplored areas of the environment. It is here that supervised learning can be
of use as generalisation from training data is one of its main goals. In addition, the combina-
tion of supervised and reinforcement learning or so-called deep reinforcement learning also
allows automatic feature construction of the input space, better scalability (higher dimen-
sional input data or continuous input), non-linear properties, more flexibility regarding the
input data (e.g. the use of images) and to leverage research from a very active research com-
munity. As such, supervised learning has obtained a significant improvement of results for
reinforcement learning in high-dimensional spaces [49] as well as in an interactive context
[10] [77].

1.2 Research Question

With the previous user story in mind, this internship attempts to answer the following high-
level question: To what extent can an ‘intelligent’ system function as partner for a user in the
exploration of a musical space? This question is broken down in subcomponents below.

Learning

• Which supervised reinforcement learning model is most suitable for user interaction?

First, as the aim is to construct an ‘intelligent’ system, machine learning represents the key
component in this research. The combination of two machine learning techniques will be
used and analysed which are reinforcement and supervised learning. Quantitative metrics
such as convergence, generalisation and speed will be used to evaluate their performance.
Furthermore, I aim to implement different learning models and assess their flexibility in
adapting to a context with user interaction. While supervised reinforcement learning al-
gorithms currently exist in a wide variety of implementations, little research exists with hu-
man interaction. Given this gap, a first contribution of this internship will be insights gained
of applying user interaction in a supervised reinforcement learning context.

A second contribution concerns the application of supervised reinforcement learning us-
ing a generic state representation. More specifically, most reinforcement learning problems
integrate a specific coupling between states, agent’s actions and feedback. This is the case in
for example the cartpole balancing problem where a physical model determines the optimal
policy to be learned [4]. In contrast, in a musical setting, an agent tries to learn a policy based
on varying sound generation parameters using a feedback signal received from a (probably
inconsistent) user. Here, the optimal policy can be much harder to define due to the human
factor as well as the distance between sound perception, sound appreciation and the actual
parameter space exploration. The state representation and actions in this research are generic
in the sense that they directly equal the sound generation parameters with their increments
or decrements as possible agent’s actions.

Exploration

• How to define and implement an algorithmic exploration strategy suitable for user
interaction?

Chapter 1. Background 4

The concept of exploration, learning new things, and exploitation, exploiting past know-
ledge, for both user and agent represent an important aspect of the research question. Ques-
tions related to the user concern whether user attitude is more goal-driven versus more dis-
covery driven. One can also make the distinction between a trajectory and a goal or consider
the fact that users might have changing or no goals at all. Questions related to the agent con-
cern the choice of the starting state for exploration, modelling exploration with episodes or
with an infinite horizon and the exploration-exploitation trade-off which will be detailed in
Chapter 2.

To limit the scope of the research question, I only explore the timbral part of a musical
space referring to that specific quality of sounds independent of their pitch, intensity and
duration. As such I will not include temporal aspects such as amplitude and pitch envelope
or rhythm. This in contrast to research by Derbinsky [16] which investigates a small and
non-supervised reinforcement learning model on rhythm. Also, I will model the system’s
state using a simple parametric representation of a digital music instrument (e.g. using
pitch, filter frequency, FM index parameters) and for example not use spectra, spectrograms
or any perceptual sound descriptors.

Interaction

• How to design and implement the user feedback signal and user interface?

During development of the artificial partner, I will keep questions concerning the user ex-
perience in mind. Combining such a partner with user interaction entails many choices
dependent on the user profile and user needs as well as has consequences for the technical
implementation.

More specifically, the feedback signal from the user must be defined. Also, I will ex-
periment with the amount and areas of control of the user over the system. Other broader
questions remain pertinent during the implementation as well. Should a user intervene or
set preferences for exploration? What does the interface look like and how does the envir-
onment presents itself to the user (for example only through sound or visual as well)?

1.3 Motivation

This section will take a broad view and argument the validity and opportunity of applying
machine learning techniques in an interactive musical setting. It starts with a presentation
of the domain of Human-Computer Interaction (HCI), gradually move towards more re-
cent advances such as Interactive Machine Learning (IML) and argue for its application to
musical expression.

1.3.1 Human-Computer Interaction

Human-Computer Interaction refers to the domain studying the design and use of computer
technology, focusing on the interfaces between people i.e. users and computers1. It repres-
ents a cross-disciplinary field integrating computer science, behavioural sciences, design as
well as cognitive psychology and human factors such as user satisfaction. The term was
popularized in the book The Psychology of Human-Computer Interaction by Newell et al. pub-
lished in 1983 and thus entered into the research domain around the time of the introduction
of the personal computer and the internet.

While interaction was the research focus, most of the work done focused primarily on
the interface. However, as argued by Beaudouin [5], an HCI designer or engineer should
design an interaction and not an interface. Focusing on the interaction allows a proper in-
clusion of the user in both the analysis as evaluation of an HCI. Moreover, it allows the
notion of ‘computer-as-partner’ as opposed to ‘computer-as-tool’. This distinction becomes
all the more relevant when placed in a larger historical context where we can see interaction
evolving alongside human skills and abilities. Looking at interaction evolving from an elec-
trical or mechanical to symbolic, textual and finally graphical nature, we see new skills such

1https://en.wikipedia.org/wiki/Human-computer_interaction

https://en.wikipedia.org/wiki/Human-computer_interaction

Chapter 1. Background 5

as attention and pattern recognition appear. In the same spirit, Dourish introduces the no-
tion of ‘embodied interaction’ in which tangible computing, with distributed computation
and reality augmentation, and social computing, with collaboration and cross-user interac-
tion enhancement, play a central role [17]. Jacucci [33] takes another approach investigating
the ‘interactive experience’ and introduces interaction as performance. While a plethora of
terminologies does not support a clear view on HCI, common traits such as embodiment,
action, experience and the evolution from passive user to embodied actor illustrate the fact
that concentrating on the interface is not sufficient.

Discussing HCI, one should address the notion of exploration or interactive intent. When
designing a system with user interaction, one decides over and balances control and flexib-
ility between user and machine. For example, in an information discovery application, a
HCI can be designed as to answer search queries by a closest matching example or allow a
user to provide feedback and have the system adapt and try to model user intent [61]. While
providing more room for discovery, it introduces a new complexity to define the balance
between exploration of the information space and exploitation of user feedback while also
providing more room for the definition of exploration strategies. Such a system broadens
the search problem as well as the possible solution space and takes the perspective of an act-
ive user with information needs, information skills and evolving, connected resources [47].
An important metaphor in HCI or in discussions of exploration is the need for ‘low floors,
high ceilings and wide walls’ [59]. It stresses the importance of having easy access, allowing
increasingly sophisticated interactions while offering multiple ways to achieve a solution.
Exploration as the discovery of new, possible solutions with or without a solution space in
mind is a theme that will play a prominent role in this research and will come back into
analysis.

Research in design of interactions also links into research of creativity as illustrated by
the leading psychologist on creativity Csikszentmihalyi in [13]. He states how interaction
is crucial for creativity. To support this argument, in [59], several design principles are lis-
ted to support creative thinking. In addition to exploration and the floor, ceiling and wall
metaphor, Resnick also lists the need for support of collaboration, open interchange, sim-
plicity and warns for the blind use of black boxes. The last comment is an important one
as it has direct consequences for an interactive machine learning application. As such, the
choice of a black box or primitive element defines what ideas users can explore with a tool,
and what ideas remain hidden. Applied to an interactive machine learning application, the
exploration-exploitation parameter is a crucial algorithmic parameter but could be crucial
for a user interaction as well. Design principles proposed by Shneiderman [67] confirm the
ones previously presented and specifies the need to increase the capacity to locate, study,
review and revise solutions as well as the capacity to rapidly generate alternatives and
their implications. Finally, design principles by Cockburn can be mentioned here as they
allow to avoid the tendency of interfaces to trap users into a ‘beginning mode’ [11]. He ar-
gues how skill acquisition is important for HCI and distinguishes a cognitive, associative
and autonomous phase in the interaction. To successfully and lastingly support a user, one
should keep these principles in mind already during the development of the system.

1.3.2 Interactive Machine Learning

Interactive Machine Learning (IML) represents a recent research field gaining popularity to-
gether with other machine learning techniques such as for example the increased popularity
in neural network research. Where the previous section argued for an integrated approach
to interaction more from a user perspective, this section takes the argument from the ma-
chine’s perspective. Its main argument for including user interaction in machine learning
is to take advantage of user expertise to improve the generalisation or efficiency of learning
systems. While machine learning techniques beat humans at finding patterns or correlations
in data, machines remain limited to inductive predictions requiring human interaction for
interpretation, comparison or turning data into actionable insights.

It is for this reason Amershi stresses the importance of studying users alongside the de-
velopment of machine learning algorithms [2]. According to him, users should be included
in both the exploratory development stage and later refinement stages. Doing so, it is im-
portant to keep the user experience in mind and remember how users want to guide and

Chapter 1. Background 6

demonstrate and not just provide simple feedback. In addition, end users may value trans-
parency over a black-box and may want to specify preferences on errors or ask why some-
thing happened the way it did. In a concrete example of having expert users experiment
with an interactive, musical machine learning system, other user requirements such as the
need to reduce barriers to speed and exploration, the appreciation of abstraction (i.e. black-
boxes) and the access to surprise and discovery arose [21]. In addition and as a specific
argument for this research, the experiment also showed how goals and user requirements
evolve during interaction and showed user frustration when an understanding of a static
system later proved to be false.

In a different application, both Fiebrink and Scurto argue for the potential of a human
centred view of machine learning and its impact as a creative tool [19][66]. Fiebrink dis-
tinguishes musical applications between recognising, mapping, tracking, representing and
collaborating and adds the use of machine learning as creative tool. As the latter, a machine
learning tool can be trained to represent an ‘imperfect mirror’ of a user [55] allowing him
or her to engage in creative expression without being obstructed by limited expertise of an
instrument and to enter a state of flow as describe by Csikszentmihalyi [14].

When developing and designing an IML system, new methods for evaluation must go
along with it. While quantitative metrics remain valid from an algorithmic perspective,
subjective criteria and complementary exploratory and objective metrics are needed as well
[20]. In the context of evaluating a creative tool, in [44], Lowgren argues for the need of
an extended vocabulary including terms as playability, seductivity, fluency, ambiguity (as a
positive property) and engagement instead of usability.

1.3.3 New Interfaces for Musical Expression

Having discussed interaction from a user and machine perspective, this section introduces
the musical element. New Interfaces for Musical Expressions or NIME is the cross-
disciplinary field dedicated to research on the development of new technologies and their
role in musical expression and artistic performance2. It encompasses both technological
disciplines, such as electronics, sound synthesis and processing, software engineering, as
human behavioural disciplines, such as psychology, physiology, ergonomics, HCI among
others.

Developing and designing new musical instruments addresses both its control, sonic and
musical properties as its essence in the form of its implications and experience [36]. Devel-
oping and designing NIME requires a focus on sound, interactivity, streamed-based and
dynamic spectro-morphology ([70]) as opposed to notes, reactivity, event-based and static
sound descriptors [56]. Considering the computer as a meta-instrument and decoupling
controller from sound engine, many opportunities in the diversity, improvisation and ex-
pressiveness arise. However, as great as the opportunities in new instrument development
are as small as their adoption among new users is [36].

Learning from past experience, in [36] Jorda lists 25 guidelines that can aid in the
design and evaluation of NIME. While an extended discussion is not possible here, simple
guidelines such as ‘wider rather than deeper’ and ‘interfaces with representation and
control’ are very powerful and to be kept in mind. Other useful observations from research
are the clear relation between the degrees of freedom of an instrument and user exploration
[81] and the difference between generatively and explicitly defined mappings in [31].
Finally, the broad exploration and later fine-tuning or evaluation of alternatives in the
design of a mixer interface in [9] and mentioned in [66] could present a needed feature in
the development of an ‘intelligent partner’.

Finally, other work has been done combining NIME with machine learning techniques.
In [8], a comprehensive overview is given of the different classification and regression meth-
ods used to model musical gestures and map gestures to sound. Regression techniques
are mentioned to perform dimensionality reduction useful in for example instrument para-
meter mapping or visualisation, or to perform gesture representation, cross-modal analysis
and control. Several classification techniques are listed on different neural network, Hid-
den Markov or Gaussian Mixture Models to perform multi-parametric control, gesture ana-
lysis or recognition. In [24], complex probabilistic models are presented to design motion

2https://en.wikipedia.org/wiki/New_Interfaces_for_Musical_Expression

https://en.wikipedia.org/wiki/New_Interfaces_for_Musical_Expression

Chapter 1. Background 7

sound relationships or define mappings by demonstration with example applications such
as gesture-based sound mixing or interactive vocalisation. Schacher in [62] mentions ma-
chine learning techniques as a generative and interactive tool for recognition of key musical
moments, adaptive control mapping and high-level feature classification for autonomous
music generation. All these techniques however powerful still have common weaknesses
of which some this research will try to address. More specifically, while supervised meth-
ods remain good for customisation and retraining, their slow learning curve obstructs free
improvisation. While they are strong in pattern recognition, obtaining understandable rep-
resentations often remains challenging. In general, real-time training with few examples
and high adaptability are still out of reach. An advantage of reinforcement learning on the
other hand is that it does not require labelled examples from some knowledgeable external
supervisor. It does not learn from examples of desired behaviour that are both correct and
representative for the full set of situations in which an agent has to act. It learns from its own
experience and it is this last trait that this research will leverage to investigate in a musical
interactive application.

8

Chapter 2

Reinforcement Learning:
State-of-the-Art

One of the first ideas that might come up when thinking about the nature of learning is the
idea of interacting with our environment. Reinforcement learning takes this idea as its base.
It is learning what to do (the policy), how to map situations or states to actions, to maximise
a reward signal. A general model is shown in figure 2.1.

Reinforcement learning differs from other branches of learning such as supervised and
unsupervised learning. Where supervised learning focuses on generalising from repres-
entative and correct examples, the goal of reinforcement learning is to learn from its own
experience. Unsupervised learning on the other hand typically tries to find hidden structure
in unlabelled data.

Also, reinforcement learning is part of a larger trend towards simple, general principles
in artificial intelligence. It considers the whole problem and has to address the problem of
planning and real-time action selection as well as how environment models are acquired and
improved.

This section constitutes a large part of this thesis and for good reason. It will introduce
the theory, the models and algorithms that will be used to develop and test our own imple-
mentations later on. The majority of this section is based on the work of Sutton and Barto
[73] while gradually building upon more recent research as cited in the text.

FIGURE 2.1: General reinforcement learning model

2.1 Theoretical Basis

The theory of reinforcement learning has close links with dynamical systems theory and
more specifically, the optimal control of incompletely-known Markov decision processes.
Informally, it concerns a learning agent interacting over time with its environment to achieve
a goal. The agent must be able to (partly) sense the state of its environment and must be able
to take actions that affect the state. The goal or goals must be defined in relation to the state
of the environment. Any method to solve such a problem can be considered a reinforcement
learning method.

Markov decision process A Markov Decision Process (MDP) is a classical formalisation
of sequential decision making, where actions influence not just immediate rewards, but also
subsequent states and through those future rewards. As such, MDPs involve delayed reward
and the need to trade-off immediate and delayed reward. Specifically, a Markov decision
process is a discrete time stochastic control process. At each time step, the process is in some
state s, and the decision maker ,from hereon called agent, may choose any action a that is

Chapter 2. Reinforcement Learning: State-of-the-Art 9

available in state s. The process responds at the next time step by moving into a new state s′,
and giving the agent a corresponding reward Ra(s).

In a finite MDP, the sets of states, actions and rewards (S ,A and R), all have a finite
number of elements. In this case, the random variables Rt and St have well defined discrete
probability distributions dependent only on the preceding state and action. As such, for
particular values of these random variables, there is a probability of those values occurring
at time t, given particular values of the preceding state and action:

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (2.1)

for all s′, s ∈ S , r ∈ R, and a ∈ A(s). From this, one can obtain knowledge of the environ-
ment such as the state-transition probabilities

p(s′|s, a) = Pr{St = s′|St−1 = s, At−1 = a} = ∑
r∈R

p(s′, r|s, a) (2.2)

or the expected rewards for state-action pairs:

r(s, a) = E[Rt|St−1 = s, At−1 = a] = ∑
r∈R

r ∑
s′∈S

p(s′, r|s, a) (2.3)

Value function and policy Almost all reinforcement learning algorithms involve estimat-
ing functions of states (or state-action pairs) that estimate how good it is for the agent to be
in a given state (or how good it is to perform a given action in a given state). These functions
are called value functions with the notion of good determined in terms of expected return.
Expected return G can be defined as a discounted sum of future rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞

∑
k=0

γkRt+k+1 (2.4)

where gamma, 0 ≤ γ ≤ 1, as discount rate determines the present value of future rewards.
As these rewards depend on what actions an agent will take in the future, value functions

are defined with respect to particular ways of acting, called policies. A (stochastic) policy
π is a mapping from states to probabilities of selecting each possible action and noted as
π(a|s). The value of a state s under a policy π, denoted vπ(s), is the expected return when
starting in s and following π thereafter. Formally, the state-value function is defined as

vπ(s) = E
π
[Gt|St = s] = E

π

[∞

∑
k=0

γkRt+k+1

∣∣∣St = s
]

, for all s ∈ S (2.5)

Similarly, the action-value function for policy π is defined as

qπ(s, a) = E
π
[Gt|St = s, At = a] = E

π

[∞

∑
k=0

γkRt+k+1

∣∣∣St = s, At = a
]

, for all s ∈ S (2.6)

Bellman equation and optimality Value functions satisfy recursive relationships ex-
pressed by the Bellman equation and this fundamental property is used throughout
reinforcement learning. It states that the value of a start state must equal the discounted
value of the expected next state, plus the reward expected along the way.

vπ(s) = ∑
a

π(a|s)∑
s′ ,r

p(s′, r|s, a)[r + γvπ(s′]], for all s ∈ S (2.7)

qπ(s, a) = ∑
s′ ,r

p(s′, r|s, a)[r + γ ∑
a′

π(a′|s′)qπ(s′, a′)] (2.8)

Now, solving a reinforcement learning task means finding a policy that achieves max-
imum reward over time. For every problem there exists at least one optimal policy that is
better than or equal to all other policies. They all share the same optimal state-value and

Chapter 2. Reinforcement Learning: State-of-the-Art 10

action-value function which formulated as the Bellman optimality equation become:

v∗(s) = max
a ∑

s′ ,r
p(s′, r|s, a)[r + γv∗(s′]] (2.9)

q∗(s, a) = ∑
s′ ,r

p(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)] (2.10)

Once one has v∗, the optimal policy follows automatically as actions that appear best
after a one-step search will be optimal actions. With q∗, one can simply take any action that
maximizes q∗(s, a) to find the optimal action. The latter is called greedy action selection.

Value based methods Out of the previous definitions, one can now concentrate on finding
the optimal policy. One approach called ‘value-based methods’ do this alternating between
two simultaneous, interacting processes. One making the value function consistent with the
current policy called policy evaluation, and the other making the policy greedy with respect
to the current value function called policy improvement. The majority of reinforcement
learning algorithms differ in the way they approach each of these processes.

Two extreme cases of policy evaluation are Monte Carlo and dynamic programming
methods which are respectively averaging sample based or model-based. Without any
knowledge of the environment, one can find the value function for a specific policy aver-
aging returns for every state as the number of visits for every state goes to infinity. Model-
based methods assume the dynamics of the environment are known and value functions can
be found using the Bellman equation for vπ as an update rule:

vk+1(s) = ∑
a

π(a|s)∑
s′ ,r

p(s′, r|s, a)[r + γvk(s′)]], as k goes to infinity (2.11)

Policy improvement helps to find better policies which should eventually lead to the
optimal one. This is done using the policy improvement theorem for which a proof can be
found in [73] and copied in Appendix A. It shows that one improves an original policy by
making it greedy with respect to the value function of the original policy. Formally, this
means

π′(s) = argmaxa ∑
s′ ,r

p(s′, r|s, a)
[

r + γvπ(s′)
]
= argmaxaqπ(s, a) (2.12)

One now has all the tools needed to develop an iterative reinforcement learning al-
gorithm. An example of a full Monte-Carlo method would be to average returns for every
visited state-action pair, update its estimate of the action-value function and update the
policy based on greedy action selection with reference to its new action-value function. A
fully incremental dynamic programming method called value iteration combines the policy
evaluation and policy improvement steps in one update rule:

vk+1(s) = maxa ∑
s′ ,r

p(s′, r|s, a)
[

r + γvk(s′)
]

(2.13)

In between dynamic programming and Monte Carlo methods, there exist temporal dif-
ference methods. Like Monte-Carlo methods, they can learn directly from raw experience
without a model of the environment. Like dynamic programming, they update their es-
timates based in part on other learned estimates, without waiting for a final outcome. This
process of so-called bootstrapping provides the advantage of on-line learning but also in-
creases variance and affects convergence towards an optimal policy. One example, called
TD(0) makes the update

V(St)← V(St) + α

[
Rt+1 + γV(St+1)−V(St)

]
(2.14)

immediately on transition to St+1 and receiving Rt+1 with V(St) the estimated value for
state St. While for Monte Carlo methods, the update target would be Gt, here it is Rt+1 +
γV(St+1). This policy evaluation step is then followed by a policy improvement by making

Chapter 2. Reinforcement Learning: State-of-the-Art 11

action selection greedy with reference to the new value function. It is these methods that
will become the focus of the discussion as well as the basis for implementations later on.

Policy gradient methods Next to value-based methods, another approach to improve a
policy is to compute a gradient to increase the probability of taking a good action π(s) = a.
Informally, to improve a policy, one must modify π(a|s) to increase the probability of a when
qπ′(s, a) > vπ(s). By successively applying this process, one eventually obtains the optimal
policy. For the simplest policy gradient algorithm, improvement of a policy is guaranteed
for sufficiently small step sizes and convergence to a local optimum for decreasing step size.
However, updates can have a large variance and slow down learning significantly. As such,
improved policy gradient methods called ‘actor-critic’ methods will be introduced later on
to speed up learning while weakening theoretical convergence properties.

2.2 Characteristics

There are many reinforcement learning algorithms because of their different trade-offs
(sample efficiency, stability, ease of use) and assumptions (stochastic or deterministic
policies, continuous or discrete state-action spaces, episodic or continuing tasks). This
section will present some important characteristics of these algorithms.

Rewards The feedback or reward signal represents a key component of reinforcement
learning. It is represented using a reward function, can be sparse or frequent, (in-)consistent
over time and be provided by the environment or a user. If the reward function is assumed to
be dependent on a whole sequence of state-action pairs, one can implement memory-based
policies with recurrent neural networks [29]. Also, one can include a specific reward distri-
bution in the model to allow for user feedback to be distributed over multiple state-action
pairs in time.

Several approaches have been taken to deal with different reward signals or depending
on if we wish to include or to learn a reward function. One approach called ‘imitation learn-
ing’ tries to learn to perform a task from expert demonstrations. This approach includes
‘inverse reinforcement learning’ that attempts to learn an unknown reward function [53].
Another approach called ‘apprenticeship learning’ does not learn a reward function and dir-
ectly maps expert trajectories to a policy [1]. Other approaches leverage user interaction and
use user preferences over state trajectories [10], use only user feedback [77], or merge user
and environmental feedback [58]. Interestingly, the latter concatenates information about the
environment next to information about the user providing a tight environment-user-control
‘state’-representation.

On- versus off-policy The goal of a reinforcement learning algorithm is to find a
(sub)optimal policy to maximize reward. However, the policy used to explore the state
space, the so-called behaviour policy, can be different from the policy to be learned or
target policy. Algorithms with identical or different behaviour and target policy are called
respectively on-policy and off-policy algorithms. For example, an off-policy algorithm
could for its behaviour policy randomly take actions for a certain percentage of the time
while storing new and improved estimates in its target policy that does not include any
randomness.

Off-policy algorithms often have greater variance and slower convergence as their train-
ing data is due to a different policy. They are however more powerful and general as they
allow to separate exploration from learning. They also include the on-policy algorithms as
a special case when policies are the same. With off-policy methods a first challenge is re-
lated to the fact of having two different data distributions (behaviour and learned policy). A
second challenge is related to the fact that the off-policy distribution of the updates is not ac-
cording to the on-policy distribution when using function approximation. Techniques such
as importance sampling deal with the different distributions, while techniques such as ex-
perience replay deal with the high variance in updates and will be presented with the DQN
algorithm.

Chapter 2. Reinforcement Learning: State-of-the-Art 12

Exploration and Exploitation A central topic in reinforcement learning is the exploration-
exploitation trade-off. It refers to the balance between taking ‘risky’ actions to search for new
information and taking ‘safe’ actions by exploiting obtained information about past actions.
The dilemma for the learning methods presented here is that they seek to learn action values
conditional on subsequent optimal behaviour, but they need to behave non-optimally in
order to explore all actions or to maintain exploration.

One simple solution to the problem of maintaining exploration is the assumption of ex-
ploring starts. This assumption is valid when training episodes start in a state-action pair
and that every pair has a nonzero probability of being selected at the start. Another solution
is to define ε-soft policies which are policies with π(a|s) ≥ ε

|A(s)| for all states and action and
for some ε > 0. A specific example is the ε-greedy policy that most of the time chooses an
action that has maximal estimated action value (i.e. the greedy action), but with probabil-
ity ε they select an action at random. One often used technique using ε-greedy exploration
strategies is the technique of ε-decay which takes an εd, a start εs and end value εe and lets ε
evolve according to

ε = εe + (εs − εe)e
− t

εd for t > 0 (2.15)

2.3 Reinforcement Learning with Function Approximation

With increasingly large and combinatorial state spaces, finding an optimal policy or value
function becomes infeasible even with infinite time or data. In such cases, the goal becomes
to find a good approximate solution using limited computational resources. Using function
approximation, one tackles the issue of generalisation which allows to infer knowledge from
previously visited states to unencountered states.

The goal of our function approximation is represented by parametric versions of earlier
introduced value or policy functions from hereon referred to as q(s, a, w) ≈ qπ(s, a) and
π(a|s, θ) ≈ π(a|s). We focus in this research on non-linear function approximation using
Artificial Neural Networks (ANNs) although linear methods can be used as well. ANNs
have several advantages over the use of linear methods as they allow for automatic feature
construction, have non-linear basis functions and extend naturally to larger state spaces. For
example, with linear methods one has to define features as basis functions for the linear
weight vector without taking into account interaction between features.

Depending on whether we are approximating value or policy functions, different object-
ives and optimisation schemes are used. However, the previously introduced policy evalu-
ation and improvement schemes remain the same. In addition, with function approximation
and the assumption to have many more states than function parameters, an update at one
state affects many others. As such, we must specify a state distribution µ(s) ≥ 0, ∑s µ(s) = 1,
representing how much we care about the error in each state.

Value based methods Value based methods try to approximate the state-action value func-
tion q using a Mean Squared Error (MSE) objective function:

MSE(w) = ∑
s∈S

µ(s)
[

qπ(s, a)− q(s, a, w)

]2

(2.16)

Assuming states appear in examples with the same distribution µ over which we are trying
to minimize the MSE, we can use stochastic gradient-descent method to reduce the error:

wt+1 = wt + α

[
qπ(St, At)− q(St, At, wt)

]
∇q(St, At, wt) (2.17)

Finally, we can use any approximation for qπ(St, At) as the update target. For example,
using the TD(0) method introduced earlier but applied to the state-action function, one can
complete the update with:

wt+1 = w + α

[
Rt+1 + γq(St+1, At+1, wt)− q(St, At, wt)

]
∇q(St, At, wt) (2.18)

Chapter 2. Reinforcement Learning: State-of-the-Art 13

This equation is an important one and we will use it later to obtain the so-called SARSA
algorithm. Inspecting the previous equation, one can see that the update target depend on
the current value of the weight vector wt. This implies that they will be biased and will not
produce a true gradient-descent method. They take into account the effect of changing the
weight vector wt on the estimate, but ignore its effect on the target. They include only a part
of the gradient and because of this are called semi-gradient methods.

Policy gradient methods Policy based methods directly learn a parametrised policy allow-
ing them to select actions without consulting a (action or state) value function. They have
the advantage of being able to approach a deterministic as well as find a stochastic optimal
policy and offer the possibility of injecting prior knowledge about the desired form of the
policy. They are based on the gradient of some performance measure J(θ) dependent on the
policy parameter θ:

θt+1 = θt + α∇J(θt). (2.19)

The performance measure J can be based on the value of the starting state or the average
rate of reward per time step (see ’Continuing tasks’ below). In both cases, methods are
based on the policy gradient theorem which is found in [73] (and copied in Appendix B).
The theorem provides an analytical expression for the gradient of performance with respect
to the policy parameter

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s, a)∇θπ(a|s, θ) (2.20)

with µ(s) the on-policy state distribution under π.
Also in Appendix B, this expression can then be converted in an expectation that allows

sampling and consequently an iterative update:

∇J(θ) = E
π

[
Gt
∇θπ(At|St, θ)

π(At|St, θ)

]
(2.21)

θt+1 = θt + αGt
∇θπ(At|St, θt)

π(At|St, θt)
(2.22)

Actor-Critic methods Previous value and policy based methods can also be combined to
reduce variance and speed up learning. These actor-critic methods require the approxima-
tion of both the value (critic) as policy function (actor).

Specifically, one can include a baseline v(St, w) to reduce variance in updates and boot-
strap to approximate Gt as well as allow incremental and online updates in 2.22.

θt+1 = θ + α

(
Rt+1 + γv(St+1, w)− v(St, w)

)
∇θπ(At|St, θt)

π(At|St, θt)
(2.23)

FIGURE 2.2: Reinforcement learning methods

Chapter 2. Reinforcement Learning: State-of-the-Art 14

Episodic versus continuing One important distinction between reinforcement learning al-
gorithms is based on the choice of working with a finite or infinite horizon model. A finite
horizon or episodic model assumes the existence of a terminal state and makes sense when
the agent-environment interaction breaks naturally into subsequences such as for example
with plays of a game. An infinite horizon or continuing model assumes tasks to go on forever
and is useful for example in an application with a robot with a long life span.

When using approximate methods in reinforcement learning for continuing tasks i.e. a
tasks that do not break down in identifiable episodes, one needs to adapt the objective func-
tions for both value as policy based methods. Now, the goal is not to maximize the value
of a starting state but to maximize the average reward over time. To transform the results
from the previous section to the continuing case, one simply removes all discounting factors
and replaces all rewards by the difference between reward and the true average reward over
time. As such, the update rule for value-based functions 2.18 becomes:

wt+1 = w + α

[
Rt+1 − R̄t+1 + q(St+1, At+1, wt)− q(St, At, wt)

]
∇q(St, At, wt) (2.24)

with R̄t the average reward over time at time t. For policy-gradient methods, the rule 2.23
becomes:

θt+1 = θ + α

(
Rt+1 − R̄t+1 + v(St+1, wt)− v(St, w)

)
∇θπ(At|St, θt)

π(At|St, θt)
(2.25)

2.4 Deep Reinforcement Learning

While Reinforcement Learning (RL) can reason about decision making, it is deep models
that allow reinforcement learning algorithms to learn and represent complex input-output
mappings. Deep models in this research refer to ANNs with multiple hidden layers between
the in- and output layers and are used as function approximators in reinforcement learning
algorithms. As mentioned earlier, many approximators can be used to learn the policy and
state(-action) value functions. The very big majority of the Deep Reinforcement Learning
(DRL) community today however prefers ANNs for their automatic feature construction,
fast implementation, non-linear approximation and closer workings to human and behavi-
oural learning.

Having introduced the theoretical basis of reinforcement learning with the use of func-
tion approximation, this section will present a concise overview of specific algorithms. These
algorithms represent the state-of-the-art and are distinguished whether their optimisation
method is value- or policy-gradient based.

Value-based methods Earlier introduced temporal-difference learning [72] represents a
class of classical algorithms in reinforcement learning. Implementing temporal-difference
learning using a state-action function, one obtains the so-called SARSA algorithm [60]. The
update rule for SARSA with function approximation was presented with equation 2.18 and
can be implemented using deep ANNs [82]. Deep SARSA (DSARSA) will be the first to be
used in later implementations. Its algorithm can be found in appendix C and its model in
figure 2.3.

A generalisation of SARSA as an off-policy algorithm is called Q-learning [78]. As dis-
cussed earlier, off-policy methods use a different policy for exploration than the one being
learned. Instead of using a state-action value approximation in 2.18, Q-learning maximizes
over the full one-step action space:

wt+1 = w + α

[
Rt+1 + γmaxaq(St+1, a, wt)− q(St, At, wt)

]
∇q(St, At, wt). (2.26)

Q-learning and its ANN implementation deep Q-learning (DQN) [50] have been responsible
for some of the greatest advances in (deep) reinforcement learning [49]. Several algorithmic
improvements have been added to DQN and have improved performance further. A tech-
nique called ‘experience replay’ stores experience (state-action-reward pairs) and retrains

Chapter 2. Reinforcement Learning: State-of-the-Art 15

the network using randomly sampled mini-batches of previous data [49]. This resampling
decorrelates the input data and improves the algorithm’s sample efficiency. Double DQN
(DDQN) duplicates the value-function network to separately use a network for the action se-
lection and the value estimation update [74]. This avoids over-estimation of values through
the maximisation operation in 2.26.

wt+1 = w + α

[
Rt+1 + γq(St+1, argmaxaq(St+1, a, w′t), wt)− q(St, At, wt)

]
∇q(St, At, wt)

(2.27)
Finally, other research decomposed the state-action value function q(s, a) in a state-value
function v(s) and an advantage function a(s, a) to construct a so-called duelling neural net-
work architecture [75]. The advantage function quantifies how good an action is as com-
pared to the average reward over all actions. This allowed to include a notion of the state-
value independent of an action taken and showed to improve performance of DDQN. Spe-
cifically, it means decomposing the final neural network layer in two separate outputs and
recombining them afterwards using the following update rule:

Q(s, a, w) = V(s, w) + (A(s, a, w)− 1
A∑

a′
A(s, a′, w)) (2.28)

It is this last implementation called the Duelling Double Deep Q-network (DDDQN) that
will represent the second algorithm to be used later on. The implementation follows the
DSARSA algorithm with a new update rule as in 2.27 and using slower updating of the
second or double ANN. An illustration of the ANN for DDDQN is shown in figure 2.3.

Policy-gradient methods Policy gradient methods have the advantage of directly optim-
ising towards the goal, the optimal policy. However, these methods remain very sample
inefficient, have high variance in their updates and have a high sensitivity to the step-size
in its gradient-descent optimisation. One of the first popular policy-gradient algorithms is
called REINFORCE [80] and is a direct implementation of equation 2.22. Later implementa-
tions extended policy gradient methods to continuous action spaces [68], off-policy methods
[42] and stochastic policy methods [28]. A popular method called ‘Trust Region Policy Op-
timisation’ to adapt and limit the gradient updates was developed to address the step-size
sensitivity [64].

Actor-Critic methods As mentioned before and shown in 2.23, Actor-Critic methods intro-
duce a baseline with policy-gradient methods to reduce the variance of its updates and accel-
erate learning [15]. These represent an important and popular class of algorithms for deep
reinforcement learning. With considerable problem-specific adjustments, it is this method
that was used as the first implementation to beat an expert player in the board game Go
[69]. Other improvements include the addition of a replay memory [76] and asynchronous
Actor-Critic methods [48] that run multiple agents in parallel to train on decorrelated data
inputs. In the latter, the author also introduced the use of an advantage function approxim-
ated by a temporal-difference error as a baseline. It is a synchronous version of this method
called ‘Advantage Actor-Critic’ (A2C) that will be used as a third implementation later on.
The A2C algorithm again follows the DSARSA algorithm from before but with a new up-
date rule as in 2.23 and using two ANNs. A first ANN approximates the value-function
V(s, w) using the value-error (shown between brackets in 2.23). A second network approx-
imates the policy π(s, θ) using a logarithmic softmax1 ANN output and using the identity
∇ln(x) = ∇x

x .
An overview of the ANNs structure is shown in the figure below:

1A normalised exponential function to transform the network output into normalised probabilities (see https:
//en.wikipedia.org/wiki/Softmax_function)

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function

Chapter 2. Reinforcement Learning: State-of-the-Art 16

(A) DSARSA (B) DDDQN (C) A2C

FIGURE 2.3: Deep reinforcement learning ANN overview

Exploration bonus The exploration strategies seen so far, specifically ε-greedy explora-
tion, represent the most basic of exploration strategies for the state(-action) space and more
sophisticated techniques with and without deep ANNs have been developed. A method
that will be used in implementations later on is based on the notion of optimistic explora-
tion (the assumption that the unknown is good) and the addition of an ‘exploration bonus’
to the reward. As shown in [6], this exploration bonus can be based on an estimation of
state-visitation counts called the pseudo-count N̂(s) and a total visit pseudo-count n using
a density model p̂φ(si). Formally, one calculates the total reward with bonus r+i as

r+i = ri + β

√
1

N̂(si) + C
(2.29)

with
N̂(si) = n̂pφ(si) (2.30)

n̂ =
1− pφ′(si)

pφ′(si)− pφ(si)
pφ(si) (2.31)

with β and c pre-defined constants.
Also in [6], it was shown that the pseudo-counts have close links to another class of

methods based on ‘intrinsic motivation’ to improve the exploration strategy. They suggest
to explore what is surprising, typically based on a prediction error using the target estimates
from before or based on information gain. Other methods are based on Thompson sampling
[71], bootstrapping neural networks for deep exploration [54] or by adding parametric noise
to network weights [22]. Approaches such as Thompson sampling have been used to find
an appropriate exploration-exploitation balance but require a prior distribution. Bayesian
methods can even be used to compute an optimal exploration-exploitation balance but often
require much too great computation resources for the combinatorial problems considered in
reinforcement learning. These approaches could benefit from approximate methods and are
the topic of current research.

2.5 Interactive Reinforcement Learning

Interactive Reinforcement Learning (IRL) or human-centred reinforcement learning refers
to the reinforcement learning problem where rewards to teach an agent are generated by
a human trainer instead of a (stationary) environmental reward function. This section will
focus on state-of-the-art methods involving only human feedback without environmental
reward as these are the methods that will be used in our implementations later on.

Chapter 2. Reinforcement Learning: State-of-the-Art 17

A first simple approach to IRL is to directly include human feedback as the reward for
traditional RL algorithms. This approach can achieve good results if the feedback is station-
ary and intended to be maximized [32] [57]. Unfortunately, the assumption of stationarity is
too strong for our application and in addition can lead to unintended agent behaviours [39]
[30].

A special IRL case applied to a musical setting is by Derbinsky [16]. He trains agents to
learn user rhythms and represents a state as the presence or absence of a beat. Unfortunately
his model does not scale well without deep ANNs and has the need for a demonstration
phase.

One of the main challenges in reinforcement learning is the ‘delayed reward’ challenge
which represents the difficulty of assigning a reward to actions arbitrarily far in the past.
Instead of modelling the human feedback as a reward, one can also model the feedback as a
direct comment on agent’s behaviour. Algorithms such as TAMER [38], Deep TAMER [77]
and COACH [45] use human feedback as a direct label of respectively the action-value or
advantage function. Algorithms such as SABL [43] and Policy Shaping [27] directly label
the optimality of actions of the policy. In this way these algorithms circumvent the delayed
reward challenge assuming a human trainer can judge the overall optimality or quality of
agent’s actions.

(Deep) TAMER The TAMER and Deep TAMER algorithm can be seen as value-based al-
gorithms. They have been applied in settings that allow to quickly learn a policy on episodic
tasks (small game environments or physical models) and aim to maximise direct human
reward. This opposed to the traditional RL training objective to maximise the discounted
sum of future rewards. These algorithms learn the human reward function R using an ANN
and construct a policy from R taking greedy actions. In addition, to accommodate sparse
and delayed rewards from larger user response times, the algorithms include a weighting
function u(t) to past state trajectories and a replay memory in the case of Deep TAMER.
Specifically, while traditional RL algorithms aim to optimise the loss

MSE =

[
Rt+1 + γq(St+1, At+1, wt)− q(St, At, wt)

]2

, (2.32)

(Deep) TAMER aims to optimise

MSE = ut(t f)

[
rt(t f)− R̂(St, At))

]2

(2.33)

with r(t f) and ut(t f) respectively the user-provided feedback and weighting function at
time t f . One drawback of this method is the fact that exploration is now implicitly defined
as we only learn a reward function on which to base our exploration strategy. In the TAMER
implementations, exploration is further simplified to a simple greedy action selection based
on the reward function leaving exploration only to erroneous state-action reward estimates.
As a concrete example and to get an idea of parameters in the problem setting of [77],
Deep TAMER achieved above human player’s performance in the Atari Bowling game with
following specifications:

Training time 15 minutes |Feedback signals| 1000
Data frequency 20 frames/second |A| 4
Input data 160 × 160 images |S| 100

ANN
Auto-encoder outputsize = 100
and fully-connected 2-layer
ANN of size 16 and 4

|Training cycles|
(feedback + replay
mini-batches)

3500

TABLE 2.1: Deep TAMER Atari Bowling game specifications

COACH A different method was developed with the COACH algorithm [45]. The al-
gorithm directly learns and approximates the policy function π(.). It removed an assump-
tion of policy-independent feedback (see [45]) and modelled feedback using the estimation

Chapter 2. Reinforcement Learning: State-of-the-Art 18

error in equation 2.23. This feedback is then considered as an unbiased estimator of the ad-
vantage function [63] in an actor-critic algorithm. One can thus replace the error by the user
provided feedback rt:

θt+1 = θ + αrt
∇θπ(At|St, θt)

π(At|St, θt)
(2.34)

With policy-dependent feedback, COACH also affords new training strategies:

• Diminishing returns: decrease positive feedback for good actions as agent adopts those
actions

• Differential feedback: Vary the magnitude of feedback w.r.t. the degree of improve-
ment or deterioration in behaviour

• Policy shaping: provide positive feedback for suboptimal actions that improve beha-
viour and then negative feedback after the improvement has been made

Others Other algorithms attempt to allow user feedback on the agent’s actions in the sense
of ‘that was right’ or ‘that was wrong’. In the Policy Shaping algorithm [27], feedback is
first converted into a policy and then combined with an underlying reinforcement learning
policy. The model developed in [43] allows taking into account a trainer’s feedback strategy.
It’s SABL algorithm can adapt to different users and learn in the absence of feedback. Be-
cause in our problem setting I assume actions of an agent can not be evaluated as ‘optimal’
by a user and the user can be inconsistent, these algorithms will not be detailed any further.

2.6 Challenges

The reason for the many implementations presented so far are the difficulties posed by
(deep) reinforcement learning and the use of various techniques to stabilise, optimise and
generalise learning. The root cause for these difficulties is the dynamical nature of deep
reinforcement learning. This means its online data-collection with as only supervision a
single scalar as reward. Its methods use random chance for data-collection which adds a
great difficulty next to already existing machine learning challenges such as model issues,
implementation issues and algorithmic issues. Sample inefficiency is another big challenge
because of which on-policy methods among others perform very poorly. Briefly mentioned
so far is the problem of stability of algorithms because of a high variance of gradient updates
and a high sensitivity to parameter initialisation. The latter could be determining conver-
gence and thus poses another challenge in debugging implementations. Local optima pose
a challenge as well. If one gets the exploration-exploitation trade-off wrong, an algorithm
may explore too much, get junk data and learn nothing or may exploit too much and burn-in
non-optimal behaviours. Finally, this trade-off also has large consequence for the general-
isation capacities of an algorithm. It must be noted that next to generalisation, overfitting
may not always pose a problem for reinforcement learning as an agent can always go collect
more samples to train on. The difficulties can be summarised as follows:

• Random chance for data-collection

• Sample inefficiency

• Stability

• Local optima

Several important topics such as the ones above have only been included briefly in the
discussion so far. While important results do exist in the literature, these topics still remain a
big area for current research. They are not further discussed here too focus on providing the
reader a theoretical base without too many in-depth analysis. Additional details on these
topics will be given with results of algorithmic implementations later on.

19

Chapter 3

Model Development
This chapter will present deep reinforcement learning implementations and some early ex-
perimental results to address the research question from section 1.2.

The chapter’s outline is as follows:
3.1 Problem Formalisation: A first section formalises the question of musical exploration
into a reinforcement learning problem. It aims to clarify the problem’s constraints.
3.2 Analysis of Deep Reinforcement Learning: This section presents three deep reinforce-
ment learning models with distinct properties (DSARSA, DDDQN, A2C respectively
on-policy, off-policy value-based and actor-critic) applied to the problem formalised in
the first section. It first presents analyses using a synthetic reward function and synthetic
goal followed by results of a hyperparameter search. It aims to provide insights into each
models’ strengths and weaknesses and properties such as convergence, generalisation and
parameter sensitivity with regards to our problem setting.
3.3 Analysis of Interactive Reinforcement Learning: This section first presents remaining
challenges for our problem setting. Next, it presents the evaluation of three interactive deep
reinforcement learning models which can be considered as interactive versions of the ones
in the previous section (interactive DSARSA, DTAMER, COACH).
3.4 Discussion and Future Work

3.1 Problem Formalisation

Figure 3.1 shows a schematic overview of both the non-interactive as interactive problem
setting involving a user. For both cases, the environment’s state st is first communicated to
the agent. The agent consults its policy π and decides on taking action a. The environment
transitions to a new state st+1 and the agent receives this new state together with reward r.
Next, the agent stores the action, state and reward couple in its replay memory and learns
from this new information by updating its estimated reward function R̂. The only difference
between the non-interactive and interactive case is the way the reward is provided. In this
chapter, I will work with a synthetic reward function R(x, st, st+1) even when analysing
interactive deep reinforcement learning models. The user and its feedback will be included
and discussed in chapter 3 and 4. A video used for a submission at the ISMIR conference
and demonstrating the application can be found at https://youtu.be/z7-3ftBMb1I.

FIGURE 3.1: Interactive and non-interactive deep reinforcement learning
model

https://youtu.be/z7-3ftBMb1I

Chapter 3. Model Development 20

Representation Every reinforcement learning problem is based on the notion of states, ac-
tions and rewards. States for our musical setting are represented using generic parameters
for a digital musical instrument or VST. Applied to a frequency modulation synthesizer,
parameters can for example control the modulation index, harmonicity ratio, pitch, filter
frequency and filter resonance. Actions are directly related to every parameter and can incre-
ment or decrement a parameter value. Throughout the interaction, the action size might vary
resulting in smooth or sudden state transitions. A sequence of state transitions in our prob-
lem setting is called a trajectory. Rewards are provided by a user or synthetic reward func-
tion. For the first implementations, I will define a synthetic target state x and a heuristic and
synthetic reward function R(x, st, st+1) = −sign((norm(x, st+1) − norm(x, st))) ∗ 0.5. The
reward function will provide positive or negative rewards depending on whether the agent
is approaching or moving away from the target state. The basic model has a state s with
five parameters s = (S1, S2, S3, S4, S5) ∈ [0, 1]|S| and thus 10 possible actions A1, A2, ..., A10
from A augmenting and decrementing each state dimension with a size of any action a ∈
(0, 0.1]. While the number of states, number of actions and action discretisation might seem
small (respectively 5, 10 and 50), the curse of dimensionality makes that the state-action
space already is (1/a)|S| ∗ |A| = 505 ∗ 10 = 3.125 billion large.

Interaction Feedback provided by a user will be used as rewards (in DSARSA, see equation
2.24) , as labels for an action-value function (in DTAMER, see equation 2.33) or as labels for
the advantage function (in COACH, see equation 2.34). Users will listen to state transitions
that can have a variable state transition time. User feedback will be stored and incorporated
after every transition or after a fixed or variable state trajectory length. Other aspects for
the interaction such as pausing, storing or rewinding state exploration could be added as
features later on. A basic use-case has 30 minutes of exploration time, state transitions ∈
[0.05, 1] seconds and a user feedback delay and frequency of respectively 0.2 and ∈ [0.2, 1]
seconds.

Exploration Exploration will be based on ε-greedy exploration with ε-decay and with the
addition of an exploration bonus from section 3.3.2 onwards. The task will be continuing as
opposed to episodic. While many algorithms allow to work with both episodic as continuing
tasks, the vast majority of recent research focuses on episodic tasks with a slightly outdated
literature base focusing on continuing tasks [46]. Furthermore, I will test the ability of the
implementation to deal with varying action sizes and random starting states during training.

Reinforcement Learning I will test both value-based as actor-critic and both on- as
off-policy algorithms with a discrete action-space. For the off-policy algorithm, a replay
memory will be used to tackle the sparse reward challenge and decorrelate training data.
An ideal model is on-policy as the user wants to explore and exploit the state space on-line
(in real-time). It should be continuing as the user wants to explore the state space with
the possibility for infinite trajectories. Continuing spaces would be interesting in a musical
setting but is left aside as a requirement for now due to the high complexity and variance in
state-of-the-art implementations. A stochastic policy would be good as it allows to set the
probability of illegal actions to zero and offers more flexibility to determine an exploration
strategy.

Supervised Learning Activation functions of the ANN are Relu for hidden layers and lin-
ear (value functions) or Softmax (stochastic policy) for the output layer as modelled for a
deep reinforcement learning problem [49] [48]. Loss functions are MSE for a value function
and cross-entropy for a stochastic policy as also defined in the literature [73]. ANN inputs are
rescaled state values ∈ [−0.5, 0.5]. The ANN has 1,2 or 3 hidden layers with sizes ∈ [5, 300].
An ADAM optimizer [37] is used with learning rates ∈ [0.0001, 0.005] and mini-batch size
∈ (16, 32, 64).

Chapter 3. Model Development 21

Technical specifications All implementation are done using the Python language and with
help of the PyCharm IDE1. The Tensorflow2 Python framework was used to support the
ANN implementation. All models and training ran on an i7-4578U CPU (double core, 3GHz
processor) of a Mac mini computer. User interaction was implemented using Max MSP3 and
communicated to the Python processes over the OSC protocol. Patches in Max MSP or a
VST from Native Instruments called Massive4 were used as a digital instrument to generate
sounds to the user. Communication between Max and the VST was done using the MIDI
protocol.

3.2 Analysis of Deep Reinforcement Learning

This section presents the analysis of both value-based and an actor-critic algorithm applied
to our problem setting. An analysis of several hyperparameters will be presented as well.

3.2.1 Base Models

Three DRL algorithms are implemented in this section and listed below.

Deep SARSA is a value-based, continuing, on-policy RL algorithm with ANN approxim-
ation. The update rule for the episodic case can be found in equation 2.18. For a continuing
task, the algorithm can be found in appendix C. The update rule was presented in 2.24 and
restated here:

wt+1 = wt + α

[
Rt+1 − R̄t+1 + q(St+1, At+1, wt)− q(St, At, wt)

]
∇q(St, At, wt) (3.1)

DDDQN is a value-based, continuing, off-policy RL algorithm with experience replay and
ANN approximation. The update rule for the episodic can be found in equation 2.27. For a
continuing task, this update rule becomes:

wt+1 = wt + α

[
Rt+1 − R̄t+1 + q(St+1, argmaxaq(St+1, a, w′t), wt)

− q(St, At, wt)

]
∇q(St, At, wt)

(3.2)

A2C is an actor-critic, continuing RL algorithm with ANN approximation. The update rule
for the algorithm can be found in equation 2.25 and is restated here:

θt+1 = θt + α

(
Rt+1 − R̄t+1 + v(St+1, wt)− v(St, w)

)
∇θπ(At|St, θt)

π(At|St, θt)

I ran the aforementioned algorithms using following parameters obtained with an informal
search

RL model ANN model

Iterations = 40,000 # HLs = 2
|S| = 5 |HL| = 25
x = [0.72, 0.15, 0.51, 0.63, 0.91] α = 0.0005
a ∈ [−0.02, 0.02] Glorot initialisation [26]
εd = 20,000

TABLE 3.1: Basic model parameters

1https://www.jetbrains.com/pycharm/
2https://www.tensorflow.org/
3https://cycling74.com/products/max/
4https://www.native-instruments.com/en/products/komplete/synths/massive/

https://www.jetbrains.com/pycharm/
https://www.tensorflow.org/
https://cycling74.com/products/max/
https://www.native-instruments.com/en/products/komplete/synths/massive/

Chapter 3. Model Development 22

with # HLs and |HL| abbreviations for respectively the number of ANN hidden layers
and the ANN hidden layers sizes.

Figure 3.2 present a snapshot of training the different algorithms on the aforementioned
problem of finding a target state. Plots for the different algorithms are presented inter-
changeably as DSARSA, DDDQN and A2C have no problem determining an efficient policy
for the basic problem. The basic problem is simple due to the large number of rewards
provided, simple reward function and little exploration. As such, the algorithms are heavily
overfitting on the training data. These plots are used mainly to illustrate algorithmic dif-
ferences and interesting characteristics for later implementations. A first selection of figures
respectively show the target state, state trajectories and number of state components Si in
the target state during training and illustrate a fast convergence towards the target state x.

(A) Target x and DSARSA (B) DDQN

FIGURE 3.2: State trajectories during training
Next, learned Q and V functions averaged over all augmenting and decrementing ac-

tions for a given state s are shown in respectively figure 3.3a and 3.3b. It shows how the
DSARSA and DDQN algorithms correctly value ‘optimal’ and ‘non-optimal’ actions differ-
ently (‘optimal’ meaning action a towards the target state x = [0.72, 0.15, 0.51, 0.63, 0.91]).
For the A2C algorithm, the critic’s network output V(s, w) is plotted and shows how state-
value estimates approach zero after 10k iterations. This is due to the fact that the agent has
reached the target state and oscillates around it leading to alternating positive and negative
rewards. As the state-value function estimates the average reward per time-step, the estim-
ate will move to zero. This then leads to increasingly smaller network updates which can
be problematic for learning. Ensuring enough exploration through random action selections
using the stochastic policy or continuing a trajectory from a randomly selected starting state
could alleviate this issue.

(A) DSARSA (left) and DDQN (right) (B) A2C

FIGURE 3.3: Evolution of state(-action) functions during training
Next, figure 3.4 shows a state-value plot (A), action-value plots displaying actions se-

lected by a greedy and deterministic (B) or stochastic (C) policy and a sampled trajectory
(D) to present the networks’ learning after training. Axes S1 and S2 respectively refer to
state-values of state-dimensions 1 and 2. The target state x with S1 = 0.15 and S2 = 0.5 is

Chapter 3. Model Development 23

indicated by the red dot in (A). The target state is predicted to have a minimum state-value
as the network learns the estimated return of rewards and once in the target state, rewards
will oscillate around zero. One can see for the A2C network in (C) how different actions are
chosen around the target state due to the stochastic policy output from the Actor network
(multiple actions with probabilities > 0) .

(A) DSARSA (B) DDQN

(C) A2C (D) A2C

FIGURE 3.4: DRL networks after training
An important comment can be made on the stability of the results. Due to the random-

ness in the action selection (the ε-greedy exploration) and a large sensitivity to the parameter
setting, it remains difficult to obtain consistent results with a constrained training time. The
next section provides more details on this matter when analysing the influence of hyper-
parameters.

Several insights can be gained from these first tests. First, each algorithm has its own
strengths and weaknesses. DSARSA offers a straightforward implementation, more stable
results due to its simplicity and offers more room for algorithmic improvements as we shall
see. DDDQN offers the advantage of being an off-policy method (and thus has room for a
separate exploration strategy next to the learned policy) and has the techniques of experience
replay and duelling networks to improve sample efficiency as well as stabilise and speed up
learning. Finally, A2C as an actor-critic algorithm offers the advantage of directly optimising
towards the objective of an optimal policy. With a stochastic policy model, it could offer
interesting exploration characteristics for in the interactive case. The critic network however
offers little added value with the current reward function but will offer greater potential in
the interactive case later on (see the COACH algorithm).

Chapter 3. Model Development 24

3.2.2 Network Training

To properly set the hyperparameters of the model, I performed a parameter sweep and ana-
lysed the algorithms’ convergence speed and generalisation. Model parameters are distin-
guished between parameters of the ANN (number of hidden layers, hidden layer size, learn-
ing rate) and parameters of the RL model (training time, εd, action size). With a target state
x in mind, convergence speed is measured using two simple, handcrafted measures such as
an Average Target State for iteration t (ATS(t)) and a Time to Target (TT). The ATS can be
seen as a moving average of the number of state dimensions or simply put, the number of
VST buttons in the target state.

ATS(t) =
1

1000

t

∑
k=t−1000

|S|

∑
i

{
si(t).i, if |xi − si(t)| < 0.05.
0, otherwise.

TT = min(t) for when s(t) = x

Generalisation is evaluated using the ATS and TT measures for trained models with dif-
ferent starting states. Two runs were completed after training using the trained ANN with
same starting state as during training and a starting state with maximum distance from the
target state (respectively s1 and s2 in table 3.3).

With an ε-greedy exploration strategy, the added randomness results in variation among
training runs. For this reason, I ran the model with same parameters four times and cal-
culated mean and standard deviation on the ATS and TT measures between runs. Runs
were evaluated as good if they achieved a high ATS, a low TT with low standard deviation
between runs for both during as after training.

Hyperparameters and the associated ranges that were tested are shown in the following
table:

RL model ANN model

Hidden Layers = [1,2,3] Training time = [5k, 10k, 20k, 40k]
Hidden layer size = [5,15,25,50,75,100] εd / training time = [0.5,0.75, 1, 1.5]

Learning rate = [1e-4, 5e-4, 1e-3] Action size = [0.04, 0.02, 0.01, 0.005]

TABLE 3.2: Hyperparameter ranges
I ran the above parameters for the DSARSA, DDDQN and A2C model resulting in a

total of 3x24x4=288 runs. Note that some runs overlap as I choose the base model from
section 3.2.1’s parameter setting as the basis for varying other parameters. Also, the A2C
model does not have an explicit ε parameter and thus had 4x4=16 additional overlapping
runs. A selection of training runs is shown in the table below with a parameter setting as
for the base model but with εs equal to 1 and the number of hidden neurons equal to 75. It
illustrates how the DSARSA model obtains a best convergence during and after training for
both starting states. The results also illustrate the sometimes large variance between train-
ing runs. A full overview of the results with the DSARSA algorithm is shown in Appendix D.

Training (start state s1) After training (start state s1 and s2)
ATS(s1) TT(s1) ATS(s1) TT(s1) ATS(s2) TT(s2)
µ σ µ σ µ σ µ σ µ σ µ σ

DSARSA 4,83 0,13 4276 2400 4,38 0,53 220 283 4,35 0,13 173 25
DDDQN 4,77 0,08 5306 1177 4,14 0,67 286 210 3,68 0,97 435 281
A2C 4,49 0,09 3715 1949 3,34 0,77 181 52 2,95 0,62 428 358

TABLE 3.3: Evaluation of hyperparameters for DSARSA, DDQN and A2C
models

Based on all hyperparameter test runs, the following parameter settings performed best
for DSARSA, DDQN and Q2C:

Chapter 3. Model Development 25

DSARSA DDQN A2C
|HL| [25-75] [50,100] [75-100]
HLs [1,2] [1-3] [2-3]
Learningrate 0.0005 0.001 0.001
εd / training time [0.5-1] 1 /
|a| 0.01 0.01 0.04

TABLE 3.4: ’Optimal’ model parameters
To analyse training runs I used the earlier introduced ATS and TT measures as well

as analysed the evolution of ANN parameters, gradients and network activations using
histograms in Tensorboard5. Histograms of network parameters in tensorboard showed
proper distributions of parameter and update values for an ANN (close to standard normal
distribution and evolving over time meaning the network is learning something). I also
experimented using various forms of regularisation in the ANN such as L2 regularisation,
drop-out and early stopping [51]. However, added regularisation severely degraded results
of training runs. Without regularisation, the model is strongly overfitting on the training
data. However for a reinforcement learning problem overfitting does not pose a problem as
new training data is generated on the fly and sufficient exploration of the parameter space
can be guaranteed through a proper parameter setting. Other training techniques such as
batch normalisation, error clipping and different ANN parameter initialisations were tested
as well but did not improve or degraded performance.

Insights from these runs are:

• High ε is good for generalisation (i.e. convergence after training from different start-
ing states) after training while degrades performance during training. Although an
obvious insight directly related to the increase degree of randomness in the explora-
tion during training, it is important to keep in mind when setting parameters for user
interaction.

• Several runs did not converge towards the target state after training (indicated as X
in Appendix D). Causes are insufficient training time, too many hidden layers , too
much exploration (as compared to exploitation) or a too large combinatorial state-
action space due to a very small action size

• Learning rates can be increased compared to the more standard 1e-4 value found in
literature

• Variance between training runs can be high especially for low training time. This obser-
vation stresses the need for a good hyperparameter choice to stabilise results between
training runs

• Generalisation for DDQN and A2C is poor (1 in 4 ‘after training’ runs reached the
target state). I expect this to be due to a fast convergence during training and thus not
enough exploration to generalise to non-visited states.

• DSARSA performed best between the three models, DDDQN improved with early
stopping to prevent degraded results (I expect due to retraining on its replay memory)
and A2C was slow and required a higher number of hidden layers and number of
neurons in each layer for better results.

• A high number of rewards is needed before convergence towards target state and gen-
eralisation to non-visited states.

With 40k iterations and a consistent reward signal on every iteration, a high number
of rewards is the main weakness of models presented so far. This challenge and the user
interaction with the agents themselves will be the focus of the next section.

5https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

Chapter 3. Model Development 26

3.3 Analysis of Interactive Deep Reinforcement Learning

With a better understanding of the influence of model hyperparameters and the strengths
and weaknesses of each RL model, this section will focus on the challenges to obtain imple-
mentations with user interaction.

3.3.1 Remaining Challenges

Four main weaknesses with the current models are:

1. Variation between training runs

2. Large training time

3. High number of rewards

4. The notion of a target state

The first weakness is due to the randomness associated to the ε-greedy exploration and
parameter sensitivity. Also, as no theoretical proof exists for convergence towards a global
optimum in the case of reinforcement learning with function approximation (such as deep
reinforcement learning), different initialisations or the aforementioned randomness can lead
to different local optima. This variation between runs will be partly addressed using con-
sistent parameter settings between runs and extending the exploration strategy using the
exploration bonus.

Next, the weaknesses of a large training time as well as the high number of rewards
required before sufficient learning proved to be most challenging to deal with. First, it is
known that reinforcement learning models are very sample inefficient. This mainly because
of their bootstrapping updates i.e. using estimates of future rewards based on other estim-
ates as ground-truths for training. Second, as the aim of this research is to develop a model
with user interaction, we want the model to learn fast during interaction knowing there is a
severe restraint on training time and the number of interactions or sparse feedback. Conform
to the reinforcement learning literature, the design of the reward function and its role in the
model will prove to be crucial for performance. I will address these challenges with the use
of dedicated models for user interaction and an appropriate reward distribution. Rewards
will be very simple and guiding the agent in a continuing task as opposed to evaluating
the agent in an episodic task. Other techniques to address the sparse rewards challenge are
reward shaping (carefully tuning the reward signal using for example higher rewards after
a certain sequence of actions [52]), hallucinating rewards (adding rewards based on history
or using different reward functions [3]) or the definition of auxiliary tasks [34]. While these
might be promising alternative routes, they are left for future work.

Finally, while we certainly want the agent to learn a policy based on the user preferences,
it will become more and more difficult to consider the notion of a ‘target state’. A target state
was introduced to test and evaluate algorithms using a synthetic reward signal. However,
with user interaction the focus will shift towards exploration as an objective in itself as a user
might have a moving goal or no goal at all. Notions of a target state or convergence speed
will so become less of a priority. Fast learning from user preferences obviously remains
important but more in function of a proper exploration strategy.

3.3.2 Interactive Models and Evaluation

Integrating user feedback in the models can be done in various ways as explained in section
2.5. Starting from the base models from section 3.2.1, I continued with the DSARSA model as
well as adapted the DDQN and A2C models to obtain respectively the interactive DSARSA,
DTAMER and COACH models from 2.5.

In addition, I tested several reward distributions over a variable length trajectory. More
specific, a reward was positive if the vector between start and final state of a trajectory was
in the direction of the target state. This reward was then distributed with linear or expo-
nentially decreasing decrements over earlier states in a trajectory. I also tested a distribution
depending on the variance of each state from the vector between start and final state without

Chapter 3. Model Development 27

performance improvements. I also implemented the notion of eligibility traces (an exponen-
tially decaying vector keeping track of the policy gradient to deal with delayed rewards [4])
for the COACH model to test the influence of a backward-looking view on action selections
but this did not improve or degraded performance.

Summarising the models used to obtain the results presented below:

• interactive DSARSA: user feedback directly replaces the reward function, on-policy

• DTAMER: user feedback as comment on agent’s behaviour, off-policy with replay
memory

• COACH: policy-dependent user feedback as comment on agent’s behaviour, on-policy
and feedback as critic in an actor-critic model

To improve the exploration strategy from naive ε-greedy exploration, I used the tech-
nique of an exploration bonus based on pseudo-counts as formalised in section 2.4. Varying
the weight of the exploration bonus allows to reward an agent relative to the novelty of
a state. Pseudo-count estimations need a density-model for which I used tile-coding with
hashing [79]. Tile-coding has been used extensively in the reinforcement learning literature
for feature construction and discretisation of the state-action space. However, to my know-
ledge, it has not been used for density estimation or in relation with the pseudo-count tech-
nique as used here. Tile-coding as density estimation techniques was preferred over other
techniques such as Gaussian Mixture Models or using ANNs for its low computational cost
and ability to scale to higher dimensions.

The plots below show the density estimations running the DTAMER model after 1000
and 5000 iterations with parameters as in table 3.5 and β = 0.4 (see equation (2.29)). As the
DTAMER agent quickly moves towards the target, state density during training is highly
concentrated around the target value (S0 = 0.72 and S1 = 0.15) with the same synthetic
reward signal and target state as before. The plots illustrate how tile coding can be used
effectively as a density estimation technique and will be a useful tool to encourage and dir-
ect exploration to non-visited states in implementations later on. Precision of every dens-
ity estimation is calculated dividing the tile size by the number of tilings. Tile-coding was
implemented using a hash table to reduce the memory requirements with hashtable size

= 1
tilesize

|S|
.#tiles. For a tilesize= 0.4 and the #tiles= 64, the precision equals 0.00625 with a

hashtable size= 6250.

(A) Density estimation after 1000 iterations (B) Density estimation after 5000 iterations

FIGURE 3.5: Density estimation using tile-coding
I ran the three models with several hyperparameter settings using the insights gained

from section 3.2.2 and settings from 3.4, with rewards distributed exponentially over
trajectories of length 2 to 8 and a number of iterations between 20 and 30,000. A selection
of results in shown in table 3.6 for model hyperparameters as in table 3.5. The full training
results for the DTAMER algorithm are shown in D.

Chapter 3. Model Development 28

|HL| 75
HLs 2
Learning rate 0.001
Training time 20k
εstart 0.5
Action size 0.02
Trajectory length 4

TABLE 3.5: Interactive DRL model parameters

Training (start state s1) After training (start state s1 and s2)
ATS(s1) TT(s1) ATS(s1) TT(s1) ATS(s2) TT(s2)

interactive DSARSA 3,385 1655 1,073 X 2,64 X
DTAMER 4,984 1623 4,817 54 4,34 117
COACH 2,992 1303 2,280 812 1,96 791

TABLE 3.6: Evaluation of Interactive DRL
With fewer rewards and rewards distributed over a trajectory, training becomes signi-

ficantly harder. As a trajectory includes several state-action pairs, some rewards will be
wrongly assigned and not correspond with the objective of reaching a target state. For ex-
ample, it is possible the agent was moving towards the target state for several steps before
taking one action away from the target resulting in a negative reward over the full trajectory.
Rewards now correspond to larger trajectories of the agent which could be a beneficial trait
for the case with user interaction. I did not attempt to remodel the synthetic reward function
to better represent user feedback over longer periods of time (i.e. one or more trajectories)
as to directly move towards a case with real user interaction.

However, for the synthetic case as defined in the previous section, DTAMER greatly
outperformed the interactive DSARSA and COACH models as shown in table 3.6 (higher
ATS and lower TT). 20k iterations with 5k rewards proved to be too little for the interactive
DSARSA and COACH agents to properly generalise acquired learning. Only 13 % of their
training runs in an informal hyperparameter search generalised learning i.e. obtained a TT
value for both starting states s1 and s2. With 30k iterations, this percentage increased to 40
% which is still very poor. For DTAMER, 85 % of training runs with 20k iterations properly
generalised and found the target state from different starting positions. It must be noted that
these percentages represent a subset of runs from a hyperparameter search and thus also in-
clude the model’s parameter sensitivity. Also, while these results may seem very bleak, they
only discriminate between generalising or converging and non-generalising models. The
latter class of models may still approach the target state but may never get there. This is
more often the case for the COACH model due to its stochastic policy and implicit explor-
ation (absence of an exploration parameter as ε). As an example of a run approaching but
never reaching the target state, the run with results in table 3.6 is shown in figure 3.6.

(A) ATS measure during train-
ing

(B) During training (C) After training with starting
state s2

FIGURE 3.6: COACH training run

Chapter 3. Model Development 29

The model analysis done so far remains quite superficial. Other properties such as the
algorithms’ sensitivity to differential feedback, inconsistent feedback, moving targets, dif-
ferent reward functions and larger state dimension sizes should be further investigated. The
algorithms’ behaviour and capability to deal with local and global optima, to incorporate or
transfer learning between training runs as well as the uncertainty of their value estimates
are other important and interesting analyses to be carried out. However, while these may be
pertinent from an algorithmic and technical perspective, I argue that it is time to include the
user more tightly and that a higher priority in this work now is to focus on the interaction.

3.4 Discussion and Future Work

If one thing should be clear from this chapter, it is that reinforcement learning is hard. The
large combinatorial spaces, the different sources of randomness and variation in the al-
gorithms, the slow learning and sample inefficiency, local optima and overfitting all lead
to difficulties in training agents. In addition, our problem setting adds the challenging re-
quirements of low training time and sparse rewards.

However, one can obtain satisfying results with the generic problem formalised in sec-
tion one and with a low state space dimension. First, best performance is achieved using
the simplest models. Both DSARSA and DTAMER obtain better results as compared to their
peers in our problem setting. Second, it has been shown that sufficient exploration is critical
for an algorithm’s performance and generalisation. To this end, the exploration bonus ob-
tained using tile coding proved to be very good in terms of simplicity and efficiency. Also,
it provides an elegant alternative to a crude ε-greedy exploration strategy.

While the analysis done so far has shown convergence to a target state under mild con-
ditions and after training, there remains a question if this convergence is required for a
real-life application. When a user is only interested in on-line exploration or exploration
during training of the agent, convergence after training becomes less important. This in-
sight provides the opportunity to tune the agent to be more reactive during training (and
thus converge faster to a target state) while sacrificing its learning or generalisation to non-
visited states.

Another comment can be made on the assumption of a target state and the interest in
sounds as such. For a real-life application target states might be moving or non-existing and
user interest might be on the sonic evolution or trajectories instead of on sounds as such.

Also, while the models currently have the advantage of being generic in the sense of a
neutral parametric state representation, the agent acts only on synthesis parameter values
and has no real notion of sound qualities. One could however insert timbral information
such as sound descriptors or spectra into the state description to alleviate this issue. Finally,
while DTAMER proved to be best in terms of convergence and generalisation, future work
could investigate the use of the COACH algorithm to obtain a stochastic instead of determ-
inistic policy. A stochastic policy allows more flexibility in the definition of an exploration
strategy and could give interesting (sonic) transitions for actions with equal probability or
when the there is high uncertainty in the agent’s predictions.

Also, to improve the agent’s learning in a real user setting, one could perform a hyper-
parameter search using real user feedback to train and evaluate the agent. Other ways to
improve or change models concern the use of continuous action spaces, inserting a notion
of uncertainty in the network so the agent can evaluate its predictions, evaluating the use of
n-step methods to improve learning [79] and assure a more structured exploration (see 2.4).

30

Chapter 4

Design of the User Interaction

We now have an interactive deep reinforcement learning model with flexibility through its
generic formalisation and many parameters. From hereon, I will add improvements to tackle
the sparse rewards challenge as well as develop new tools for the user to be used during
user-agent interaction. These new tools will offer more user control and hopefully a more
efficient exploration and enjoyable user experience. While the DTAMER model proved best
for our setting, the controls developed in this section can be applied to the other algorithms
as well (interactive SARSA, COACH). The outline of this chapter is as follows:

4.1 The Application: This section will present the interface used during the experiments in
the next chapter as well as the user-agent interaction process.

4.2 Interaction Controls: Section 4.2 provides an overview of the controls I added to the exist-
ing algorithms. They are specific to our problem setting and should improve agent’s learning
as well as the user experience.

4.3 Additional Features: Here, I present several aspects of the application that I did not ana-
lyse in-depth but proved to be important for the experiment in the next chapter. I will present
a feature called ‘PCA overview’, the sound engine and a new version of the application in-
tegrating several user remarks obtained during the experiment.

4.1 The Application

The figures in this section present an overview of the final model. It shows a typical ap-
plication using a VST although the current model is sufficiently generic to apply it to other
contexts. One can for example adapt the model to incorporate sound descriptors in the state
representation, provide another input modality than raw VST parameters such as for ex-
ample the acceleration and position of movement data or use the model in a collaborative
context such as for example done by Derbinsky in [16].

The current model can be described using two concurrent processes namely a training
and an interaction cycle. A typical training cycle is shown in figure 4.1 and can be described
as:

1. The environment is currently in state s which it translates to a MIDI signal to the VST.

2. The VST translates this signal through its sound engine into sound towards the user.

3. A user with an actual (most probably non-stationary) reward function R(s, a) in mind
provides its feedback R on the sound to the agent.

4. The agent

(a) uses feedback R to update its estimated reward function R̂+(s, a, w)

(b) uses the state s to update its density model p̂(s, φ)

(c) selects a new action a using state s, the output of its learned reward function
R̂+(s, a, w) and its policy π(s)

(d) stores the couple (s, a, r+) in its replay memory for later retraining
(e) sends action a to the environment

5. Finally, the environment updates it’s state s based on received action a and the cycle
repeats

Chapter 4. Design of the User Interaction 31

FIGURE 4.1: User-agent-environment architecture
A typical interaction cycle consists of agent control commands from user to agent and

returned auditory and visual feedback. The training and interaction cycles can be discrete
or continuous reflecting whether the agent will pause and wait for user feedback after taking
an action or not.

The user interface is shown in figure 4.2. It shows a counter and timer in red, a preset
list to save sounds and a list with exploration history which are all related to the experiment
presented in the next chapter.

FIGURE 4.2: User interface

4.2 Interaction Controls

Controls are a new addition to the model and are listed in table 4.1. They provide more
control to the user and move the application from a ’human-in-the-loop’ to a more ’machine-
in-the-loop’ perspective. They could increase the user experience through more autonomy,
flexibility as well as algorithmic qualities and learning through richer user feedback and
better exploration strategies. Ideas for these controls resulted from user feedback during
experiments with complex musical interfaces [65]. An architectural overview of the agent
implementation with user controls is shown in figure 4.3. The figure also shows the internal
signal flow within the agent which should be understandable from previous discussions.
Agent controls are indicated in green. They are shown directly from user to agent as the
environment only acts as an interface to the user and translates user keyboard presses into
OSC messages. Agent controls now offered by the environment are:

Chapter 4. Design of the User Interaction 32

1. Evaluative Controls 2. Instructive Controls 3. Exploration Controls

Reward r: Like or dislike
state-action pairs

Precision: Increase or
decrease state transition
speed

Explore state: Sample a
new (non-visited) state to
start a new trajectory

Super(dis)like: Superlike
or superdislike states

Speed: Increase or
decrease action size

Explore action: Sample
a new (least-taken) action

(Un)Pause: (Un)Pause
the exploration and get
an exploration overview

TABLE 4.1: User interaction controls

FIGURE 4.3: Agent architecture
The added ‘agent controls’ open up a new set of affordances in the application. The follow-
ing paragraphs will discuss their implementation and their impact.

1. Evaluative controls As before, the user can give a reward on the sound transition he
or she perceives. Density information is used to calculate an exploration bonus which is
added to the reward. This augmented reward is then assigned to state-action pairs and dis-
tributed over a trajectory. Apart from a simple reward, the user can also give superlikes or
superdislikes to specific states (and in our case, sounds) as such. These superlikes and super-
dislike translate into rewards distributed to state-action pairs respectively leading towards
and away from the concerned state. Figure 4.4 shows a simple reward on the left for state s
and action a at time t + n distributed over a trajectory of n states. A superlike shown on the
right will impact several state-action pairs leading to the affected state at time t.

(A) Reward (B) Superlike

FIGURE 4.4: Evaluative controls in a 2-dimensional state space

Chapter 4. Design of the User Interaction 33

These two mechanisms each afford the user different controls. Whereas the simple reward
comments on the agent’s behaviour (the action taken), the super(dis)like evaluates states as
such. User feedback can thus be of a guiding or a more evaluative nature which allows for a
more flexible user interaction and precise user control.

2. Instructive controls The user can independently modify the precision and the explor-
ation speed of the agent as well as the pause the agent’s exploration alltogether. Precision
and speed are controlled changing the action size and the state transition time. Changing
the transition time also influences the reward distribution length n to ensure the user always
evaluates trajectories of 1 second. The effect of both controls are shown in figure 4.5 for an
action a and reward distribution length n at time t and t + m.

(A) Precision (B) Speed

FIGURE 4.5: Instructive controls
With control over the precision and the speed, the user can for example take finer steps and
slow down the exploration. It allows the user to better explore regions of interest or move
the agent more quickly out of regions it does not want to explore further.

The user can also pause and unpause the agent’s exploration and manually select previ-
ously visited states from a list containing the exploration history. I visualised the history in
different ways (list, PCA, visualising feedback and history in real-time) as well as allowed
the user to take back manual control from the agent.

3. Exploration controls The user has two controls to directly influence the exploration.
With the ‘explore state’ control, the user moves the agent to a new state chosen using random
sampling of the estimated state density distribution and selecting the state with the lowest
density probability. With ‘explore action’, the user instructs the agent to take an action to
the nearest least-visited state again informed by the density distribution. Both controls are
visualised in figure 4.6.

(A) Explore state (B) Explore action

FIGURE 4.6: Exploration controls

Chapter 4. Design of the User Interaction 34

Directly influencing the next state or action in an interaction is an important control for the
user. As such, he or she can take over or ‘restart’ the exploration trajectory of the agent using
it to escape non-satisfying trajectories chosen by the agent.

Interaction strategies New affordances as explained with the offered controls to the user
have important implications for the applications. In this new setting, the user is allowed new
interaction or exploration strategies moving beyond simple observation and binary feedback
cycles. Two scenarios at the extremes are listed below.

• Scenario 1: A ‘passive’ user might let the agent explore and only provide simple re-
wards during the agent’s exploration. He or she could gradually decrease the precision
and the speed and only rarely use the super(dis)like or explore controls.

• Scenario 2: An ‘active’ user might first crudely explore the state-space by resetting the
agent frequently using the ‘explore state’ control and the super(dis)like evaluations.
He or she could then resort to finer exploration increasing the precision, decreasing
the speed and providing simple rewards.

Final implementation A full algorithmic overview with user controls is shown in
Algorithm 2 in Appendix C.

4.3 Additional Features

This section describes additional aspects of the model that but proved to be useful for the
final application. As such, the PCA interaction was added as a static overview afterwards.
The choice of sound mapping proved to be a important factor for the user experience and
associated evaluation. I also present a version of the application that was only developed at
the end of my internship and

PCA interaction When the training is done i.e. when the user decides to exit the training
phase, I also provided an after-training phase. During this ‘PCA interaction’, the application
offers a visualisation with dimensionality reduction using PCA to the user using the state-
trajectories explored during training and the user feedback. The user can then re-explore
and re-listen to earlier visited states. This new interaction phase is visualised in figure 4.7.
While this interaction phase remains quite simple in its current implementation, it offers
many opportunities and new routes to improve the application. For example, it requires
not much work to restart the training phase using user feedback obtained during the PCA
interaction phase. As such, one can alternate between a more agent-exploration oriented
and a more user-exploration oriented phase. Another improvement could be the selection
of a subspace to restart exploration or to correct earlier provided feedback.

Chapter 4. Design of the User Interaction 35

FIGURE 4.7: After training interaction: model

Sound engine For the sound engine and the sound synthesis parameters I used a gran-
ular synthesis and FM patch in Max and a VST from Native Instruments called ‘Massive’
(shown in E). I did not spend much time on choosing a parameter setting and state-sound
mapping to focus more on the algorithm and the interaction as presented in earlier sections.
The three sound synthesis choices did each have interesting characteristics that could be fur-
ther explored. For example, state dimensions and parameter settings were distinguishable
between agent trajectories for the granular patch while being much less so for the FM and
VST synthesis choice due to the non-linear coupling between parameters. The degree of
(sound) variation for one parameter, the (non-linear) coupling between parameters or the
use of a self-defines sound sample (granular synthesis) all have important consequences for
the application and the user interaction. The analysis and experimentation of these is left for
future work.

Mixed manual-agent version As mentioned before, the discussion has focused solely on
the agent’s exploration while a combination with manual exploration is possible. A full
implementation with concurrent manual and agent exploration as well as real-time history
is shown in figure 4.8. This implementation was developed at the end of my internship and
incorporated many of the user remarks presented in the next chapter. Preliminary user tests
showed improved potential for (creative) use and this application will also be used in an
installation at the upcoming ISMIR 2018 conference in Paris 1.

FIGURE 4.8: Mixed manual-agent version of the IDRL

1http://ismir2018.ircam.fr/

36

Chapter 5

Experiment and Evaluation

This chapter evaluates and discusses a final version of the ‘interactive deep reinforcement
learning agent for timbral exploration’. Its outline is as follows:

5.1 Experimental Set-up and Process

5.2 User Experience and Interaction: This section first presents an analysis of the user exper-
ience and the interaction according to feature use for individual users, compared to average
use and use over time.

5.3 User Presets and Exploration: This section will focus on the variance between user ex-
ploration strategies and link it to user presets and feedback. It successively presents user
presets saved during exploration with associated evaluation, the relation between the user
preset and feedback distribution and the structure of exploration trajectories.

5.4 Agent’s Learning: This section will evaluate the learning of the agent by analysing the
user feedback consistency, exploration density and the the behaviour of trained agents in
the timbral space.

5.5 Discussion and Future Work

5.1 Experimental Set-up and Process

The goal of the experiment is to analyse the interactive system as presented in earlier
chapters in terms of user experience, the human-computer interaction and the trained
agent.

Process: For an evaluation of the system, participants were asked to explore the earlier-
introduced Massive VST. Participants were asked to explore 10 different parameters for
which mapping from each ‘macro’ parameter to a Massive sound synthesis parameter is
indicated in yellow in Appendix E. Exploration was done alternating between three types of
interaction as shown in figure 5.1: Manually, through providing feedback to the interactive
agent and using the PCA overview. This alternation between phases was chosen to remove
bias towards user preference of an interaction type resulting from knowledge of the timbral
space.

During exploration, the participants were asked to save an arbitrary number of varied
sounds they appreciated. This task was chosen to direct their intentions towards a pre-
defined goal. Variation and appreciation in this context were defined as perceptively differ-
ent (e.g. bright, dull, harmonic, noisy, etc.) and appreciated according to participants’ own
subjective criteria (e.g. beautiful, calming, aggressive as positive trait, etc.). At the end of
the interaction, participants were asked to score each sound between 0 and 9 to evaluate the
resulting sounds from each mode of interaction.

Finally, participants received a questionnaire in which they were asked to evaluate their
experience and the interaction itself followed by a brief and informal discussion of their
experience. The total duration of the experience was 55 minutes. An overview of the experi-
mental process is shown in figure 5.1. The questionnaire will be discussed in the next section.

Chapter 5. Experiment and Evaluation 37

FIGURE 5.1: Experiment process flow

Participants and set-up: In total, 14 participants performed the experiment of which three
were female. participant backgrounds comprised sound engineering students, (post-) doc-
toral researchers in computer music, sound engineers and IT researchers/developers. Ages
varied between 22 and 42 years old. In the questionnaire, participants indicated widely vary-
ing experience with music production and audio plug-ins from no experience and no use at
all to professional experience and daily use. All experiments were executed at my work
desk, with my Mac mini computer, AKG K271 headphones and Mac mouse and keyboard.

Reinforcement learning model: During informal tests, it became clear some adjustments
needed to be made in the final design of the application obtained in chapter 3. First, I in-
creased the state-space dimension from eight to ten to increase the complexity of the timbral
space to be explored. Second, I disabled the instructive controls precision and speed as the
application seemed too complex for a participant during a first appropriation of the system.
Thirdly, I increased learning rates, decrease the replay memory size and increased the re-
wards associated with super(dis)likes. These changes were made after first informal tests
were participants complained about the reactivity of the agent. While these changes im-
proved the reactivity (increased learning rate gives stronger network updates, decreased
replay memory size assures retraining on more recent history and an increase super(dis)like
reward also increases its impact on agent’s learning), they proved to be detrimental for learn-
ing overall as will be shown later on. Participants did the experiment using the interface
from figure 4.2. Manual control was disabled during training of the agent and only a simple
list overview of the exploration history was shown. An algorithmic overview with para-
meter settings is shown in Appendix C.

5.2 User Experience and Interaction

After performing all the experiments, one major observation was the diversity between par-
ticipants in their exploration strategies and their specific needs and frustrations. This first
part will present the qualitative results based on the participant questionnaire, user controls
frequency of use over time and participant’s comments.

Questionnaire: The participant questionnaire can be found in Appendix E. Participants
were asked to compare the manual and agent exploration using scores between contrasting
adjectives using a Likert scale of 1-5. These adjectives were based on research by Laugwitz
who did an in-depth study in how to construct an end-user questionnaire to measure user
experience [40]. She identified several adjectives representing criteria in classes such as

Chapter 5. Experiment and Evaluation 38

perceived ergonomic quality, perceived hedonic quality 1 and perceived attractiveness of a
product. The division of classes in criteria and associated adjectives is presented below:

Classes Criteria Adjectives
Attractiveness -> Annoying - enjoyable

Ergonomic quality
Perspicuity Confusing - clear

Ambiguous - understandable
Dependability Obstructive - supportive
Efficiency Inefficient - efficient

Hedonic quality
Novelty Conventional - inventive

Dull - creative

Stimulation Demotivating - motivating
Boring - exciting

TABLE 5.1: User experience measures and adjectives
I made one adjective replacement compared to [40] which had ‘non-understandable’ in-

stead of ‘ambiguous’ as a counterpart to ‘understandable’. My motivation is that I wanted
to insert a negative adjective as a positive characteristic for creativity. However, only two
out of 14 participants scored the agent very high on ambiguity, the remaining participants’
scores were evenly distributed.

I performed a 2-factor ANOVA-analysis with replication using the scores of each
participant for all adjectives (see table 5.1) and for both the agent and manual exploration
mode. Results with associated scores are summarised as (evaluation results in Appendix
G):

Hypothesis and conclusion F-value Fcritical p-value
Hedonic quality: Agent >manual exploration 4.95 3.92 0.028
Ergonomic quality: Manual >agent exploration 22.13 3.92 6e-6
Hedonic adjective average scores are
significantly different from each other 3.44 2.68 0.019

Hedonic adjectives and exploration mode
are not independent from each other 5.81 2.68 0.001

Attractiveness for both exploration modes
was not significantly different 2.23 4.17 0.15

TABLE 5.2: Results ANOVA-analysis user experience questionnaire
In addition to the experience, I asked participants to evaluate the agent controls on their

usefulness, usability and satisfaction. The agent tools were in overall considered medium to
very useful with an overall average score of 3.88/5 and standard deviation of 0.18. Sound
trajectories between the two exploration modes were evaluated by participants as well but
were not significantly different. The average results are summarised in the figure below.

FIGURE 5.2: User evaluation of user controls
1Hedonic quality focuses on non-task oriented quality aspects, for example the originality of the design or the

beauty of the interface.

Chapter 5. Experiment and Evaluation 39

User controls and interaction: When analysing the use of agent controls over time and
between participants, the variety of participants’ exploration strategies becomes clear. The
below figures show the percentage and absolute frequency of controls’ use. Controls shown
are Explore State (ES), SuperLike (SL), SuperDisLike (SDL), Like (L) and DisLike (DL). They
show the wide-ranging variety between participants in absolute and relative terms. For ex-
ample, participant 12 provided a lot of guiding feedback, while participant 8 provided a
lot of evaluating feedback as compared to its use of guiding feedback. Another example is
the relative large use of the exploring control of participant 1 and 2 and the large variation
between absolute counts of all controls. This large variety should be further analysed to ad-
apt the current application to provide an appropriate interface and behaviour of the agent
for each participant.

FIGURE 5.3: Frequency of user controls (x-axis: participants, y-axis: relative
and absolute count)

Other insights are gained analysing the user interaction over time i.e. for each of the three
training runs. The below figures show the use of controls during each phase in absolute and
relative terms between participants. Several observations are:

• Participants used less controls over time

• More exploration control in phase 2, then again less in phase 3

• A large decrease and increase of respectively the ‘superdislike’ and ’explore state’ con-
trol after the 1st phase (both 31%)

• The most ‘superlike’ controls are given in the final phase

While the given task will have influenced the results, the observation that participants gave
less superdislikes and less feedback overall over time could indicate the agent was perform-
ing better or that participants let the agent explore more while providing less feedback.

Chapter 5. Experiment and Evaluation 40

FIGURE 5.4: User controls over time (x-axis: interaction phase, y-axis: relative
and absolute count)

Participant comments: Finally, remarks from different participants in the questionnaires
and after the experiment also provided several insights.

A first comment can be made on the distinction between trajectories and sounds them-
selves. While the task was motivating participants to listen to and search for individual
sounds, one of the big advantages of using reinforcement learning is the incorporation of
transition dynamics. This added value was highlighted by several participants. Participant
backgrounds also proved to be important in this respect. More technically oriented or ‘ana-
lytical’ participants such as sound engineers or avid plug-in participants strongly focused
on understanding each parameter’s role while giving less importance to the exploration dy-
namics brought about by the agent. Limited task time and confusion about guiding and
evaluating feedback was also mentioned as a cause for the trajectory-sound distinction.

A second comment can be made regarding the interaction and exploration itself. Parti-
cipants appreciated gradually learning more about the agent’s ‘black-box’ and formulated
specific notions of exploration. Others found the interaction less direct in the sense that they
did not know which parameter the agent was moving. This may suggest that a less direct
interaction here refers to the analytical approach, meaning less direct to the sound synthesis
parameters. With an agent exploring, participants are motivated to take a more ‘embod-
ied’ approach, and listen and evaluate sounds themselves without linking parameters with
sound synthesis effects.

Another comment is related to the importance of the timbral space and the parameter
mapping. The non-linear and one-to-many agent-to-VST parameter mapping proved to be
very important for the task. One participant strongly disliked the timbral space and could
not appreciate exploring it while others were more interested in the mapping itself than
exploring it.

Finally, a large portion of remarks concerned suggestions for improvements. Almost all
participants commented on the precision and the speed of the agent and stressed the impact
on their questionnaire scores. They had difficulties with the task as the agent was constantly
moving (while they did have the possibility to pause the agent) as well as the agent’s fixed
action size. Consequently, several participants argued to combine the manual with the agent
exploration. The PCA was conceived as very useful and enjoyable overall while participants
would have appreciated more structure, real-time visualisation, clear labels, the possibility
to correct previously provided feedback and to select a PCA subspace to restart training. Se-
lecting parameter subranges or excluding parameters from exploration were also mentioned
as improvements.

Chapter 5. Experiment and Evaluation 41

5.3 User Presets and Exploration

This section will take a look closer to the saved sounds or presets and the exploration of
the timbral space during experiments. It will present analyses on the saved sounds and
associated user evaluation, the relation between saved sounds (the so-called presets) and
user feedback and the various user exploration strategies.

User presets: During each phase of the experiment, namely the three manual and agent
exploration phases and the PCA overview phase, participants were asked to store varied
sounds they appreciated. At the end of the experiment, the order of saved sounds was
randomized and participants were asked to give scores between 0 and 9. The figure below
shows some trends on the obtained scores for 12 participants as scores from participant 1
and 4 were lost during saving. It shows how participants saved more sounds during manual
exploration as well as valued them slightly higher than during agent exploration. Variance
between participants however was high. Sounds saved during the PCA overview obtained
the highest scores although were only significantly higher compared to sounds from the
first manual interaction (p-values equal to 0.028, 0.072 and 0.143 respectively compared to
manual interactions 1, 1+2 and 1+2+3).

FIGURE 5.5: Saved sounds statistics

User presets and feedback: The following plots show the PCA overview to get an over-
view of participant’s saved sounds and feedback distribution. The PCA projections were
done using a uniform PCA giving equal weight to all 10 dimensions to have a coherent pro-
jection state spaces between participants. As the task was to obtain varied sounds, figure
5.6 shows participants that had a local and broad exploration respectively shown left and
right. One must note, that broad exploration only concern parametric states as no sound
perception is taken into account in the PCA projection.

FIGURE 5.6: (Uniform) PCA overview of feedback and presets for participant
1 (left) and 14 (right)

Chapter 5. Experiment and Evaluation 42

The next figure obtained with a PCA projection with each participant’s data, shows how
one participant had a consistent strategy to save sounds he or she superliked. He or she
also made a clear distinction between superlikes and dislikes which can be interpreted as a
consistent feedback strategy beneficial for the agent’s learning.

FIGURE 5.7: (Proper) PCA overview of feedback for participant 8
Figure 5.8 shows two PCA projections using all participants’ data and shows two parti-

cipants that had an overlapping region of corresponding feedback. While the distribution
of superlikes and dislikes varied widely among participants, these participants seemed to
demonstrate a comparable appreciation for sonic regions. They did approach the task dif-
ferently though as demonstrated by different preset distributions.

FIGURE 5.8: (Global) PCA overview of feedback for participant 6 (left) and 8
(right)

Exploration strategies: Another interesting illustration of the variation between parti-
cipant exploration strategies is demonstrated through analysing agent trajectories and
state space density weights. I used a uniform PCA matrix (all state dimensions have
equal variance weight) and computed a PCA transformation matrix using all data from all
participants. I then plotted agent trajectories for each participant over the full 15 minute
and individual training phases. The plots below for the computed PCA matrix show how
participant 14 used preferred the exploration control over the super(dis)like control as
compared to participant 6. The difference in exploration strategies was also shown when
plotting both agent and manual trajectories. These plots also suggest the usefulness of
visualising agent trajectories with a potential added value for the user during training.

Chapter 5. Experiment and Evaluation 43

(A) Agent trajectory for
participant 6

(B) Agent trajectory for
participant 8

(C) Agent trajectory for
participant 14

FIGURE 5.9: Agent trajectories for participants 6,8 and 14

(A) Agent trajectory (0-5
minutes)

(B) Agent trajectory (5-
10 minutes)

(C) Agent trajectory (10-
15 minutes)

FIGURE 5.10: Agent trajectories for participant 6

5.4 Agent’s Learning

This section will evaluate the agent’s learning by analysing the user feedback consistency,
the exploration density distribution and the behaviour of the trained agents.

User feedback consistency: Providing consistent feedback can be challenging for parti-
cipants, as sounds can be perceptively similar and because the agent is constantly moving.
To facilitate proper training of the agent, feedback consistency is important. The following
plots show an inconsistent and consistent participant respectively on the left and the right
in their use of superlikes and superdislikes. The plots show histograms of the euclidean dis-
tance between the state vectors of each superlike with every superdislike. For the user on
the left, as the distribution has a portion close to zero, state vectors of several superlike and
superdislikes have a near zero distance between them. These plots demonstrate the variab-
ility in feedback strategies of participants and stress the importance of having an agent that
is flexible over time in the sense that it can adapt to changing feedback strategies.

Chapter 5. Experiment and Evaluation 44

FIGURE 5.11: Histograms of Euclidean distance between superlike and su-
perdislike state-vectors for user 14 (left) and user 10 (right)

Exploration density: I also calculated some statistics over the density distribution of each
participant’s agent trajectory obtained using aforementioned tile coding. I used a more
coarse coding than during training to better illustrate differences between participants
with 16 tiles of size 0.7 leading to a tile coding precision of 0.04. These also confirmed the
variation between participants and how much of the timbral space they actually explored.
The below table and plot shows some statistics and a sorted list of density weights for three
participants. A flat curve means the density is more spread over the timbral space meaning
the participant explored more. Differences in trajectory length arose because participants
paused the agent for a variable amount of time. They show that participant 14 took more
pauses but did explore more of the timbral space while participant 8 explored much less.
Overall, participants did not pause the exploration for long and several participants did
not pause the exploration at all. This may have been due to the fact that it already took
some time to appropriate the other controls and because the pause control was not exposed
clearly enough. Another reason could be that participants were focusing on the trajectories
and did not want to stop the sonic evolution over time.

Participants |Trajectory| Min Max Mean Stdev Skewness Kurtosis
6 8578 0.000061 545 8.37 31.32 6.69 65.51
8 8410 0.000061 1520 8.21 49.83 12.57 215.96
14 7685 0.000061 286 7.50 21.68 4.17 23.17

TABLE 5.3: Agent trajectories density distribution statistics

FIGURE 5.12: Density weights for different participants

Chapter 5. Experiment and Evaluation 45

Agent’s learning: Finally, the agent’s learning can be analysed by looking at a trained
agent’s behaviour towards super(dis)likes and (dis)likes. To this end, I collected the trained
agents after each user interaction phase as well as created two new agents: one was retrained
on each participants’ feedback while the other only took random actions. I then had each
agent perform 250 trajectories of 600 state transitions with random starting states and cal-
culated the distance between the states with user feedback and each trajectory’s start and
ending state. A super(dis)like distance represents the relative in- or decrease between a su-
per(dis)like and a trajectory’s start and ending state. A (dis)like distance was calculated as
the normal distance between the (dis)liked state and the trajectory multiplied by the cosinus
angle between (dis)like and trajectory vectors (note that a like is always giving for an agent’s
action and thus has a direction).

When analysing the data, it became clear this evaluation is not an easy task. First, the
large combinatorial state-action space and a limited amount of simulated trajectories causes
a large variation between results. Second, the large variation between participants and un-
even feedback distribution makes the agent behave differently between participants. Finally,
with parameter settings that increased the reactivity of the agent (increased learning rate, de-
crease replay memory and increased rewards), the agent’s learning becomes very unstable.
With such strong parameter settings, the agent is severely overfitting on each new input
data and the learning can ’jump around’ or diverge. Also, it seems the agent now has the
tendency to converge to state border values (0 and 1). This may suggest that the overfitting
causes the agent to improperly generalise a reward for a state-action pair taking this action
all the way up to state borders.

The following figures show the distances of the most recently provided feedback as well
as the evolution of the distance over time. The left part of figure 5.13 shows how the agent
did learn to move away from superdislikes (distribution centred on negative distance dif-
ferences so end state further removed from SDL than start state), move corresponding to
likes and dislikes (rewards in the figure) and had difficulties with moving towards super-
likes. Figure B does show a distribution centred with positive distances but this was not
the case for all participants. The main cause was that agents did learn to move towards su-
perlikes but than moved past it. This behaviour is illustrated by figure 5.14 showing how
distances between superlikes first decrease and then increase. It also illustrate the difficulty
in acting optimally when lots of feedback is provided. For this reason, table 5.4 shows mean
as well as the maximum and minimum distances for respectively superlikes (SL_min) and
superdislikes (SDL_max). The ’X’s in the table are shown when that type of feedback was
not among participants 15 most recent feedback. The table shows how the mean distance
change values for superlikes are only positive for two participants while they are positive
for all participants when taking the maxima values over all trajectories. For now, I did not
manage to get improved behaviour using retraining of the agents. The random agent only
moved in small local oscillations with very small average distance values centered around
zero.

FIGURE 5.13: Participant feedback and trajectory distances

Chapter 5. Experiment and Evaluation 46

FIGURE 5.14: Participant feedback and trajectory distances

Participants SL SDL R SL_min SDL_max R_min
1 X -0.332 0.002 X -0.418 0.199
2 X X -0.031 X X 0.162
3 0.287 X -0.068 0.399 X 0.340
4 X X 0.042 X X 0.326
5 -0.493 -0.996 0.072 0.071 -1.002 0.080
6 X -0.666 0.098 X -0.756 0.076
7 X -0.540 -0.115 X -0.558 0.086
8 -0.136 X -0.002 0.106 X 0.165
9 0.018 -0.311 0.021 0.338 -0.354 0.125
10 X -0.950 0.090 X -0.960 0.037
11 -0.282 X 0.093 0.087 X 0.277
12 -0.197 X 0.229 0.022 X 0.184
12 X X 0.128 X X 0.258
13 -0.065 -0.150 -0.032 0.184 -0.203 0.109

TABLE 5.4: User trained agent mean distance differences between trajector-
ies’ start-end state and feedback

(250 trajectories of length 600 with random starting states

5.5 Discussion and Future Work

The main contribution of this chapter is to demonstrate the variance of user exploration
strategies. The evaluation also shows how exploration using an agent has qualities different
from and complementary to manual exploration. While manual exploration proved to be
more ergonomic, the agent’s exploration had better hedonic qualities. Added user controls
such as the explore and PCA control also proved to be highly useful, usable and satisfactory.
With such different user strategies and attitudes as also shown during informal interviews,
exploration with an agent has shown to accommodate these wide range of users to a certain
extent and to stimulate many opportunities and motivations for improvement.

Unfortunately, results are not conclusive about the agent’s learning. This is not too
suprising as the state dimensionality of the problem was increased during the experiments,
new controls were not taken into account during the model analysis and models were not ad-
apted to the various user feedback strategies. As such, sounds saved during manual explor-
ation remain more appreciated by users notwithstanding that the agent’s exploration offered
new outcomes such as sound trajectories. Re-exploring the timbral space with trained and
retrained agent’s as presented in the final part of this chapter did not show agents prop-
erly oscillating around or diverging from respectively superlikes and superdislikes. While
potential causes have been presented such as the variability between users using the PCA

Chapter 5. Experiment and Evaluation 47

overviews, the user feedback inconsistency and the exploration density, I believe parameter
tuning due to the agent’s reactivity and agent’s learning trade-off and the theoretical and
experimental analysis discrepancy to be more important.

Using these insights, the primary directions for improvement concern the user interac-
tion and the algorithm’s performance itself.

For the user interaction, further development of the mixed manual-agent version from
section 4.3 could be a good first step. Agent speed and precision control were already presen-
ted but were left out during experiments to simplify the interface. To improve the applica-
tion, a way to integrate these new affordances while not complicating the interface needs to
be found. Another control could be the possibility to select state ranges or exclude certain
state dimensions for the agent to explore. Finally, while the PCA was proven to be benefi-
cial for the exploration, one can better leverage this technique by displaying the overview
in real-time or to use a different data projection to better structure the state space overview.
While these improvements all concern specific features or a way to better integrate these
features, other interaction modes could be interesting as well. For example, instead of using
a mouse-keyboard-screen setting, one can also think of an interface using different control-
lers such as for example smartphones, using movement input or visualising sound qualities
such as for example brightness instead of parameter values and states.

For the algorithm’s performance, a next step would be to construct a database of user
feedback to improve the current model for better performance in real-life situations. The
latter could be done using a hyperparameter search, analysis of the impact of user controls
on learning as well as changing the problem formalisation itself such as state representation,
border effects (state value maxima and minima) and state space dimension size.

Finally, one caveat in this research remains the notion of sound trajectories versus sound
themselves. While reinforcement learning in its core is based on transition dynamics, in my
research and its evaluation, I only focused on static sounds or timbres. As such, one big
and presumably exciting challenge would be to leverage and investigate the agent’s traject-
ories during exploration. One could also include other musical features such as temporal
envelopes and rhythms to move closer to a real musical exploration. One other exciting
application could be to use a pre-organised timbral space obtained using for example a Vari-
ational Auto-Encoder for the agent to explore [18]. While navigating such a space can be
challenging by hand as state dimensions are often difficult to interpret, an agent could be a
good partner for such a setting.

48

Chapter 6

Conclusion

The research presented in this report investigated the use and added value of using an intel-
ligent partner for the exploration of a musical space. While the use of and interaction with
such an agent varied widely between users, the presented model has shown capable of ac-
commodating these varied uses and of stimulating new ideas for improvement. It has also
demonstrated the added value of using such an intelligent agent and complementary place
next to a standard manual exploration. We believe having provided good starting points
towards both the computer-centred basis as human-centred aspects of the problem.

Specifically, simple (interactive) deep reinforcement learning models such as DSARSA
and DTAMER proved to be best suited for the problem setting formulated here. Models
did prove to be highly sensible to parameter settings but proper settings were found us-
ing an extensive hyperparameter search with synthetic goals and reward functions. These
models have shown to be able to handle the sparse reward challenge and limited training
time under the condition of sufficient exploration. The latter was achieved using an explor-
ation bonus based on earlier research and implemented with a novel use of the tile coding
technique for density estimation. Nevertheless, evaluation of the user-trained agents’ learn-
ing did not show properly generalising agents as opposed to the synthetic case. The main
causes seemed to be due to the variation in exploration strategies between users, their feed-
back inconsistency and parameter settings beneficial for agent’s reactivity but detrimental
for agent’s learning.

This research also proposed several new ways to interact with these interactive models
to stimulate and structure exploration as well as offer a better user experience. Exploration
was stimulated with controls informed by a density estimation and with direct manual in-
tervention in the exploration. Manual intervention by the user was done through changing
state values or interacting with a static PCA overview or exploration history list. These new
controls improved the user experience through the appearance of new affordances and the
possibility to take control of the exploration from the agent by the user. Using an agent for
exploration and with the possibility to intervene also allowed new interaction strategies and
a more embodied interaction as users could let the agent explore and focus on listening to
the exploration result.

A user evaluation of the application also showed how exploration using an agent had bet-
ter hedonic qualities as opposed to manual exploration which had higher ergonomic qual-
ities. Controls were deemed useful, usable and attrative by users with a strong preference
for the exploration control also based on tile coding. Other controls left out during the eval-
uation such as speed and precision were nevertheless missed during interviews with users.
Other improvements suggested by users were a more structured PCA overview, a real-time
exploration visualisation, the possibility to select subspaces for exploration and the possib-
ility to record whole trajectories instead of only sounds as such. The latter also represents
a direction for future work as while this research concentrated on sounds on its own, state
transition dynamics are at the heart of reinforcement learning but were not included in the
analysis so far.

49

Appendix A

Policy Improvement Theorem and
Optimality

Theorem: Let π and π′ be any pair of deterministic policies such that, for all s ∈ S ,

qπ(s, π′(s)) ≥ vπ(s). (A.1)

Then the policy π′ must be as good as, or better than, π. That is, it must obtain greater or equal
expected return from all states s ∈ S :

vπ′(s) ≥ vπ(s). (A.2)

Proof: Starting from A.1, we keep expanding the qπ side with

qπ(s, a) = E[Rt+1 + γvπ(St+1) | St = s, At = a] (A.3)

and reapplying A.1 until we get vπ′(s):

vπ(s) ≤ qπ(s, π′(s))

= E[Rt+1 + γvπ(St+1)|St = s, At = π′(s)]
= E

π′
[Rt+1 + γvπ(St+1)|St = s]

≤ E
π′
[Rt+1 + γqπ(St+1, π′(St+1)|St = s]

= E
π′
[Rt+1 + γ E

π′
[Rt+2 + γvπ(St+2)]|St = s]

= E
π′
[Rt+1 + γRt+2 + γ2vπ(St+2)|St = s]

≤ E
π′
[Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ(St+3)|St = s]

...

≤ E
π′
[Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...|St = s]

= vπ′(s).

(A.4)

Policy improvement: One can extend this idea of a change in the policy at a single state
and particular action to all states and all possible actions. As such, one obtains the greedy
policy π′ that takes the action that looks best after one step of lookahead. By construction,
this policy meets the condition of the policy improvement theorem A.1 and is thus as good
as, or better than, the original policy. This process of making a new policy improve on an
original policy, by making it greedy with respect to the value function of the original policy,
is called policy improvement.

Appendix A. Policy Improvement Theorem and Optimality 50

Optimal policy: Suppose the new greedy policy π′ is as good as but not better then the old
policy π. Then vπ = vπ′ , and with

π′(s) .
= argmaxa ∑

s′ ,r
p(s′, r|s, a)

[
r + γvπ(s′)

]
(A.5)

if follows that for all s ∈ S :

vπ′(s) = maxa ∑
s′ ,r

p(s′, r|s, a)
[

r + γvπ(s′)
]

(A.6)

This last equation is the same as the Bellman optimality equation presented earlier in the
text (equation 2.9) and therefore, vπ′ must be v∗, and both π and π′ must be optimal policies.
Policy improvement thus must give us a strictly better policy except when the original policy
is already optimal.

51

Appendix B

Policy Gradient Theorem

Theorem: Let J be the performance measure as the value of the start state (episodic tasks) or the
average rate of return over time (continuing tasks):

J(θ) = vπθ
(s0). (B.1)

Then the following is true for the gradient of J

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s, a)∇θπ(a|s, θ) (B.2)

with µ(s) the on-policy state distribution under π. In the episodic case, the constant of proportionality
is the average length of an episode, and in the continuing case it is 1.

Proof: The proof will only be derived for the episodic case. For the continuing case, the
reader is referred to [73]. To keep the notation simple, we leave it implicit in all cases that π
is a function of θ, and all gradients are implicit with respect to θ. First note that the gradient
of the state-value function can be written in terms of the action-value function as

∇vπ(s) = ∇
[

∑
a

π(a|s)qπ(s, a)
]

, for all s ∈ S

= ∑
a

[
∇π(a|s)qπ(s, a) + π(a|s)∇qπ(s, a)

]
= ∑

a

[
∇π(a|s)qπ(s, a) + π(a|s)∇∑

s′ ,r
p(s′, r|s, a)(r + vπ(s′))

]
= ∑

a

[
∇π(a|s)qπ(s, a) + π(a|s)∑

s′
p(s′|s, a)∇vπ(s′)

]
= ∑

a

[
∇π(a|s)qπ(s, a) + π(a|s)∑

s′
p(s′|s, a)

∑
a′

[
∇π(a′|s′)q(s′, a′) + π(a′|s′)∑

s′′
p(s′′|s′, a′)∇vπ(s′′)

]
= ∑

x∈S

∞

∑
k=0

Pr(s→ x, k, π)∑
a
∇π(a|x)qπ(x, a),

(B.3)

after repeated unrolling, where Pr(s → x, k, π) is the probability of transitioning from state
s to state x in k steps under policy π. With η(s) the number of time steps spent, on average,

Appendix B. Policy Gradient Theorem 52

in state s in a single episode, and µ(s) = η(s)
∑s′ η(s′) , it is then immediate that

∇J(θ) = ∇vπ(s0)

= ∑
s

(∞

∑
k=0

Pr(so → s, k, π

)
∑
a
∇π(a|s)qπ(s, a)

= ∑
s

η(s)∑
a
∇π(a|s)qπ(s, a)

= ∑
s′

η(s′)∑
s

η(s)
∑s′ η(s′)

∑
a
∇π(a|s)qπ(s, a)

= ∑
s′

η(s′)∑
s

µ(s)∑
a
∇π(a|s)qπ(s, a)

∝ ∑
s

µ(s)∑
a
∇π(a|s)qπ(s, a).

(B.4)

This expression can then be converted to a sample-based expectation through

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s, a)∇θπ(a|s, θ)

= E
π

[
∑
a

π(a|St, θ)qπ(St, a)
∇θπ(a|St, θ)

π(a|St, θ)

]
= E

π

[
qπ(St, At)

∇θπ(At|St, θ)

π(At|St, θ)

]
= E

π

[
Gt
∇θπ(At|St, θ)

π(At|St, θ)

]
.

(B.5)

53

Appendix C

Algorithms and Parameter Settings
Algorithm 1: Continuing semi-gradient DSARSA for estimating q̂ ≈ qπ (Adapted from
[73] to include ANN approximation and continuing task)

Input: a differentiable function q̂ : S ×A×<d → <, a policy π;
Initialise: value-function weights w ∈ <d arbitrarily (e.g., w = 0);
Initialise: average-reward estimate R̂ ∈ < arbitrarily (e.g., R̂ = 0) ;
Initialise: S0 and A0 ;
Algorithm parameters: step size α, an average-reward constant C, a small ε > 0 ;
while t < tmax do

Take action At ;
Observe and store the next reward as Rt+1 and the next state as St+1 ;
Select and store an action At+1 ∼ π(·|St+1), or ε-greedy wrt q̂(St+1, ·, w) ;
δ← (Rt+1 − R̂) + q̂(St+1, At+1, w)− q̂(St, At, w);
R̂← R̂ + Cδ;
w← w + αδ∇q̂(St, At, w);
St ← St+1 ;
At ← At+1 ;

Algorithm 2 presents my version of the DTAMER algorithm adapted to include the use
of exploration bonus and to allow several user controls. All user feedback is assigned to
states with a delay of 0.2 seconds. The reward distribution function Envdist() is a simple
exponentially decaying function. Specific parameter settings as used during the experiment
are listed below. The replaymemory size was chosen not too large to assure learning from
recent experience while the C constant is taken from literature. The Rlength parameter
refers to the reward distribution length. As such, rewards are distributed over trajectories of
1 second. The algorithm also shows three separate training cycles to assure direct training
on feedback, training on experience after a pre-defined time (2 ∗ batchsize) and training
solely on the exploration bonus. The latter assures the agent focuses on exploring when
no feedback is provided. User controls are initialised as speed = 0.1s, precision= 0.01,
Superlike= 1, Explore_state= 0, Explore_action= 0

ANN DRL Exploration Density p̂()
|HL| = 100 S = 10 εd = 2000 # tiles = 64
#HLs = 2 s ∈ [0, 1] εs = 0.1 tilesize = 0.4
batchsize = 32 |a| = 0.01

εe = 0.0 C = 0.01learningrate α = 0.002 |R| = 1
|replaymemoryD = 700 Rlength = 10

TABLE C.1: DTAMER experiment parameter settings

Appendix C. Algorithms and Parameter Settings 54

Algorithm 2: Continuing DTAMER with exporation bonus and user controls for estim-
ating R̂() ≈ R()

Input: differentiable function R̂(s, a, w), policy π() as ε−greedy with exponential
ε-decay, reward distribution function Env_dist();

Initialise: weights w = 0 ∈ <d , average-reward R̂ = 0, S0 = 0.5 ∈ <|S|and
A0 = π(S0), x = 0 ∈ N Rlength ;

while running do
Take action At and observe next state St+1 ;
Select new action At+1 ∼ π(·|St+1) ;
Store (St+1, At+1, 0) in reward length vector x (Rt+1 stored as 0);
Update density model p̂() ;
Observe reward as Rt+1 ;
St ← St+1 ;
At ← At+1 ;
if R 6= 0 and t > Rlength then // Train feedback+exploration bonus

x = Env_dist(R) ;
Store x in D ;
Compute R̂t+1 using SGD (eq. 2.33) and x ;

else if |D| > 2 ∗ batchsize then // Train on experience
Dt+1 = random sample from D ;
Compute R̂t+1 using SGD (eq. 2.33) and Dt+1 ;

else if t > Rlength then // Train on exploration bonus
Compute R̂t+1 using SGD (eq. 2.33) and R+ ;

while Paused do
agent.get_currentstate() ;

if Explore_state then
for i in range(20) do

Randomly sample state si ;
Evaluate predictiongain(si) = log(p̂t+1(si))− log(p̂t(si));

St = argmax(predictiongain(si)) ;
if Explore_action then

for i in range(|S| ∗ 2) do
Take action Ai and observe next state si ;
Evaluate predictiongain(si) = log(p̂t+1(si))− log(p̂t(si));

St = argmax(predictiongain(si)) ;
if Super(dis)like then

S00 = x[0] and A00 = Super(dis)like ;
for i in range(Rlength) do

for j in range(|S|) do
Take action Aij and observe state Sij ;
Store Sij in Dt+1 ;

Compute R̂t+1 using SGD (eq. 2.33) and Dt+1 ;
D ← D ∪Dt+1 ;

if New_precision then
|a| ← |a|/new_precision ;

if New_speed then
speed← new_speed ;

55

Appendix D

Hyperparameter Training Results
Below the training results using the DSARSA algorithm using four runs for each parameter
setting. The X indicate the number of runs not reaching the target state.

D
ur

in
g

Tr
ai

ni
ng

A
ft

er
tr

ai
ni

ng
A

TS
(S

1)
T

T(
S1

)
A

TS
(S

1)
TT

(S
1)

A
TS

(S
2)

TT
(S

2)
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ

|H
L|

5
2,

40
4

0,
25

7
10

86
1

62
50

0,
59

4
0,

60
0

X
X

X
X

0,
39

5
0,

58
1

X
X

X
X

15
4,

94
8

0,
07

6
40

00
83

6
4,

61
6

0,
24

3
21

9
24

6
3,

47
4

0,
25

7
41

1
73

25
4,

98
0

0,
02

1
28

00
10

86
4,

42
5

0,
30

7
31

7
19

6
4,

36
2

0,
34

3
17

5
76

50
4,

85
2

0,
18

7
26

23
52

9
3,

95
2

1,
20

9
37

4
38

7
4,

20
7

0,
31

7
17

1
74

75
4,

84
5

0,
10

8
40

91
15

69
4,

73
8

0,
17

4
60

10
4,

23
1

0,
40

4
15

1
27

10
0

4,
79

0
0,

28
3

37
04

18
40

4,
68

8
0,

22
5

12
3

12
9

4,
22

6
0,

26
5

15
4

57
#

H
ls

1
4,

97
9

0,
03

2
35

66
12

49
4,

81
3

0,
02

5
65

14
4,

61
9

0,
02

9
11

5
3

2
4,

98
0

0,
02

1
28

00
10

86
4,

42
5

0,
30

7
31

7
19

6
4,

36
2

0,
34

3
17

5
76

3
4,

91
45

0,
06

7
49

10
18

50
4,

38
3

0,
65

5
16

6
21

2
4,

07
3

0,
53

6
X

Le
ar

ni
ng

ra
te

0.
00

01
4,

80
8

0,
07

7
62

48
18

80
4,

51
3

0,
34

9
11

7
12

5
3,

92
0

0,
79

9
12

8
X

0.
00

05
4,

98
0

0,
02

1
28

00
10

86
4,

42
5

0,
30

7
31

7
19

6
4,

36
2

0,
34

3
17

5
76

0.
00

1
4,

85
2

0,
15

2
49

29
29

58
4,

52
1

0,
63

2
18

8
27

0
4,

03
3

1,
04

6
32

4
38

1
Tr

ai
ni

ng
Ti

m
e

5k
2,

31
4

0,
55

0
10

96
X

2,
33

3
1,

16
5

X
X

X
1,

14
0

1,
06

9
X

X
X

10
k

3,
48

1
0,

30
0

31
32

24
73

3,
51

2
1,

36
9

X
3,

19
3

0,
78

9
19

8
11

6
20

k
4,

69
7

0,
10

5
54

64
97

2
4,

05
9

0,
78

2
X

3,
58

9
0,

83
7

X
40

k
4,

98
0

0,
02

1
28

00
10

86
4,

42
5

0,
30

7
31

7
19

6
4,

36
2

0,
34

3
17

5
76

ε d
/

Tr
ai

ni
ng

ti
m

e
0.

5
4,

99
8

0,
01

1
35

48
92

2
4,

45
7

0,
38

1
21

5
14

5
3,

85
7

0,
70

8
29

6
22

7

0.
75

4,
98

0
0,

02
1

28
00

10
86

4,
42

5
0,

30
7

31
7

19
6

4,
36

2
0,

34
3

17
5

76
1

4,
83

2
0,

12
8

42
76

24
00

4,
37

5
0,

53
2

22
0

28
3

4,
35

3
0,

13
2

17
3

25
1.

5
4,

73
3

0,
12

4
60

86
23

12
4,

02
5

0,
70

2
X

3,
39

1
0,

65
5

X
A

ct
io

n
Si

ze
25

4,
89

0
0,

07
8

52
25

38
6

3,
92

5
0,

42
2

47
1

29
0

3,
19

7
0,

94
2

67
9

33
7

50
4,

98
0

0,
02

1
28

00
10

86
4,

42
5

0,
30

7
31

7
19

6
4,

36
2

0,
34

3
17

5
76

10
0

4,
97

3
0,

03
8

51
50

17
44

4,
61

3
0,

04
7

11
6

6
4,

08
5

0,
13

4
24

7
15

20
0

4,
18

8
0,

57
0

39
83

49
7

1,
37

0
0,

77
6

X
X

X
0,

82
1

0,
77

8
X

X
X

TABLE D.1: DSARSA hyperparameter search training results
Below the training results using the DTAMER algorithm using one run for each para-

meter setting. The X indicate a run that did not reach a target state.

Appendix D. Hyperparameter Training Results 56

Training After training
ATS(S1) TT(S1) ATS(S1) TT(S1) ATS(S2) TT(S2)

|HL| 10 3,833 1425 0,300 X 0,391 X
25 4,954 2019 4,825 50 4,579 111
50 4,998 1888 4,823 47 4,584 107
75 4,984 1623 4,817 54 4,34 117
100 4,999 2080 4,823 55 4,624 112

HLs 1 4,869 2301 4,833 48 3,855 109
2 4,873 2952 4,745 145 4,298 296
3 4,957 3761 4,808 51 4,5 129

εd /
Training Time 0.25 4,994 1330 4,559 110 4,473 109

0.75 4,938 1372 4,783 67 4,143 181
1.25 4,867 2743 4,828 51 4,568 116

Training Time 10K 4,514 2048 1,257 X 0,982 X
20K 4,942 966 3,87 665 3,139 X
20K 4,835 2349 4,266 157 4,234 443
25K 4,923 2863 2,456 X 1,82 X
30K 4,99 1543 4,767 58 4,096 188

Learning Rate 0.0001 2,892 6580 1,733 X 1,884 X
0.0005 4,252 1685 1,00 X 0,608 X
0.001 4,967 3392 4,115 297 4,212 343
0.0015 4,996 1897 4,598 186 3,5 437

Reward length 2 4,881 1053 4,846 49 4,555 117
8 4,437 6233 3,24 X 2,509 X

TABLE D.2: DTAMER hyperparameter search training results

57

Appendix E

VST

FIGURE E.1: Massive VST

‘Interactive Musical Exploration’ Questionnaire

1. Your name:

2. How old are you? I am years old.

3. Your profession:

4. Your experience with music production: # none # amateur # professional # other

5. How often do you use audio plug-ins? # never # monthly # weekly # daily

About the experience
Please evaluate your experience for the two different interactions below by circling a number for each criteria.

6. Agent exploration

annoying 1—2—3—4—5 enjoyable
confusing 1—2—3—4—5 clear
conventional 1—2—3—4—5 inventive
obstructive 1—2—3—4—5 supportive
ambiguous 1—2—3—4—5 understandable
demotivating 1—2—3—4—5 motivating
dull 1—2—3—4—5 creative
inefficient 1—2—3—4—5 efficient
boring 1—2—3—4—5 exciting

7. Manual exploration

annoying 1—2—3—4—5 enjoyable
confusing 1—2—3—4—5 clear
conventional 1—2—3—4—5 inventive
obstructive 1—2—3—4—5 supportive
ambiguous 1—2—3—4—5 understandable
demotivating 1—2—3—4—5 motivating
dull 1—2—3—4—5 creative
inefficient 1—2—3—4—5 efficient
boring 1—2—3—4—5 exciting

About the interaction
Please evaluate the following:

8. Evaluative control: super(dis)like

useful: bad 1—2—3—4—5 good
easy to use: bad 1—2—3—4—5 good
satisfaction: bad 1—2—3—4—5 good

9. Exploration control: explore sound

useful: bad 1—2—3—4—5 good
easy to use: bad 1—2—3—4—5 good
satisfaction: bad 1—2—3—4—5 good

10. PCA overview

useful: bad 1—2—3—4—5 good
easy to use: bad 1—2—3—4—5 good
satisfaction: bad 1—2—3—4—5 good

11. Sound trajectories/dynamics during following explorations:

manually: bad 1—2—3—4—5 good
with agent: bad 1—2—3—4—5 good

Closing Remarks
12. If you have any comments, critiques or questions, you can write them here:

1

58

Appendix F

User Questionnaire

59

Appendix G

User Experience Questionnaire
Results

User
Attract-
iveness

Ergonomic quality Hedonic quality

perspicuity
dependa-

bility efficiency novelty stimulation

enjoy-
able clear

understand-
able

suppor-
tive efficient

inven-
tive

crea-
tive

motiva-
tion

exci-
ting

A
ge

nt

1 4 3 4 4 4 5 5 5 5
2 4 2 4 3 3 3 4 4 4
3 3 2 4 2 4 4 4 3 4
4 3 4 4 3 3 5 4 5 4
5 4 3 4 3 3 5 5 5 5
6 3 4 5 3 3 4 3 4 3
7 2 2 3 2 2 3 2 2 3
8 4 3 1 5 4 4 5 3 4
9 3 2 1 3 3 5 4 3 3

10 4 4 4 3 4 3 4 4 3
11 5 4 4 4 4 5 5 5 5
12 3 2 5 3 3 1 1 3 3
13 2 2 5 2 1 3 2 3 2
14 2 5 5 4 2 4 4 3 3

M
an

ua
l

1 5 5 4 4 5 3 5 4 4
2 4 2 4 4 4 3 3 5 4
3 4 4 4 4 3 2 4 3 5
4 4 5 4 4 4 1 3 3 4
5 2 5 5 3 4 1 3 3 3
6 4 5 4 3 3 2 4 4 4
7 4 4 4 3 3 3 3 3 3
8 5 3 2 4 4 3 4 4 5
9 3 5 5 5 2 1 4 2 5

10 4 5 4 4 4 4 4 5 4
11 5 5 4 5 4 2 5 5 5
12 4 5 5 3 5 1 4 3 3
13 4 5 5 3 5 1 3 3 4
14 5 5 5 5 5 5 5 5 5

TABLE G.1: User questionnaire results for agent and manual exploration of
14 users (1. = Agent, 2. = Manual)

60

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. ‘Apprenticeship learning via inverse reinforcement
learning’. In: Proceedings of the twenty-first international conference on Machine learning.
ACM. 2004, p. 1.

[2] Saleema Amershi et al. ‘Power to the people: The role of humans in interactive ma-
chine learning’. In: AI Magazine 35.4 (2014), pp. 105–120.

[3] Marcin Andrychowicz et al. ‘Hindsight Experience Replay’. In: CoRR abs/1707.01495
(2017). arXiv: 1707.01495. URL: http://arxiv.org/abs/1707.01495.

[4] Andrew G Barto, Richard S Sutton and Charles W Anderson. ‘Neuronlike adaptive
elements that can solve difficult learning control problems’. In: IEEE transactions on
systems, man, and cybernetics 5 (1983), pp. 834–846.

[5] Michel Beaudouin-Lafon. ‘Designing interaction, not interfaces’. In: Proceedings of the
working conference on Advanced visual interfaces. ACM. 2004, pp. 15–22.

[6] Marc Bellemare et al. ‘Unifying count-based exploration and intrinsic motivation’. In:
Advances in Neural Information Processing Systems. 2016, pp. 1471–1479.

[7] Baptiste Caramiaux. ‘Studies on the Gesture – Sound Relationship for Musical Per-
formance’. Thèse de doctorat. Paris: Université Université Pierre et Marie Curie (Paris
6), 2012. URL: http://articles.ircam.fr/textes/Caramiaux11f/index.pdf.

[8] Baptiste Caramiaux and Atau Tanaka. ‘Machine Learning of Musical Gestures.’ In:
NIME. 2013, pp. 513–518.

[9] Mark Cartwright, Bryan Pardo and Josh Reiss. ‘Mixploration: Rethinking the audio
mixer interface’. In: Proceedings of the 19th international conference on Intelligent User
Interfaces. ACM. 2014, pp. 365–370.

[10] Paul F Christiano et al. ‘Deep reinforcement learning from human preferences’. In:
Advances in Neural Information Processing Systems. 2017, pp. 4302–4310.

[11] Andy Cockburn et al. ‘Supporting novice to expert transitions in user interfaces’. In:
ACM Computing Surveys (CSUR) 47.2 (2015), p. 31.

[12] Nick Collins. ‘Reinforcement Learning for Live Musical Agents.’ In: ICMC. 2008.

[13] Mihaly Csikszentmihalyi. ‘The creative personality’. In: Psychology today 29.4 (1996),
pp. 36–40.

[14] Mihaly Csikszentmihalyi and Isabella Selega Csikszentmihalyi. Optimal experience:
Psychological studies of flow in consciousness. Cambridge university press, 1992.

[15] Thomas Degris, Martha White and Richard S Sutton. ‘Off-policy actor-critic’. In: arXiv
preprint arXiv:1205.4839 (2012).

[16] Nate Derbinsky and Georg Essl. ‘Exploring reinforcement learning for mobile percuss-
ive collaboration’. In: Ann Arbor 1001 (2012), pp. 48109–2121.

[17] Paul Dourish. Where the action is: the foundations of embodied interaction. MIT press, 2004.

[18] Philippe Esling, Adrien Bitton et al. ‘Generative timbre spaces with variational audio
synthesis’. In: arXiv preprint arXiv:1805.08501 (2018).

[19] Rebecca Fiebrink and Baptiste Caramiaux. ‘The machine learning algorithm as creative
musical tool’. In: Handbook of Algorithmic Music (2016).

[20] Rebecca Fiebrink, Perry R Cook and Dan Trueman. ‘Human model evaluation in inter-
active supervised learning’. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM. 2011, pp. 147–156.

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://articles.ircam.fr/textes/Caramiaux11f/index.pdf

BIBLIOGRAPHY 61

[21] Rebecca Fiebrink et al. ‘Toward Understanding Human-Computer Interaction In Com-
posing The Instrument.’ In: ICMC. 2010.

[22] Meire Fortunato et al. ‘Noisy networks for exploration’. In: arXiv preprint
arXiv:1706.10295 (2017).

[23] Jules Françoise. ‘Gesture-Sound Mapping by Demonstration in Interactive Music Sys-
tems’. In: Proceedings of the 21st ACM international conference on Multimedia (MM’13).
Barcelona, Spain, 2013. URL: http://architexte.ircam.fr/textes/Francoise13c/
index.pdf.

[24] Jules Françoise et al. ‘Probabilistic models for designing motion and sound relation-
ships’. In: Proceedings of the 2014 international conference on new interfaces for musical
expression. 2014, pp. 287–292.

[25] Judy A Franklin and Victoria U Manfredi. ‘Nonlinear credit assignment for musical
sequences’. In: Second international workshop on Intelligent systems design and application.
2002, pp. 245–250.

[26] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of training deep feed-
forward neural networks’. In: Proceedings of the thirteenth international conference on ar-
tificial intelligence and statistics. 2010, pp. 249–256.

[27] Shane Griffith et al. ‘Policy shaping: Integrating human feedback with reinforcement
learning’. In: Advances in neural information processing systems. 2013, pp. 2625–2633.

[28] Nicolas Heess et al. ‘Learning continuous control policies by stochastic value gradi-
ents’. In: Advances in Neural Information Processing Systems. 2015, pp. 2944–2952.

[29] Nicolas Heess et al. ‘Memory-based control with recurrent neural networks’. In: arXiv
preprint arXiv:1512.04455 (2015).

[30] Mark K Ho et al. ‘Teaching with rewards and punishments: Reinforcement or commu-
nication?’ In: CogSci. 2015.

[31] Andy Hunt and Marcelo M Wanderley. ‘Mapping performer parameters to synthesis
engines’. In: Organised sound 7.2 (2002), pp. 97–108.

[32] Charles Isbell et al. ‘A social reinforcement learning agent’. In: Proceedings of the fifth
international conference on Autonomous agents. ACM. 2001, pp. 377–384.

[33] Giulio Jacucci. ‘Interaction as performance’. In: (2004).

[34] Max Jaderberg et al. ‘Reinforcement Learning with Unsupervised Auxiliary Tasks’. In:
CoRR abs/1611.05397 (2016). arXiv: 1611.05397. URL: http://arxiv.org/abs/1611.
05397.

[35] Natasha Jaques et al. ‘Tuning recurrent neural networks with reinforcement learning’.
In: (2017).

[36] Sergi Jorda. ‘Digital Lutherie Crafting musical computers for new musics’ perform-
ance and improvisation’. In: Department of Information and Communication Technologies
(2005).

[37] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic optimization’. In:
arXiv preprint arXiv:1412.6980 (2014).

[38] W Bradley Knox and Peter Stone. ‘Interactively shaping agents via human reinforce-
ment: The TAMER framework’. In: Proceedings of the fifth international conference on
Knowledge capture. ACM. 2009, pp. 9–16.

[39] William Bradley Knox. ‘Learning from human-generated reward’. In: (2012).

[40] Bettina Laugwitz, Theo Held and Martin Schrepp. ‘Construction and evaluation of a
user experience questionnaire’. In: Symposium of the Austrian HCI and Usability Engin-
eering Group. Springer. 2008, pp. 63–76.

[41] Sylvain Le Groux and PFMJ Verschure. ‘Towards adaptive music generation by re-
inforcement learning of musical tension’. In: Proceedings of the 6th Sound and Music
Conference, Barcelona, Spain. Vol. 134. 2010.

[42] Timothy P Lillicrap et al. ‘Continuous control with deep reinforcement learning’. In:
arXiv preprint arXiv:1509.02971 (2015).

http://architexte.ircam.fr/textes/Francoise13c/index.pdf
http://architexte.ircam.fr/textes/Francoise13c/index.pdf
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1611.05397

BIBLIOGRAPHY 62

[43] Robert Loftin et al. ‘Learning behaviors via human-delivered discrete feedback: mod-
eling implicit feedback strategies to speed up learning’. In: Autonomous agents and
multi-agent systems 30.1 (2016), pp. 30–59.

[44] Jonas Löwgren. ‘Articulating the use qualities of digital designs’. In: Aesthetic comput-
ing (2006), pp. 383–403.

[45] James MacGlashan et al. ‘Interactive learning from policy-dependent human feed-
back’. In: arXiv preprint arXiv:1701.06049 (2017).

[46] Sridhar Mahadevan. ‘Average reward reinforcement learning: Foundations, al-
gorithms, and empirical results’. In: Machine learning 22.1-3 (1996), pp. 159–195.

[47] Gary Marchionini. ‘Exploratory search: from finding to understanding’. In: Communic-
ations of the ACM 49.4 (2006), pp. 41–46.

[48] Volodymyr Mnih et al. ‘Asynchronous methods for deep reinforcement learning’. In:
International Conference on Machine Learning. 2016, pp. 1928–1937.

[49] Volodymyr Mnih et al. ‘Human-level control through deep reinforcement learning’.
In: Nature 518.7540 (2015), p. 529.

[50] Volodymyr Mnih et al. ‘Playing atari with deep reinforcement learning’. In: arXiv pre-
print arXiv:1312.5602 (2013).

[51] Andrew Y Ng. ‘Feature selection, L 1 vs. L 2 regularization, and rotational invariance’.
In: Proceedings of the twenty-first international conference on Machine learning. ACM. 2004,
p. 78.

[52] Andrew Y. Ng, Daishi Harada and Stuart J. Russell. ‘Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping’. In: Proceedings of the
Sixteenth International Conference on Machine Learning. ICML ’99. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999, pp. 278–287. ISBN: 1-55860-612-2. URL:
http://dl.acm.org/citation.cfm?id=645528.657613.

[53] Andrew Y Ng, Stuart J Russell et al. ‘Algorithms for inverse reinforcement learning.’
In: Icml. 2000, pp. 663–670.

[54] Ian Osband et al. ‘Deep exploration via bootstrapped DQN’. In: Advances in neural
information processing systems. 2016, pp. 4026–4034.

[55] François Pachet. ‘The future of content is in ourselves’. In: Computers in Entertainment
(CIE) 6.3 (2008), p. 31.

[56] Garth Paine. ‘Interactivity, where to from here?’ In: Organised Sound 7.3 (2002), pp. 295–
304.

[57] Patrick M Pilarski et al. ‘Online human training of a myoelectric prosthesis controller
via actor-critic reinforcement learning’. In: Rehabilitation Robotics (ICORR), 2011 IEEE
International Conference on. IEEE. 2011, pp. 1–7.

[58] Siddharth Reddy, Sergey Levine and Anca Dragan. ‘Shared Autonomy via Deep Re-
inforcement Learning’. In: arXiv preprint arXiv:1802.01744 (2018).

[59] Mitchel Resnick et al. ‘Design principles for tools to support creative thinking’. In:
(2005).

[60] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist sys-
tems. Vol. 37. University of Cambridge, Department of Engineering, 1994.

[61] Tuukka Ruotsalo et al. ‘Interactive intent modeling: Information discovery beyond
search’. In: Communications of the ACM 58.1 (2015), pp. 86–92.

[62] Jan C Schacher, Chikashi Miyama and Daniel Bisig. ‘Gestural electronic music using
machine learning as generative device.’ In: NIME. 2015, pp. 347–350.

[63] John Schulman et al. ‘High-dimensional continuous control using generalized advant-
age estimation’. In: arXiv preprint arXiv:1506.02438 (2015).

[64] John Schulman et al. ‘Trust region policy optimization’. In: International Conference on
Machine Learning. 2015, pp. 1889–1897.

http://dl.acm.org/citation.cfm?id=645528.657613

BIBLIOGRAPHY 63

[65] Hugo Scurto and Frédéric Bevilacqua. ‘Appropriating Music Computing Practices
Through Human-AI Collaboration’. In: Journées d’Informatique Musicale (JIM 2018).
2018.

[66] Hugo Scurto, Rebecca Fiebrink et al. Grab-and-play mapping: Creative machine learning
approaches for musical inclusion and exploration. Goldsmiths University of London, 2016.

[67] Ben Shneiderman. ‘Creativity support tools: Accelerating discovery and innovation’.
In: Communications of the ACM 50.12 (2007), pp. 20–32.

[68] David Silver et al. ‘Deterministic policy gradient algorithms’. In: ICML. 2014.

[69] David Silver et al. ‘Mastering the game of Go with deep neural networks and tree
search’. In: nature 529.7587 (2016), pp. 484–489.

[70] Denis Smalley. ‘Spectromorphology: explaining sound-shapes’. In: Organised sound 2.2
(1997), pp. 107–126.

[71] Malcolm Strens. ‘A Bayesian framework for reinforcement learning’. In: ICML. 2000,
pp. 943–950.

[72] Richard S Sutton. ‘Learning to predict by the methods of temporal differences’. In:
Machine learning 3.1 (1988), pp. 9–44.

[73] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. 1st.
Cambridge, MA, USA: MIT Press, 1998. ISBN: 0262193981.

[74] Hado Van Hasselt, Arthur Guez and David Silver. ‘Deep Reinforcement Learning with
Double Q-Learning.’ In: AAAI. Vol. 16. 2016, pp. 2094–2100.

[75] Ziyu Wang et al. ‘Dueling network architectures for deep reinforcement learning’. In:
arXiv preprint arXiv:1511.06581 (2015).

[76] Ziyu Wang et al. ‘Sample efficient actor-critic with experience replay’. In: arXiv preprint
arXiv:1611.01224 (2016).

[77] Garrett Warnell et al. ‘Deep TAMER: Interactive Agent Shaping in High-Dimensional
State Spaces’. In: arXiv preprint arXiv:1709.10163 (2017).

[78] Christopher JCH Watkins and Peter Dayan. ‘Q-learning’. In: Machine learning 8.3-4
(1992), pp. 279–292.

[79] Christopher John Cornish Hellaby Watkins. ‘Learning from delayed rewards’. PhD
thesis. King’s College, Cambridge, 1989.

[80] Ronald J Williams. ‘Simple statistical gradient-following algorithms for connectionist
reinforcement learning’. In: Reinforcement Learning. Springer, 1992, pp. 5–32.

[81] Victor Zappi and Andrew McPherson. ‘Dimensionality and Appropriation in Digital
Musical Instrument Design.’ In: NIME. 2014, pp. 455–460.

[82] Dongbin Zhao et al. ‘Deep reinforcement learning with experience replay based on
sarsa’. In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE. 2016,
pp. 1–6.

	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background
	Context
	Research Question
	Motivation
	Human-Computer Interaction
	Interactive Machine Learning
	New Interfaces for Musical Expression

	Reinforcement Learning: State-of-the-Art
	Theoretical Basis
	Characteristics
	Reinforcement Learning with Function Approximation
	Deep Reinforcement Learning
	Interactive Reinforcement Learning
	Challenges

	Model Development
	Problem Formalisation
	Analysis of Deep Reinforcement Learning
	Base Models
	Network Training

	Analysis of Interactive Deep Reinforcement Learning
	Remaining Challenges
	Interactive Models and Evaluation

	Discussion and Future Work

	Design of the User Interaction
	The Application
	Interaction Controls
	Additional Features

	Experiment and Evaluation
	Experimental Set-up and Process
	User Experience and Interaction
	User Presets and Exploration
	Agent's Learning
	Discussion and Future Work

	Conclusion
	Policy Improvement Theorem and Optimality
	Policy Gradient Theorem
	Algorithms and Parameter Settings
	Hyperparameter Training Results
	VST
	User Questionnaire
	User Experience Questionnaire Results
	Bibliography

