
MASTER ATIAM

MASTER THESIS

Supervised Singing Voice Separation:
Designing a data pipeline for supervised

learning

Author:
Laure PRÉTET

Supervisors:
Romain HENNEQUIN

Jimena ROYO-LETELIER

DEEZER R&D

February 6th - August 3rd 2018

http://www.atiam.ircam.fr/fr/
https://deezer.io/

iii

Master ATIAM

Abstract

Supervised Singing Voice Separation: Designing a data pipeline for supervised learning

by Laure PRÉTET

In this research internship, our topic is to design and evaluate algorithms that are able
to separate the vocal part from the accompaniment in songs. Given any song recording, we
try to estimate how the singing voice and the accompaniment would sound when isolated
from each other. The emphasis is set on supervised, neural network-based systems that
address this task. Two up-to-date singing voice separation systems from the literature are
implemented. We explain the issue of finding good training datasets for supervised learning
and we adapt an existing method to design one from Deezer’s catalog. Then, we study the
impact of the training databases on separation performances for each system. Additionally,
we studied other data-related settings in training and reconstruction, such as data augmen-
tation, post-processing and the training loss. Good performances were achieved using a
U-Net that was able able to model large time and frequency contexts. Other results show
that the training loss and post-processing must be carefully chosen depending on the final
application, while data augmentation has little effect on performances.

Notre sujet d’étude, dans ce stage de recherche, est de produire et d’évaluer des al-
gorithmes capables de séparer la partie vocale d’une chanson de son accompagnement.
Étant donné l’enregistrement d’une chanson, nous tentons de produire des estimés des
parties vocales et instrumentales telles qu’elles sonneraient si elles étaient isolées l’une de
l’autre. Nous nous intéressons en particulier aux méthodes supervisées qui s’appuient sur
des réseaux de neurones pour aborder cette tâche. Nous implémentons deux systèmes de
l’état de l’art pour la séparation de voix chantée. Nous expliquons le défi qui consiste à
trouver de bonnes bases de données d’entraînement pour l’apprentissage supervisé et nous
adaptons une méthode existante pour en créer une à partir du catalogue de Deezer. Puis,
pour chaque système, nous étudions l’impact de la base de données d’entraînement sur les
performances de séparation. Nous nous intéressons également à d’autres modalités pour
l’entraînement et la reconstruction, à savoir l’augmentation de données, le post-traitement
et la fonction de coût pour l’entraînement. À l’aide d’un U-Net, capable de modéliser de
longs contextes temporels et fréquentiels, nous obtenons de bonnes performances de sé-
paration. Nos autres expériences montrent qu’il est crucial de bien choisir la fonction de
coût et le post-traitement en fonction de l’application finale de la séparation, tandis que
l’augmentation de données a seulement un impact limité sur les performances.

Keywords: Music Information Retrieval, Singing voice separation, Deep learning, Train-
ing datasets, Data augmentation.

http://www.atiam.ircam.fr/fr/

v

Contents

1 Introduction to Singing Voice Separation 1
1.1 Internship context . 1
1.2 Practical applications . 2
1.3 The singing voice separation task . 2
1.4 Performances evaluation . 5
1.5 Unsupervised systems . 6

2 Deep neural networks for singing voice separation 9
2.1 Supervised learning and regression problems 9
2.2 Fully-connected neural networks . 10
2.3 Convolutional neural networks . 10
2.4 How to train a neural network . 12
2.5 Deep neural networks applied to singing voice separation 13

3 Multi-tracks datasets for supervised learning and evaluation 17
3.1 Standard databases . 17
3.2 Building a singing voice separation dataset . 17
3.3 The dataset problem in supervised machine learning 19
3.4 Evaluation campaigns . 20

4 Experiments and results: the impact of various data-related parameters on perfor-
mances 23
4.1 Baseline systems . 23
4.2 Experimental framework and methodology . 24
4.3 The selected network architectures . 25
4.4 Experiments . 28

4.4.1 Experiment 1: different training datasets 29
4.4.2 Experiment 2: different losses . 31
4.4.3 Experiment 3: different post-processing methods 34
4.4.4 Experiment 4: different data augmentation methods 37

5 Discussions and future work 41
5.1 Discussion . 41
5.2 Future work . 41

A Code snippets 43
A.1 An example of a score file produced by the Museval package for a short song. 43

B Details of network architectures 45
B.1 The transposed convolution used in the upsampling path of the networks. . . 45

Bibliography 47

1

Chapter 1

Introduction to Singing Voice
Separation

In this chapter, after setting the context of the internship, we explain the general framework
needed for singing voice separation. We also present applications of this task and examples
of unsupervised systems that can be used to achieve it.

1.1 Internship context

This internship was hosted by the Research and Development team at Deezer headquarter,
Paris. Deezer is an international music streaming company which serves millions of users
in 180 countries. Its catalog features about 55 million audio tracks, including music from all
genres, quality and geographic origin, as well as spoken audiobooks and podcasts.

One of the missions of the Research and Development team is to design, experiment and
prototype systems to better characterize and organize the content of the catalog. Indeed, the
genre, performing artist and other attributes of the tracks are often ambiguous, corrupted
or undefined. Fixing these issues is crucial to propose better music recommendations and
better services to the user in the long term. These projects can rely on both metadata (when
available) and audio data (always available), as well as external data in some cases (public
domain datasets, external ontologies). In particular, to quickly and extensively characterize
musical content, the team uses audio-based Music Information Retrieval methods which
proved efficiency, as exposed in Royo-Letelier, 2015.

The Research and Development team is composed of Manuel Moussalam (head of the
team), Jimena Royo-Letelier, Viet-Anh Tran and Romain Hennequin (research scientists),
Mickaël Arcos and Anis Khlif (software engineers), Andrea Vaglio (PhD student) and four
interns: Yousri Sellami, Agnès Mustar, Paul Vernhet and myself.

My mission during six months was to study singing voice separation methods, in order
to apply them later to a large number of songs present in the catalog. During the last two
months, I worked in tandem with Andrea Vaglio, who started his PhD on automatic lyrics
transcription.

Our main contributions are the following: we re-implemented two systems presented in
recent literature that perform well on singing voice separation (according to the last evalu-
ation campaign: Stöter, Liutkus, and Ito, 2018). We then trained and evaluated them using
different datasets. This has two main interests: study first the impact of the network ar-
chitecture and second, the impact of the training dataset, in terms or performances. In the
literature, it is indeed difficult to evaluate the different elements of the systems, since the
papers tend to present a full procedure, including dataset building, data pre-processing,
architecture design, post-processing and sometimes data augmentation. In addition, we
studied the impact of different post-processing methods, different training losses and data
augmentation techniques.

2 Chapter 1. Introduction to Singing Voice Separation

This report is organized in five parts. In Chapter 1, we present the topic of singing voice
separation. In Chapter 2, we give a short summary of the deep network architectures, and
present some of them that were used for singing voice separation. In Chapter 3, we explain
the issue of finding good training datasets for supervised learning, present public datasets
and expose a method to design one from Deezer’s catalog. In Chapter 4, we present our
experiments with different system architectures and training datasets. Finally, Chapter 5 is
dedicated to the analysis of the results and the research perspectives raised by this work.

1.2 Practical applications

Singing voice separation can be used as a preprocessing step for a variety of tasks, such
as remixing, pitch tracking (Pollastri, 2002) or singer identification (Mesaros, Virtanen, and
Klapuri, 2007). Furthermore, it is a widely used pre-processing step for lyrics transcription
(Mesaros and Virtanen, 2010).

As a first application case, the karaoke industry can take great advantage of singing voice
separation algorithms: they allow one to create instrumental tracks automatically from any
song recording. The karaoke industry has been estimated to be worth several billions of
dollars globally (source: https://en.wikipedia.org/wiki/Karaoke).

For the streaming industry, a transcription of the lyrics of any song, even an approxi-
mate one, can be very useful to characterize large catalogs. One could more easily perform
tasks such as cover detection, language detection (Mesaros, 2012), and explicit content de-
tection (Kruspe and Fraunhofer, 2014). Since Deezer’s Research and Development team just
hired Andrea Vaglio as a PhD student to work on lyrics transcription, one can consider my
internship as a preparatory study on this topic.

1.3 The singing voice separation task

Singing voice separation is a sub-domain of music source separation, a Music Information
Retrieval (MIR) task. The objective of MIR is to develop automatic systems that are able
to solve various tasks in order to characterize music in terms of genre, timbre, rhythm and
other attributes (Orio, 2006). Typical MIR tasks are beat tracking, pitch tracking, or genre re-
trieval. The systems usually start directly from the audio files and rely on signal processing
and machine learning techniques.

Music source separation has been a popular topic within the MIR community for several
decades. In this task, the objective is to decompose a music recording into several tracks,
each of one corresponding to a single instrument or a group of instruments. While this
seems intuitive for the human auditory system, it is an underdetermined problem that is
still unsolved by computational means: several solutions exist for the same recording.

Singing voice separation is a particular case of music source separation. Its specificity
is to consider only two sources to be separated: the singing voice on one side, and the in-
strumental accompaniment on the other. The first source, the vocal part, gathers the leading
voice (melody), the choirs, distorted voice and voice reverberation effects, while all music
instruments are grouped together into one single source: the instrumental part (see Figure
1.1). The original recording that contains all the sources is called the mix, or mixture.

This problem is tailored for western popular music, where there is often a lead vocalist
and an instrumental accompaniment. It is one of the most studied cases of music source
separation, and it has a wide range of applications. New papers are released each month,

https://en.wikipedia.org/wiki/Karaoke

1.3. The singing voice separation task 3

FIGURE 1.1: An illustration of the singing voice separation framework.

providing a large amount of existing work to support research activities. Yearly competi-
tions such as the SiSec MUS challenge1 gather an increasing number of teams (24 systems
evaluated in 2016, 30 in 2018).

In the following paragraphs, we will describe the data pipeline required to perform the
separation. We will consider the separation system itself as a black box that will be detailed
later, and focus on all the processing steps that happen before and after. This pipeline is
illustrated in Figure 1.2.

FIGURE 1.2: An illustration of the singing voice separation framework.

Data pre-processing: STFT

To perform singing voice separation, the majority of systems rely only on the audio sig-
nals, without additional information or metadata. First, the raw audio must be transformed
into a more adapted representation: a time-frequency representation. Several transforms
are possible, including the Short-Time Fourier Transform (STFT), the Mel Spectrogram and
the Constant-Q transform (CQT). In practice, the separation frameworks that we will study
operate in the STFT domain. They take as input the spectrogram of the mixture and try to
estimate the vocal and instrumental spectrograms, as illustrated on 1.3. The main advantage
of the STFT over other transforms is to be easily revertible to an audio format. Moreover, in
Dieleman and Schrauwen, 2014, the authors found that using the waveform as input of a tag
classifier usually leads to learning a sinusoid-based representation in the first layer. Conse-
quently, it is pragmatic to use directly a Fourier-base transform as input of the separation
systems.

As a convention, in the following of this report, we will note S the complex spectrograms,
obtained by STFT, and V their magnitude.

1https://sisec.inria.fr/

https://sisec.inria.fr/

4 Chapter 1. Introduction to Singing Voice Separation

FIGURE 1.3: An illustration of a singing voice separation framework that op-
erates in the time-frequency domain.

Data reconstruction

For the algorithms that operate in the STFT domain, a specific estimation procedure has
been developed, which relies on the concept of spectrogram masks. In this process, only
the magnitude of the mixture spectrogram is used as the input of the system. Removing
the phase, which varies faster in time, has a smoothing and denoising effect. From the
mixture’s magnitude spectrogram Vmix, the separation algorithm estimates the magnitude
spectrogram of both target sources: V̂vocals and V̂instrumentals. These magnitude spectrograms
are used to compute two ratio masks: Mvocals and Minstrumentals. The masks are matrices of
weights (all coefficients have values between 0 and 1). When applied to the mixture’s orig-
inal spectrogram Smix by element-wise multiplication, they keep only the bins containing
energy from the desired source (the vocals, for example). The other sources (the instrumen-
tals) are filtered out from the remaining spectrogram (see Figure 1.4).

Mvocals =
V̂vocals

V̂vocals + V̂instrumentals
(1.1)

Minstrumentals =
V̂instrumentals

V̂vocals + V̂instrumentals
(1.2)

∀i, j Minstrumentalsi,j + Mvocalsi,j = 1 (1.3)

Ŝvocals = Mvocals ∗ Smix. (1.4)

Ŝinstrumentals = Minstrumentals ∗ Smix. (1.5)

This way, full spectrograms are built for each source, using the estimated magnitude and
the original mixture’s phase. The obtained spectrograms (Ŝvocals, Ŝinstrumentals) can eventually
be reverted to estimated source audio signals. In the literature, some systems operate on
squared magnitude spectrograms to produce estimates of the power spectral density of the
sources. In this case, the masking method is referred to as Wiener filtering.

Systems using masking tend to be more robust and to produce limited artifacts (Huang
et al., 2014a). Masking also enforces the fact that both estimates sum to the original mix-
ture in the time domain (reverse STFT being a linear operation). That’s why it is almost
systematically used for reconstruction of the audio after separation.

Dominance assumption

When using a masking technique, the underlying assumption is that for each time-frequency
bin, one of both sources substantially dominates the other. Therefore, we can distribute the
spectrogram’s energy among the sources for each bin. In this model, the isolated sources are

1.4. Performances evaluation 5

FIGURE 1.4: Illustration of binary masking with clearly separated parts.

assumed to be more or less uncorrelated in time and frequency. This is of course debatable in
music. However, most of the separation systems use masking2 , and some of them try to di-
rectly estimate time-frequency masks (Huang et al., 2014b). Masking is also used to produce
oracle systems (Stöter, Liutkus, and Ito, 2018). As we will show in 4.4.1, oracle masks gener-
ally produce very convincing estimates with very few artifacts. For simplification purposes,
we will use the dominance hypothesis as well.

1.4 Performances evaluation

To evaluate the performance of a singing voice separation algorithm, the usual procedure
is the following. From a standard dataset of songs, the systems must estimate the contri-
butions of both target sources in the form of two audio files, using only the mix. Then, the
performance is estimated using either automatic tools or human perception.

Objective metrics

In this type of evaluation, a dedicated toolbox uses the estimated tracks and the reference
ground truth tracks to compute separation scores. For the most common evaluation tool-
box, BSS_EVAL, these scores take the form of three measures, in decibels, that must be as
high as possible. Following the original paper of Févotte, Gribonval, and Vincent, 2005, the
estimated signal is first decomposed as the sum of its target signal and a three perturbation
signals:

Sestim(t) = starget(t) + einter f (t) + enoise(t) + earti f (t), (1.6)

where einter f , enoise and earti f (t) correspond respectively to the interferences, noise and
artifacts error terms. Then the metrics are computed as follows:

• The Signal to Distortion ratio (SDR) measures the general quality of the separation;

SDR = 10 log10
||starget||2

||einter f + enoise + earti f ||2
(1.7)

• The Signal to Interference ratio (SIR) measures how much of the other sources remain
in the separated signal;

2As examples of alternative approaches, we can cite Nugraha, Liutkus, and Vincent, 2016 and Stoller, Ewert,
and Dixon, 2018. The first one exploits multi-channel information to directly output complex spectrograms,
while the second one exclusively works in the time domain.

6 Chapter 1. Introduction to Singing Voice Separation

SIR = 10 log10
||starget||2

||einter f ||2
(1.8)

• The Signal to Artifacts ratio (SAR) measures the artifacts induced by the separation
algorithm that are not residuals of other sources.

SAR = 10 log10
||starget + einter f + enoise||2

||earti f ||2
(1.9)

The main aspect to note on these metrics is that they are computed based on the energy
of the signal, and no difference is made between low and high frequencies. This means that
in low-energy frequencies, namely high frequencies in music, more important relative error
can be tolerated. We should also notice that the metrics are not defined if the target signal
is silent. This happens regularly for voice estimation, so some parts of the signal must be
ignored. We will keep these specificities in mind to interpret our results.

The relevance of each metric depends on the application. Empirically, it was found that
for remixing, the interferences are more problematic than the artifacts, so separation systems
designed for this goal will try to optimize the SIR prior to the SAR. In a similar way, we
expect to require such compromises for lyrics transcription.

While the original toolbox was released in Matlab, different re-implementations exist
for Python. We will mainly use Museval (Rafii et al., 2017). The main advantage of these
evaluation algorithms is that they are deterministic and thus allow to objectively and fairly
compare the separation system with each other. The main limitation of objective metrics
are that despite their logarithmic scale, they often not correlate to human perception (Cano,
FitzGerald, and Brandenburg, 2016).

Perceptive measures

In addition to the objective metrics, one can judge the quality of the separation by asking di-
rectly for the opinion of human listeners. Specific procedures exist for this perceptive evalu-
ation (see Cano, FitzGerald, and Brandenburg, 2016 and Jansson et al., 2017). Such measures
would in theory be the best possible, but they remain out of reach for most research teams,
because of financial and time constraints. This is why, in the context of this internship, we
restricted ourselves to informal listening tests, as a complement to the objective measures.

1.5 Unsupervised systems

Over time, researchers have developed a wide variety of methods to separate vocals from in-
strumentals in a mixture. REPET, an algorithm released by Rafii and Pardo, 2013, proposed
to model the typical repeating structure of the instrumental accompaniment in pop songs.
Using auto-correlation, the repeating background (guitar riffs, drum loops) can be extracted
from the foreground (vocal line). This technique works mostly on short segments, where
it gives better results than a simple high-pass filtering, used as baseline. Such a method
exploits prior knowledge about the spectrograms and deduces a set of rules to be applied
directly to any audio to perform separation. We say that it is model-based. Other model-
based systems include Li and Wang, 2005 and Ryynanen et al., 2008, in which a first pass of
pitch contour extraction with F0 tracking is performed before estimating the signal without
the leading melody.

Other approaches rely on matrix decomposition techniques, in order to split the spec-
trogram into several parts. Statistically driven methods (Raj et al., 2007), bayesian methods

1.5. Unsupervised systems 7

(Ozerov et al., 2007) and independent components analysis (Vembu and Baumann, 2005)
were successfully used for singing voice separation. Another popular decomposition is ro-
bust principal components analysis (RPCA), in which one assumes that the instrumentals
are repetitive and the vocals are sparse. The spectrogram of the mix is thus estimated as the
sum of a low-rank and a sparse matrix: X = A + E, and the optimization problem to solve
is:

minA,E ||A||∗ + λ||E||1

where ||A||∗ = Tr(
√

AA∗) is the trace norm of the matrix. Variations of this technique,
such as low-rank and group-sparse representations, are benchmarked in Chan and Yang,
2017. But, as shown by the benchmark, these systems only have limited performances,
unless they are informed with chords or pitch annotations.

Another way to decompose the audio is to apply matrix factorization to the spectro-
grams. Historically, matrix factorization has been a privileged mean to solve source sepa-
ration problems. In particular, for audio, the Non-negative Matrix Factorization (NMF) is
an unsupervised method for the factorization of magnitude spectrograms (Weninger et al.,
2014). In NMF, an iterative algorithm estimates the mixture spectrogram V as the product of
two positive matrix : the first one is called the dictionary (W) and contains spectrogram pat-
terns, while the other is the activation (H) matrix and specifies when the patterns should be
activated (see Figure 1.5). Grouping the patterns into clusters allows to create an estimation
of the magnitude spectrogram of each separated source.

Along with the history of singing voice separation, many refinements have been brought
to NMF. A first way to inform the NMF decomposition for separation is to use the pitch
information. The pitch of the leading voice can be estimated with F0 tracking. The esti-
mated melody then informs the NMF, as in Virtanen, Mesaros, and Ryynänen, 2008. The
limitations of such a system is that it only guarantees that the main melody will be sepa-
rated, and it actually transcribes any harmonic instrument that plays it. Another way to
improve NMF and to be more vocals-specific is Durrieu’s model, as used in Durrieu et al.,
2009. The idea is to integrate a source-filter model for the voice into the NMF algorithm.
The vocal part is decomposed into a generic source (for pitch) and a filter (for formants):
Vvoice = (WF HF) ∗ (WSHS). The source matrix WS is known: it follows the KLGLOTT88
model, which relates to a "cumb" source with peaks at every multiple frequency of the fun-
damental frequency (Klatt and Klatt, 1990). The accompaniment is modeled as the product
of two unknown matrices: WaccHacc. The mix spectrogram model that the NMF will try to
fit is: Vmix = (WF HF). ∗ (WSHS) + WaccHacc.

FIGURE 1.5: The NMF algorithm (Image: Cédric Févotte)

The main advantage of NMF-based method is their interpretability, since the elements
of the dictionary are spectrograms that are directly interpretable as audio components of the
signal (one note or one drum stroke, for example). But they tend to create artifacts in the
reconstructed signals, depending on the type of model chosen (Ozerov and Févotte, 2010).

9

Chapter 2

Deep neural networks for singing
voice separation

We now present the general framework to perform separation using supervised, neural-
network based methods. We explain the structure of standard feed-forward networks and
how to train them. Then, we focus on convolutional neural networks. Finally, we present
state-of-the-art methods that use convolutional neural networks for singing voice separa-
tion.

2.1 Supervised learning and regression problems

Singing voice separation can be thought as a regression problem. This means that from
a given input (the mixture’s spectrogram), we will produce an estimate of a target (the
source’s spectrogram), and this estimate belongs to a continuous output space. The target
y is sometimes called the ground truth. Let x be our input, y our target and ŷ our target’s
estimate. The problem consists in finding a transformation fθ :

ŷ = fθ(x). (2.1)

The function fθ is called the model. It is parametric such that, by tuning θ, we can
minimize a certain distance d between the estimate and the target:

min
θ

d(y, ŷ). (2.2)

The distance d is called the loss function. For our problem, it is often the L1 norm of
the difference between y and ŷ, or their mean squared error (MSE). The form of the function
fθ depends on the type of model that we use (neural network, support vector machine...),
while the parameters θ are adjusted during a process called the training. During the train-
ing, the parameters of the model are iteratively refined until a satisfying performance on
the regression task is reached. The training is performed using a dataset of examples: the
training dataset. In our case, the training is said supervised, as the training dataset contains
the ground truth for each example (the separated instrumental and vocal tracks). Hope-
fully, at the end of the training process, the model fits the training data and is able to pro-
duce good estimates for new data: this is the inference step. In addition to θ, the systems
often have other parameters that cannot be tuned during the training. They typically af-
fect the architecture of the model and the training algorithm itself. They are called hyper-
parameters. Hyper-parameters are generally guessed and tuned manually, sometimes using
a grid search algorithm.

10 Chapter 2. Deep neural networks for singing voice separation

2.2 Fully-connected neural networks

Neural networks are a family of models that has become increasingly popular during the
last decades (Isola et al., 2017). A neural network is composed of units, that are organized
in layers. The units are connected to each other and each connection is affected a weight.
The weights are the parameters θ that are tuned during the training.

The most elementary neural network is composed of one single unit: the perceptron. It
has n numerical inputs (x1, ..., xn), n + 1 weights (b, w1, ..., wn) and one output ŷ. The output
of a unit is called the activation.

σ

Activation
function

ŷ∑x2

x1

1

b
w1

w2

...

xn

wn

inputs

weights

FIGURE 2.1: A perceptron with n inputs and one output.

In the perceptron model (Figure 2.1), the inputs first go through a weighted sum to which
a bias b is added. Then the results goes though an activation function. The final output is:

ŷ = σ(wTx + b). (2.3)

In singing voice separation, we will mainly use the ReLu activation function (Nair and
Hinton, 2010):

σ(x) = max(x, 0). (2.4)

In more complex models, the units can be grouped into layers, which are stacked into
networks by following a given architecture. By extension, we also call activations the tensor
composed of all the outputs of a layer. We call the depth of the network its number of layers,
excluding the input layer. We say that a layer is fully-connected if each unit of each layer is
connected to all the units of the next layer (Figure 2.2).

2.3 Convolutional neural networks

Convolutional networks are a special case of neural networks which showed excellent per-
formances in image recognition and in MIR during the recent years (Russakovsky et al.,
2015; Stöter, Liutkus, and Ito, 2018). This type of architecture rely on two special types of
layers: the convolutional layers, and the pooling layers.

Convolutional layers

Most convolutional networks take as input real 3D tensors with a width M, a height N and
a certain number of channels K. For stereo magnitude spectrograms, the initial number of

2.3. Convolutional neural networks 11

x1

x2

x3

x4

ŷ

Hidden
layer

Input
layer

Output
layer

FIGURE 2.2: A fully-connected neural network with one hidden layer.

channels is 2. In a convolutional layer, the input activation tensors are filtered by a set of
filters, which are small matrices of weights (see Figure 2.3).

Input tensor: M*N Output tensor: M*N*F

On
e
filt
er

On
e
fe
at
ur
e
m
ap

F feature maps

FIGURE 2.3: A schematic view of a convolutional layer.

The convolution operation between a filter W of shape (U, V) and an input tensor A of
shape (M, N, K) is defined as:

∀i, j ∈ J1, MK× J1, NK (A ? W)i,j =
K

∑
k=1

U

∑
u=1

V

∑
v=1

Ai−u+1,j−v+1,kWu,v. (2.5)

After filtering, a bias specific to the filter is added, and the result goes through the acti-
vation function:

∀i, j ∈ J1, MK× J1, NK (H)i,j = σ((A ? W)i,j + bW). (2.6)

Each filter processes sequentially the whole tensor and produces a feature map H of the
same shape: (M, N). If the layer contains F filters, then F feature maps are produced and
stacked together. This way, the output tensor’s shape is (M, N, F).

12 Chapter 2. Deep neural networks for singing voice separation

In some architectures, convolutional filters of shape (1,1) are used in order to reduce
the number of feature maps. Such filters can be reduced to a single coefficient w. When
applied to an input tensor, all its coefficients are collapsed along the channels dimension by
a summation operation.

∀i, j ∈ J1, MK× J1, NK (A ? W)i,j =
K

∑
k=1

Ai,j,kw. (2.7)

Pooling layers

In a pooling layer, the number of feature maps is preserved, while the size of each filter map
is reduced. The feature maps are segmented into patches and only one value is kept for each
patch. This way, the values that are too low or not significant in each patch are removed. A
typical size for the patches is (2, 2), which reduces the size of the map in each dimension by
a factor of 2. There are several types of pooling. We will mainly use average pooling, where
the value that is kept for each patch is the average of its coefficients.

Convolutional networks

A convolutional neural network (as presented on Figure 2.4) is usually composed of a series
of convolutional layers, alternated with pooling layers. The idea of such architectures is
to progressively transform the input data into a compact representation by breaking it into
small, simple parts.

FIGURE 2.4: A convolutional neural network with two convolutional layers.
Image: Adit Deshpande

Convolutional neural networks (CNNs) have good properties for singing voice sepa-
ration: because they model only local interactions, they have less parameters than fully-
connected networks. This results in a faster training and a reduced risk of overfitting.
What’s more, they are robust to spatial translations (Humphrey, Bello, and LeCun, 2012).
In our case, it is useful that the detection of singing voice does not depend on the time axis.

2.4 How to train a neural network

The goal of the training process is to reach a value of θ for which the loss d(y, ŷ) is as small
as possible, since in general, no analytical formula gives the optimal result. In order to do
so, we start from a random value of θ and perform successive iterations to change its value
into another one, which hopefully reduces the loss.

2.5. Deep neural networks applied to singing voice separation 13

This update rule for θ is called the gradient descent:

θ ← θ − λ ∗ ∂d(y, ŷ)
∂θ

. (2.8)

In the case of neural networks, the gradient is computed in two steps:

• First, a feed-forward step, in which the input data goes through the series of transfor-
mations defined by the network. The distance between the corresponding output and
the target is computed via the loss function: it is the error of this iteration.

• Then, during the back-propagation step, the gradient of the error is back-propagated
through the network: according to this value, the weights are updated, and a new
iteration can start.

The parameter λ defines the speed at which the parameters will be updated. We call it the
learning rate. There exists various gradient descent algorithms, according to the proportion
of the training dataset that is used at each iteration. We will use the mini-batch gradient
descent, in which the weights are updated after a small number of samples from the dataset
have gone through the forward pass: x = (x1, ..., xn). This is a compromise between an
optimization on the full dataset, too computationally heavy, and an optimization sample
by sample, too unstable (Hinton, Srivastava, and Swersky, 2012). We refer to an epoch as
a constant number of iterations. The duration of the training depends on the number of
epochs that must be performed in order to reach a satisfying accuracy.

However, reaching good performances on the training dataset gives no guarantee that
the model will be able to give perform well on unseen data. We could have built a model
that gives optimal performances only on the training data, and which is useless in real life
situations: in other words, a model which lacks generalization power. It is the overfitting
phenomenon, and there are several ways to avoid it. First, we can use a validation dataset.
The validation dataset is not used for training and must have no sample in common with the
training dataset. After each epoch, the loss on the validation dataset is computed. During
the training, we can monitor the loss on the validation dataset. If the network looses its
ability to generalize, we will observe an increase in the validation loss. We will hence know
that the training has lasted long enough and that the network is starting to overfit. We can
interrupt the training before this happens, and this method is called early stopping. We
can also introduce regularization within the model. In neural networks, specific layers such
as the Dropout layer (Srivastava et al., 2014) prevent the model to learn only a mapping
between the inputs and the targets on the training set.

2.5 Deep neural networks applied to singing voice separation

Deep neural networks

We call a neural network deep if it has a large number of hidden layers (typically superior to
3, and reaching to more than 100 in the largest models). Such networks can handle complex
and non-linear relationships and operations. In this section, we will present recent deep
network-based systems that perform singing voice separation.

State of the art systems

Recently, supervised systems based on deep learning have gathered the interest of the audio
source separation community.

14 Chapter 2. Deep neural networks for singing voice separation

By learning time-frequency filters to be applied on spectrograms, CNNs are able to ex-
ploit spatial and temporal dependencies within the musical data. A very popular architec-
ture for CNN-based singing voice separation is the convolutional denoising auto-encoder
(CDAE, see Figure 2.5). It consists in a downsampling path (an alternance of convolu-
tional and pooling layers), which compress the data into a compact representation. Then,
an upsampling path restores the original shape of the inputs. In Chandna et al., 2017 and
Grais and Plumbley, 2017, a CDAE learns to estimate source spectrograms or directly the
spectrogram masks from the mixture’s spectrogram. Though CNNs did not systematically
oupterform standard fully-connected networks, they have less parameters and train much
faster.

FIGURE 2.5: A convolutional auto-encoder for singing voice separation. Im-
age from Grais and Plumbley, 2017.

In parallel, other CDAE-oriented approaches (Nugraha, Liutkus, and Vincent, 2016)
have tried to take advantage of both channels of the audio file by jointly estimating source
magnitude spectrograms and spatial covariance matrix. They gave promising results, show-
ing that the stereo information was relevant to use for separation. This confirms our intu-
ition, since the voice is almost always mixed at the center in professional recordings. A
more recent paper compared the mono-channel and stereo approach for the same systems
(Stoller, Ewert, and Dixon, 2018) and concluded that stereo modeling was mostly benefiting
the accompaniment estimations (+3 dB in SDR).

Recently, a U-Net proposed by Jansson et al., 2017 achieved good results. U-Nets are
variants of CDAEs featuring skip-connections to preserve precise details at reconstruction
(See Figure 2.6. More details will be provided in 4.3). The specificity of this system is that
the authors trained the network on a custom dataset built from Spotify’s music streaming
catalog (see 3.2). We found this setup very interesting and selected it as our starting point.

FIGURE 2.6: The U-Net architecture. Image from Isola et al., 2017.

2.5. Deep neural networks applied to singing voice separation 15

Then, a series of systems proposed by the same team was released too (Uhlich et al.,
2017, Takahashi and Mitsufuji, 2017, Takahashi, Goswami, and Mitsufuji, 2018). These sys-
tems performed particularly well at the last music source separation challenge (SiSec 2018).
In Uhlich et al., 2017, the authors suggests to use data augmentation to enhance perfor-
mances; hence, we decided to explore this option too. In Takahashi and Mitsufuji, 2017, an
architecture supposed to improve the U-Net by using dense blocks instead of simple convo-
lutional layers was introduced. We also implemented a similar system to test it in various
situations.

All of these systems operate in the magnitude STFT domain and use masking for recon-
struction. Sometimes, another post-processing, like the multi-channel Wiener filtering, is
applied (see 4.4.3).

17

Chapter 3

Multi-tracks datasets for supervised
learning and evaluation

In this chapter, we will present the SiSec MUS challenge, which was used as a reference in
our work, as well as a some insights about training datasets in machine learning.

3.1 Standard databases

To train supervised systems and evaluate the algorithms, singing voice separation requires
multi-tracks datasets, where the original mixture, vocal and instrumental tracks are avail-
able for each song. For the purpose of MIR research, a few of such datasets were created
and made available. A rather extensive list with descriptions and references is available at:
https://sigsep.github.io/datasets/. Each dataset has a duration comprised between 2
and 10 hours and a production quality ranging from amateur to professional. In our study,
we will focus on MUSDB, which is the largest and most up-to-date public dataset.

MUSDB (Rafii et al., 2017) is composed of 150 professionally produced songs, mainly
taken from the DSD100 (Liutkus et al., 2017) and MedleyDB (Bittner et al., 2014) datasets.
The genres represented are only western music genres, with a majority of pop/rock songs,
along with some hip-hop, rap or metal songs. 100 tracks belong to the training set and the
50 remaining ones belong to the test set. They sum up to 10 hours of audio, which occupy
together 27G of storage in .wav format. The songs are full-length (4 minutes on average),
stereo and sampled at 44100 Hz. For each song, five tracks are available: the mix, and
four separated sources ("drums", "bass", "vocals" and "others"). There is no mixing effect
in the "mix" track (the different sources sum up exactly to the original track). To create the
"instrumentals" source, we add up the tracks corresponding to "drums", "bass" and "others".
Then, we focus exclusively on these two sources: "instrumentals" and "vocals".

These public datasets are very convenient for evaluation, but are rather small to train
supervised systems, and often lack representativeness. Overall, there are very few publicly
available multi-track recordings. In the literature, this data scarcity is often cited as one
of the main limits to building efficient and scalable supervised singing voice separation
algorithms.

3.2 Building a singing voice separation dataset

Since a large and diverse training dataset is likely to enhance separation performances, we
figured out a way to build one. To do so, we inspired ourselves from a paper published
recently: Humphrey et al., 2017. It presents a method to build a dataset based on a music
streaming catalog. To take advantage of the catalog, the idea is to exploit the instrumental
versions that are released by some artists along with the original songs.

https://sigsep.github.io/datasets/

18 Chapter 3. Multi-tracks datasets for supervised learning and evaluation

The procedure, schematized on Figure 3.1, is the following. The first step is to find
all possible instrumental/mix track pairs within the catalog. This matching is done using
metadata (the song’s title and the version field) and audio fingerprints. The fingerprinting
algorithm used is described in Wang, 2003 and is known for being used by the Shazam appli-
cation. At first, 62 048 pairs were found in the catalog with this process. Then, we perform
a few filtering and homogenization operations:

• If both tracks have a duration difference greater than 5 seconds, the pair is removed.
In this case, we assume the metadata were mismatch and both tracks did not represent
exactly the same song (it could be a remastered edition, for example).

• Songs longer than 5 minutes are also filtered out. This makes it easier to compute the
signal correlations in the next step.

• Both tracks are temporally re-aligned using autocorrelation.

• Finally, the loudness of both tracks are equalized.

To produce a triplet (mix, instrumentals, vocals) from the pair (mix, instrumental), we
perform a half-wave rectified difference of both spectrograms. Eventually, 43,391 triplets
were created, which represent 69% of all original matches. The full filtering and re-alignment
procedure took about 24 hours on a 32-cores machine. The vocal estimates occupy 1.7T of
storage in .wav format. Using metadata, we found out that a great variety of genres was
represented in this corpus, which contains a majority of pop songs. Other genres include
rap, kid music and movie soundtracks.

FIGURE 3.1: A schematic view on the creation of the Catalog dataset.

This database will be named "Catalog" database in the following of the report. Despite
its very large volume compared to the standard datasets described in 3.1, we must keep in
mind that it was not professionally produced for separation purposes and is necessarily of
a lower quality. The main issues that we found in the dataset are:

• The half-wave rectified difference between the mix and the instrumental version should
theoretically correspond to the vocal part. But in practice, even a small misalignment
between both tracks can produce residuals in the vocals. A listening test on a small
subset (40 tracks) reveals that this happens in almost 50% of the tracks.

• Even with a good alignment, there might be other sources of residual energy; typically,
non-linearity effects introduced during production (mastering, compression ...). The
original article equally mentions a "sensibility to mixing quality" in the vocal estimates.

• Duplicates are present in the dataset. For example, several pairs have the same mix
identifier, while having different instrumental versions. The total number of different
instrumental version identifiers reveals that such pairs account for 10% of the dataset.

• We noticed genre bias in the dataset. For example, kids music, which is very often
released along with an instrumental version, is over-represented in the dataset com-
pared to its actual proportion in the catalog.

3.3. The dataset problem in supervised machine learning 19

Music Genre Mix URL Instrumentals URL
Irish music deezer.com/en/track/67468121 deezer.com/en/track/67468122
Religious song deezer.com/en/track/115447012 deezer.com/en/track/115447094
Kids song deezer.com/en/track/136839184 deezer.com/en/track/136839186
Pop deezer.com/en/track/67469788 deezer.com/en/track/67469790
Rap deezer.com/en/track/127593433 deezer.com/en/track/127593409

TABLE 3.1: Examples of (instrumental, mix) pairs that are available in
Deezer’s catalog.

• Lastly, if the metadata matching is not perfect, there might be tracks that feature no
singing voice at all from the beginning. In this case, the "vocals" part is only residual
noise. Reversely, some "instrumentals" tracks contain choirs. These cases are difficult
to point out by automatic systems.

Accordingly, we can say that the Catalog database provides us with a large amount of
weakly labeled data. The instrumental part is professionally-produced, while the vocals are
only estimates. We summed up in table 3.1 some examples of satisfying (instrumental, mix)
pairs that were available in the catalog.

To train the models, we selected one segment of 11.88 seconds from each song, avoiding
the intro (the 20 first seconds) and the outro (20 last seconds), where lyrics are often miss-
ing. The duration of the segments was chosen according to Jansson et al., 2017. All samples
are stereo and resampled to 22050 Hz. They add up to a total training material of almost 6
days. Pilot experiments with 2 segments per song did not result in any significant improve-
ment in performances, and for storage reasons, they are difficult to conduct, so we did not
experiment further on huge datasets.

In addition to the Catalog dataset, we also used an internal multi-track dataset, from
which we were able to extract 19,502 segment of 11.88 seconds each. We will name this
dataset "Bean". The Bean dataset contains a majority of pop/rock songs and its quality is
higher than the one of the Catalog. Once again, the segments are stereo and are resampled
to 22050 Hz. The total training material in this dataset is around 64 hours.

3.3 The dataset problem in supervised machine learning

The characteristics of the ideal training dataset: a vague concept

Machine learning is used to solve very various tasks, and if used in a supervised approach,
one must first find or build a suitable training dataset. The quality of the training dataset
impacts directly the final inference capacity of the algorithm (Japkowicz and Stephen, 2002).
Ideally, we would like the training dataset to be as representative as possible of any situation
that can be encountered during the inference task. But a certain number of papers point out
bias in the training datasets that limit performance, such as: Dupin et al., 2011, Hansen et al.,
2004 and Torralba and Efros, 2011. We will present here these papers that studied the impact
of training datasets on performances.

A first paper that studied the impact of the training dataset for regression is Dupin et al.,
2011. The domain is botanics and the task is to predict the evolution of invasive species.
Different models including a SVM, a PCA and other botanics-specific models are trained
with various features and dataset sizes. The authors concluded that providing the models
with more training data leads to a higher accuracy in predictions. But this expected result
does not seem to generalize to any other domain. For example, in cardiac imagery, where no

deezer.com/en/track/67468121
deezer.com/en/track/67468122
deezer.com/en/track/115447012
deezer.com/en/track/115447094
deezer.com/en/track/136839184
deezer.com/en/track/136839186
deezer.com/en/track/67469788
deezer.com/en/track/67469790
deezer.com/en/track/127593433
deezer.com/en/track/127593409

20 Chapter 3. Multi-tracks datasets for supervised learning and evaluation

error can be tolerated, the authors in Hansen et al., 2004 recommend to favor quality over
quantity in the training dataset. Their goal is to study an intelligent image compression
algorithm called k-t BLAST, and to minimize its reconstruction error. For this task, they
found that "an increased amount of training data increases susceptibility to misregistration
of the training data".

Our intuition after this short literature review is that the correct amount and quality of
training data varies according to the task, the model and the domain. To our knowledge, no
such study was found in audio source separation. What’s more, in singing voice processing,
according to Gómez et al., 2018, "there is no agreed-upon methodology to document and
evaluate datasets in terms of coverage, e.g. with respect to singer, gender, race, language or
singing style".

Bias are present in any dataset

In image recognition, where large training datasets are more often available, datasets bias
is a very known issue. According to Torralba and Efros, 2011, most datasets have bias, that
give them a distinct signature. Over time, they became "closed worlds", since the systems
generally try to reach the best performances for a given dataset. This is why some systems
end up overfitting on a train/test data setup, even if this means modeling directly the bias.
The author’s recommendations to such issues are:

• Perform cross-datasets generalization.

• To avoid any selection bias, use an automatically collected dataset.

• Perform data augmentation.

In our setup, the Catalog dataset would theoretically be the least biased one, since it has
been collected automatically. However, we noticed that some genres, like kids songs, are
over-represented. We will make sure that systems that were trained on a given dataset can
be tested on another dataset (for example, training on Catalog and testing on MUSDB). Data
augmentation will also be studied in 4.4.4.

3.4 Evaluation campaigns

To evaluate and compare singing voice separation systems, evaluation campaigns are regu-
larly organized. The main ones are SiSec MUS1 and MIREX2. For this study, we will focus
on SiSec, which is more up-to-date (Stöter, Liutkus, and Ito, 2018). The organizing team
of SiSec has released standard datasets, along with tools to manipulate them. The last two
datasets that were released are DSD100 in 2016 and MUSDB in 2017. They come with a split
in a Dev part (to train supervised systems) and a Test part (to compare the performances of
the systems).

The standard procedures for the singing voice separation task is the following:

• Each team can present one or several systems, supervised or not, trained with addi-
tional data or not;

• The systems take as input the audio files of the mixture of the test dataset and output
estimates of each source (vocals and accompaniment in our case);

1https://github.com/sigsep/sigsep-mus-2018
2http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation

https://github.com/sigsep/sigsep-mus-2018
http://www.music-ir.org/mirex/wiki/2016:Singing_Voice_Separation

3.4. Evaluation campaigns 21

• The provided toolbox outputs scores that are published on the official website:
https://github.com/sigsep/sigsep-mus-2018

A few salient aspects of the results of the last two campaigns are worth noticing. First, all
model-based methods (such as REPET or RPCA, presented in 1.5) are outperformed by su-
pervised systems. The best systems are now good enough for automatic karaoke generation
(separation of the instruments): tracks without distortion can be separated almost as well as
an oracle would do. Oracles are systems that use ideal masks, computed from the ground
truth sources, to perform the separation. Oracles based on ideal ratio masks yield very good
results in terms of both perception and objective metrics. Still, no system was found to be
convincing enough to generate realistic separated vocals. The audio demonstrations can be
found at: https://sisec18.unmix.app/#/.

By analyzing the systems, the authors of the campaign found that state-of-the-art al-
gorithms ought to feature multichannel modeling, data augmentation or a fusion of two
complementary systems. The authors of the campaign also find it interesting to investigate
the effect of the training data on the performances.

Finally, we must keep in mind that the SiSec performance evaluation has limitations. In
particular, the Test set is publicly available. This is very convenient to compare a system
to the state-of-the-art without waiting for the next campaign, but it also makes it possible
for all teams to optimize the model’s hyper-parameters using the test set. It is a form of
overfitting that cannot be avoided in the SiSec’s challenge.

https://github.com/sigsep/sigsep-mus-2018
https://sisec18.unmix.app/#/

23

Chapter 4

Experiments and results: the impact of
various data-related parameters on
performances

During this internship, we studied uninformed systems, meaning that we worked exclu-
sively on audio data, without using metadata. We also focused our efforts towards super-
vised models which rely on deep network architectures. The reason for this it that these
methods achieve the current state-of-the-art results, and they are likely to better take advan-
tage of the different datasets. In this chapter, we will present our experimental setup and
our results. The comparison between the different setups constitutes our main contribution.

4.1 Baseline systems

In our test set (the 50 songs from MUSDB Test), the ground truth signals are available for
evaluation. We can also use these reference signals to estimate an "ideal mask" as a high
baseline for all the systems that use masking. The ideal mask is applied to the mixture
spectrograms and then, "ideal" audio estimates can be computed and evaluated. This oracle
system is called IRM1 in the SiSec 2018 challenge. It will be used as our upper baseline.

MIRM1
vocals =

Vvocals

Vinstrumentals + Vvocals
(4.1)

MIRM1
instrumentals =

Vinstrumentals

Vinstrumentals + Vvocals
(4.2)

A low baseline is also computed: it corresponds to the case when the mixture spectro-
gram is used directly as estimates of each source. This system is called MIX in the SiSec 2018
challenge.

∀i, j MMIX
vocalsi,j

= MMIX
instrumentalsi,j

= 0.5 (4.3)

We implemented both baselines using the provided code that can be found at:
https://github.com/sigsep/sigsep-mus-oracle. Then, we evaluated them using the Mu-
seval toolbox. The toolbox takes as input a directory containing the estimates of the sepa-
rated sources for each song and the directory containing the reference sources for each song.
It returns a series of .json files, one for each song. The Figure 4.1 shows the structure of the
input and output folders for this step.

Each score file contains the SDR, SIR and SAR metrics for each source and for each frame
of the song. By default, the frame length is 1 second. A snippet of a typical output of
Museval for a given song can be found in Appendix A.

https://github.com/sigsep/sigsep-mus-oracle

24
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

FIGURE 4.1: The required architecture for evaluation.

The last step is to aggregate the metrics over the dataset. First, we select a metric and
a source. For each song, we compute the median of the metric over all the frames of the
song. Then, we compute simple statistics (median, percentiles) over the score of all the
songs in the test dataset. This methodology is inspired from the one used by SiSec 2018 for
the publication of the results1.

4.2 Experimental framework and methodology

In order to study the impact of data-related aspects on performances, we have set up a series
of experiments. Each experiment consists in a combination of a training dataset, a network
architecture and some training and inference settings, like the post-processing technique.
The experiments consist in three steps. First, two identical network, one for each source, are
trained on the chosen dataset. Then, the estimates of the separated sources of each track of
the test dataset (generally MusDB Test) are inferred. Finally, the Museval toolbox produces
separation scores for the experiment that can be analyzed. We will detail the different steps
below.

Data preparation

The preparation of a dataset for training is rather simple. A dataset is a collection of sam-
ples, each of one representing a segment of a song. For each sample, three audio files are
referenced: the mix, the instrumental and the vocal part. The mix serves as input to the sep-
aration system and the two others as targets. Each segment of audio must be transformed
into a magnitude spectrogram before use. We chose a simple STFT representation because
it offers meaningful time-frequency information at a low computational cost and is easy to
reverse for inference.

The STFTs are computed using the Librosa Python library (McFee et al., 2015). The win-
dow size is 2048 and the step size is 512 (75% overlap). The temporal length of each segment
is 11.88 seconds. We chose these settings such that the dimensions of the spectrograms, after
removing the highest frequency band, are a power of two: (channels, time steps, frequency
bins) = (2,512,1024). This is important, because the network architectures that we will use
reduce the dimensions of the spectrogram by a factor which is a power of two (see 4.3). The
features (the magnitude spectrograms) of each sample are pre-computed using an internal
micro-service and stored in cache. The computation of the features is heavily parallelized
to reduce its duration. They represent 41GB for MUSBD, 283GB for Bean and 478GB for the
Catalog dataset, stored in 32 bits floating-point.

1https://github.com/sigsep/sigsep-mus-2018-analysis

https://github.com/sigsep/sigsep-mus-2018-analysis

4.3. The selected network architectures 25

Training

Even if it is possible to train a two-headed network to simultaneously produce estimates of
the vocals and instrumentals, we chose to train one network for the vocals and another one
for the instruments. This allows each network to specialize and learn audio features that are
specific to each type of source. This type of approach is almost systematically used in recent
literature (Uhlich et al., 2017, Jansson et al., 2017).

The design of the training part of the experiment is made using the internal audio pro-
cessing and machine learning librairies from Deezer. These libraries are based on Keras2

with Tensorflow backend3. For training, we define an epoch as 800 gradient descent steps.
We define a validation step as a complete forward pass over the validation dataset. We
train each network during 500 epochs and monitor the loss over the training and validation
dataset. At the end, we keep the configuration that gave the best results on the validation
dataset (early stopping). The layers are initialized using the he_uniform distribution (He
et al., 2015) and a fixed seed for reproducibility. The batch size is set to 1, because larger
batches do not fit in memory. The training is done using CUDA parallel computing on a
NVIDIA GTX 1080 Ti card with 11GB of RAM.

Inference and evaluation

Once the training is finished, we performed a forward pass on the test dataset, after dividing
each track into segments. The complex spectrograms of each source are computed using
magnitude masks and the phase of the original mix, as presented in 1.3. Optionally, a post-
processing operation is applied. The STFTs are reversed to audio signals and the segments
are finally re-assembled into full-length songs. We did not find any paper mentioning a
particular way to re-assemble the separated segments together, so we simply concatenated
them with each other chronologically. We checked that no artifact was created at the borders
by looking at the waveform on Audacity on some examples. We also plotted the SDR score
of the test songs as a function of time, using the framewise scores. If the concatenation was
not precise enough, we would expect periodical drops in scores around the borders of the
segments. But no such pattern was visible, so we deduced that this reconstruction method
was viable.

Finally, the songs are upsampled back to 44100 Hz and the scores are computed using
the Museval toolbox.

Training networks for singing voice separation is not obvious, since the performances
are not directly accessible as an error rate produced by the network. One must first perform
inference and evaluation, which last respectively 27 and 25 minutes on a 32-cores machine.
This makes the tuning of the hyper-parameters tricky.

4.3 The selected network architectures

We focused our efforts towards the implementation of two fully-convolutional neural net-
works.

U-Net

This network architecture was taken from Jansson et al., 2017 (Figure 4.2). The U-Net looks
like a convolutional auto-encoder, except that it features skip-connections that bring back

2https://keras.io/
3https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/

26
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

detailed information lost during the encoding stage to the decoding stage. During the en-
coding path, each convolutional layer halves the size of the feature maps thanks to a stride
equal to 2. It also doubles the number of feature maps, creating a small and deep repre-
sentation. The upsampling operation during the decoding path is done using transposed
convolutions, as presented in Appendix B. All the information provided in the paper was
kept as it. Only the initial shape of the features is slightly different. The re-implemented
network has the same number of layers, the same activation functions, and it was trained
using the same optimizer (Adam).

(2,512,1024)

(16,256,512)

(32,128,256)

(64,64,128)

(128,32,64)

(256,16,32)

(512,8,16)

(256,16,32)

(128,32,64)

(64,64,128)

(32,128,256)

(16,256,512)

(2,512,1024)

2D Convolution + Batch Normalization +
Leaky ReLu

2D Transposed Convolution +
Batch Normalization+ ReLu + Dropout

Skip connection (concatenation)

2D Transposed Convolution +
Batch Normalization + ReLu

FIGURE 4.2: The U-net architecture.

The loss is, as presented in the paper, the L1 norm of the difference between the target
spectrogram Y and the input spectrogram X multiplied by the output f (X, Θ). This way,
the network learns directly a mask:

Loss(X, Y, Θ) = || f (X, Θ)� X−Y||1. (4.4)

Given our feature size, the learning rate is set to 0.0001. The batch size is 1. This network
requires 3.4GB of GPU RAM for training, and has 9,822,725 parameters. The reconstruction

4.3. The selected network architectures 27

is done with the masking technique presented in 1.3.
In this architecture, all filters have a shape of (5,5). This way, at the lowest resolution,

each filter covers a patch of 7.425 seconds in time and 320 of the initial frequency bins. We
notice hence that this network can model very large time and frequency contexts.

DenseNet and MMDenseNet

This second network architecture was inspired from Takahashi and Mitsufuji, 2017 (Figure
4.3). The Densenet is basically a U-net, except that convolutional layers are replaced with
dense blocks, a series of convolutional layers in which the input of each layer is the con-
catenation of the outputs of all preceding layers. Each dense block is described by a number
of layers L and a growth rate k (number of new feature maps produced by each layer within
the block). Typically, in our architecture, L = 4 and k = 12. This time, the size of the
feature maps is not halved because of the stride in the convolution layers, but because of
intermediary average pooling operations.

Compared to the original paper, we had to make some adaptations in order to use the
same features as for the U-Net:

• Our audio segments are downsampled to 22050 Hz, while there is no mention of
downsampling in the paper.

• The authors perform the STFT with a window size of 2048 and 50% overlap: we also
have a window size of 2048, but with 75% overlap.

• The temporal length of the segments is not explicitly specified in the paper, but we
estimated that it was around 8 seconds, versus 11.88 seconds for our features.

• The training is performed using the RMSProp optimizer. Instead of setting the learn-
ing rate to 0.001 and then to 0.0001, we set it directly to 0.0001 to avoid instability
issues that we had when using a larger learning rate.

• The batch size is kept to 1, in order to the activation tensors to fit in memory.

For this system, some architecture information was missing in the original paper and
had to be inferred from different sources, namely Huang et al., 2017 and Jégou et al., 2017:

• The number of filters in the initial convolution is equal to the growth rate k or twice
the growth rate: that’s why we set it to 24.

• During the downsampling step, (1,1) convolution filters halve the number of feature
maps.

• During the upsampling step, the input of each dense block has k ∗ L = 48 feature
maps.

In total, the DenseNet requires 5.5G of GPU RAM and has 509,031 parameters. It occu-
pies more memory space because it has a larger number of feature maps, but the smaller
filter shape (3,3) reduces considerably the number of trainable parameters. Indeed, at the
lowest resolution, each filter covers a patch of 0.557 seconds in time and 24 of the initial
frequency bins. We notice that this network can model only smaller time and frequency
contexts. The network fits directly the target spectrograms with a L1 loss. The reconstruc-
tion, once again, is done with the masking technique presented in 1.3.

We also implemented the MMDenseNet, which is a multi-band variant of the DenseNet
(Figure 4.4). The idea is to jointly train a full-band DenseNet and several other DenseNets

28
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

(2,512,1024)

(24,512,1024)

(72,512,1024)

(36,256,512)

(42,128,256)

(45,64,128)

(93,68,128)

(48,128,256)

(174,128,256)

(48,256,512)

(180,265,512)

(48,512,1024)

(168,512,1024)

Skip connection (concatenation)

(84,256,512)

(90,128,256)

(176,512,1024)

(2,512,1024)

2D Convolution

Dense Block (cf. Zoom)

Downsampling: 1*1 convolution
+ Average pooling

Upsampling: 2D Transposed convolution

Zoom: Dense Block

2D Convolution

Skip connection (concatenation)

FIGURE 4.3: The DenseNet architecture.

which are specialized in a given frequency band. According to the original paper, this is sup-
posed to provide a significant performance gain, since the spectrogram patterns are very dif-
ferent in high and low frequencies. We used the suggested configuration with two frequency
bands. We end up with 672,115 parameters for this model, with a GPU RAM requirement
of 7.1G.

4.4 Experiments

In this section, we test our network architectures in various training settings. We studied the
impact of the training dataset, the training loss, the post-processing method and the type of
data augmentation. The goal is to help the intuition in guessing good hyper-parameters for
each model, even if we cannot perform an exhaustive search. As already mentioned, the

4.4. Experiments 29

FIGURE 4.4: The MMDenseNet architecture.

Dataset name Number of training samples Number of validation samples
MUSDB Dev 1437 415
Catalog 37799 2000
Catalog + MUSDB Dev 43835 2414
Bean 17502 5000
Bean + MUSDB Dev 18939 5414

TABLE 4.1: Partition in training and validation for each dataset.

feature size of both targets and inputs of the networks is (1, 2, 512, 1024). Audio demonstra-
tions can be listened to at:
https://drive.google.com/drive/folders/1Ey_RNAbul3sP-qJ2IfT_VH8N4EL63qfe?usp=sharing

4.4.1 Experiment 1: different training datasets

In this part, we trained the three network on each of the following datasets: MUSDB Dev,
Catalog, Catalog added to MUSDB Dev, Bean and Bean added to MUSDB Dev. Each dataset
was split into a training and a validation part, following table 4.1. For MUSDB Dev, we used
the 80 first songs as the training dataset and the 20 remaining ones as the validation dataset.
For Catalog and Bean, we selected the size of the dataset in such a way that the validation
step was not too long compared to the training time for one epoch. Another table was made
to provide insights on the training time required in such configurations (4.2).

The systems were tested on MUSDB Test, which contains 50 songs for a total of 1073
samples. The reconstruction was made using the masking technique, as described in 1.3.
The training loss is the L1 loss (mean_absolute_error in Keras).

On the following figures, we displayed the objective metrics for each network, trained
on each dataset and for each source. The low baseline (MIX) and high baseline (IRM1) were
represented as well. The low baseline (MIX) achieves optimal SAR scores, since the mixture
contains no separation artifacts at all.

The first thing we notice on figures 4.5 to 4.10 is that the DenseNet and MMDenseNet
have lower performances than the U-Net. One possible explanation for this is that they are
less deep and thus have shorter temporal and frequential context for the filters (see 4.3).
They also have less parameters, which possibly explains why they have low performance

https://drive.google.com/drive/folders/1Ey_RNAbul3sP-qJ2IfT_VH8N4EL63qfe?usp=sharing

30
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

Network Dataset Training time
U-Net MUSDB 10h
U-Net Catalog 24h
U-Net Bean 36h
DenseNet / MMDenseNet MUSDB 24h
DenseNet / MMDenseNet Catalog 3 days
DenseNet / MMDenseNet Bean 1 week

TABLE 4.2: Approximate training time for each model.

FIGURE 4.5: The U-Net results on different datasets (instrumentals).

FIGURE 4.6: The U-Net results on different datasets (vocals).

gain when augmenting the size of the dataset. Only their SAR seems to be impacted. More-
over, the multi-band extension does not seem to bring performance gains compared to the
single-band implementation.

The impact of the different datasets is more visible for the U-Net (Figures 4.5, 4.6). First,
we notice that the Catalog dataset does not improve all the metrics. Compared to MUSDB

4.4. Experiments 31

FIGURE 4.7: The DenseNet results on different datasets (instrumentals).

FIGURE 4.8: The DenseNet results on different datasets (vocals).

alone, it yields in higher SAR, but lower SIRs, resulting in a similar SDR. The effect is par-
ticularly visible on the vocals. It makes sense with the way the Catalog training dataset was
built (see 3.2): the recordings are professionally produced, so the mixture quality is good,
but significant leaks remain in the vocal target. In this case, where we train with weakly
labeled data, it is relevant to keep MUSDB in the dataset. Even if MUSDB is much smaller
than the Catalog dataset, it seems to "guide" the training and to have a positive effect on the
metrics.

However, we cannot see significant differences between Bean and Bean + MUSDB. This
could be because the Bean dataset in itself is representative enough to be used alone for
training. It makes a significant increase in performance for the U-Net, and a small perfor-
mance gain for the others.

4.4.2 Experiment 2: different losses

In the recent literature, the tendency to train singing voice separation systems is to use a
rather simple loss, such as the mean squared error (MSE), or the L1 norm of the difference

32
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

FIGURE 4.9: The MMDenseNet results on different datasets (instrumentals).

FIGURE 4.10: The MMDenseNet results on different datasets (vocals).

between the estimated and target spectrograms. Some papers mention empirically-added
penalty terms to their losses. For example, in Chandna et al., 2017, the authors build a com-
plex training loss based on their knowledge of the difficulties of the dataset (in particular,
a Lothervocals term enforces the difference between the vocals and other harmonical instru-
ments, such as guitars). But no study was found mentioning the most adequate loss to train
neural networks for separation.

When using a non-negative matrix factorization for separation, most authors use either
the Kullback-Leibler divergence (Arberet et al., 2010) or Itakura-Saito divergence (Ozerov
and Févotte, 2010). Some systems also work on spectrograms where the coefficients are
logarithmically scaled (Schmidt and Olsson, 2006). Following this intuition, we conducted
pilot experiments to see if these types of distances could be adapted as training loss for
neural networks. We implemented a Kullback-Leibler divergence as:

dKL(y, ŷ) = x log
(

x
y

)
+ y− x (4.5)

and a Itakura-saito divergence as:

4.4. Experiments 33

dIS(y, ŷ) =
x
y
− log

(
x
y

)
− 1. (4.6)

We also implemented a logarithmic mean squared error, to model a behavior close to a
training on logarithmically-scaled spectrograms:

dlog(y, ŷ) = || log (y)− log (ŷ) ||22. (4.7)

Unfortunately, these three error functions did not bring any improvement compared to
the L1 loss and MSE. Both divergences produced estimates that were approximately the mix,
with scores close to our lower baseline, while the logarithmic MSE gave approximatively
the same results as a standard mean squared error. Consequently, we restricted ourselves to
simpler loss functions in the next experiments. On figures ‚4.11 and 4.12, we displayed the
metrics for U-Nets trained with a L1 loss and a MSE on the MUSDB and Bean datasets.

FIGURE 4.11: The U-Net trained with different losses on two datasets (instru-
mentals).

FIGURE 4.12: The U-Net trained with different losses on two datasets (vocals).

34
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

These results are surprising for us: since the metrics are computed in terms of power, we
expected them to be better optimized by the MSE. Still, the results are consistent across both
datasets.

Perceptively, we can hear some differences between the estimates of both configurations.
(This is only an informal listening test, that should be completed by standard listening tests
for confirmation.) On average, the sources sound better separated using the L1 loss, and less
interferences from other sources remain. But small artifacts are audible, especially in the
residuals, producing distortion effects. Using the MSE, more residuals are audible, but they
can be identified as music more easily, which makes these estimates sound more natural in
our sense. Overall, there are less residuals in the instrumental tracks than in the vocal tracks.
So if we were to build a karaoke application, we would suggest using the MSE, since small
leaks of voice can be better tolerated than non-musical distortion effects.

4.4.3 Experiment 3: different post-processing methods

In this experiment, we tried to improve the results after training, during the reconstruction
process. We trained a U-Net on the Bean dataset and prepared three post-processing meth-
ods: a multi-channel Wiener filtering, a sigmoid-like function to have a binarization effect
on the masks and and a simple energy thresholding algorithm. We will detail the three pro-
cesses below. This time, we computed the metrics directly on the validation dataset (5000
samples from the Bean dataset), where the performances of the network are optimal. This
way, we eliminate the generalization problem that is inherent to our evaluation protocol.
This also prevents us from overfitting on the test dataset by making a grid search on the best
post-processing parameters for this set. Note that the results in this section are de facto not
comparable to those in other sections.

Energy threshold

The simplest idea we started with is to apply an energy threshold on the predicted vocal
signal. Indeed, the vocal part in the original tracks is not always active, and when it is not,
we would like to hear silence, which is not always the case in the predictions: leaks from the
instrumental part can remain.

This post-processing is applied after the reconstruction, directly on the waveform of the
vocal part. Let b be the minimum energy ratio, compared to the maximum energy of the
signal, for the estimated signal to be considered as containing voice and not only low-energy
residuals. The energy of the signal is computed for each time sample of the song using a
moving average window of duration 0.23s. Let a be the minimum duration of a silence,
in seconds. If we detect a level of energy lower than b during a period longer than a, it is
considered as a remaining of instrument, which should be a silence, and it sets the signal
to 0 (with a very basic fade in - fade out effect). An example of a vocal part processed with
a = 0.5s and b = 0.2 can be seen on Figure 4.13

Pilot experiments showed that the effect was audible and perceptively interesting for
a = 1s and b = 0.5. We experimented further with shorter silences (a = 0.5s) and a less strict
energy threshold (b = 0.2). The figures 4.14 show the results for all combinations of these
parameters. We notice that for all our settings, the SIR improved. In return, artifacts were
created and the SAR decreased slightly. The settings where b = 0.5 show the biggest impact
on the metrics: the SIR raises of 1.5 dB. Unfortunately, this does not compensate for the drop
in SAR. The best compromise seems to be a = 1, b = 0.2, which slightly improves the SDR.

4.4. Experiments 35

(A) The original spectrogram. (B) The spectrogram after post-processing.

FIGURE 4.13: Illustration of the effect of the energy threshold post-processing.

FIGURE 4.14: The U-Net trained on Bean with different energy ratio thresh-
olds (vocals).

Mask binarization

The second post-processing method was thought to reduce interferences as well. It is ap-
plied on the estimated masks of the vocal and instrumental part: Mvocals and Minstrumentals.
The idea is to force large values of the mask to 1, and small values to 0. This way, the sepa-
ration algorithm has to distribute the spectrogram’s energy in a more radical way, hopefully
eliminating residuals of the other source.

To achieve this effect, we used a sigmoid-based, parametric function:

fα(x) =
1

1 + exp(−(x− 0.5) ∗ α)
. (4.8)

The parameter α tunes the slope of the function. The higher it is, the closer to a step
function fα will be, as we can see on Figure 4.15

Figures 4.17 and 4.16 show the effect of this post-processing for different values of α.
Once again, the SIR clearly increases, but the other metrics tend to decrease. The higher α
is, the more visible this effect is. We will thus keep the setting where α = 10 as our best
compromise.

36
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

FIGURE 4.15: The binarization function used on the masks for post-
processing.

FIGURE 4.16: The U-Net trained on Bean with different parameterizations of
the binarization function (instrumentals).

Multi-Channel Wiener filtering

This last post-processing method was first presented in Sivasankaran et al., 2015 and Nu-
graha, Liutkus, and Vincent, 2016. It was used in all DenseNet-based systems presented at
SiSec 2018 (Takahashi and Mitsufuji, 2017). This post-processing step happens after mask-
ing and before reversing the STFT. It is applied independently to the complex spectrogram
of the voice Ŝvocals and to the one of the instruments Ŝinstrumentals.

The idea is to re-estimate the coefficients of the complex spectrogram Ŝ by computing
a spatial correlation matrix between both channels. First, a power spectral density v(m, f)
is computed for each time-frequency bin of the spectrogram. It is in fact the average of the

4.4. Experiments 37

FIGURE 4.17: The U-Net trained on Bean with different parameterizations of
the binarization function (vocals).

power of both channels: v(m, n) = 1
2 ||Ŝ(m, n)||22. It is a scalar, while Ŝ(m, n) was a vector of

length 2 (each time-frequency bin has two channels). Then, the spatial covariance matrix for
this particular bin is estimated as:

R(n) = ∑M
m=1 Ŝ(m, n)Ŝ(m, n)H

∑M
m=1 v(m, n)

. (4.9)

where H denotes the conjugate transpose. R(n) is thus a matrix of size (2,2). In this
model, the spatial balance does not depend on the time m: the sources are assumed to be
fixed in space. This hypothesis is reasonable for most recordings. Finally, the new estimate
for Ŝ(m, f) is computed using the spectral power density and the spectral covariance matrix
of both sources:

Ŝvocals(m, f) =
vvocals(m, n)Rvocals(n)

vvocals(m, n)Rvocals(n) + vinstrumentals(m, n)Rinstrumentals(n)
∗ S(m, f). (4.10)

This operation resembles masking, except that it is performed directly on complex spec-
trograms. The implementation was done using SiSec’s MWF oracle4.

Figures 4.18 and 4.19 show the effect of the MWF post-processing, along with the best
compromise found for the last two post-processings. Compared to the baseline (without
post-processing), the MWF seems to have only a negative effect, or no effect at all. This is
surprising given its success in the recent literature (Uhlich et al., 2017 ,Takahashi, Goswami,
and Mitsufuji, 2018).

4.4.4 Experiment 4: different data augmentation methods

When training on a small dataset like MUSDB, it can be interesting to perform data augmen-
tation (Uhlich et al., 2017). We inspired ourselves from Schlüter, 2017, in which the author
uses a series of transformation on the spectrograms and tests the effect on a singing voice
detection task. We set up a similar series of experiments to find if data augmentation was
significant, and if yes, which one to use in priority. For singing voice separation, we adapted
the transforms proposed by Schülter (pitch shifting, time stretching, loudness modification),

4https://github.com/sigsep/sigsep-mus-oracle/blob/master/MWF.py

38
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

FIGURE 4.18: The U-Net trained on Bean with different post-processing meth-
ods (instrumentals).

FIGURE 4.19: The U-Net trained on Bean with different post-processing meth-
ods (vocals).

and added one from Uhlich et al., 2017 (channels swapping). The specificity in separation
is that both the target and the inputs must go through the exact same transformation for
training. We did not implement the additive gaussian noise, neither the frequency filters,
because we assumed they were not relevant in a musical context. Each transform, except
the channel swapping, has a parameter β:

• Channel swapping: we exchange the left and right channels.

• Time stretching: we scale the spectrograms horizontally by a factor βstretch and keep
the central part. Note that this is an approximation compared to an actual time stretch-
ing of the audio.

• Pitch Shifting: we scale the spectrograms vertically by a factor βshi f t and keep the
bottom part. Note that this is an approximation compared to an actual pitch shifting
of the audio.

4.4. Experiments 39

• Loudness scaling: we multiply all the coefficients of the spectrograms by a factor
βscale.

For each transform, we trained a U-Net on MUSDB Dev with a probability of 0.5 that the
input and output spectrograms are transformed. Then, we randomly draw the parameter β
from a certain range with a uniform probability. We tested two ranges for β: [0.85, 1.15] (±
15%) and [0.7, 1.3] (± 30%). We also implemented a "combined" transform, in which all the
transforms have a probability of 0.3 to be applied, and the range for β is [0.7, 1.3].

Figures 4.21 and 4.20 show the results of this experiment. No significant difference could
be put forward by these new training modalities. The order of magnitude of the difference
in the metrics is ± 0.2 dB, which is the same as the one we obtained in pilot experiments by
changing the initializing seed of the convolutional layers. However, this is consistent with
the values obtained in the literature by Uhlich et al., 2017. We are also reassured, because
this shows that our initial system was not overfitting on the tempo and pitch of MUSDB.

FIGURE 4.20: The U-Net trained on MUSDB with different augmentation
methods (instrumentals).

40
Chapter 4. Experiments and results: the impact of various data-related parameters on

performances

FIGURE 4.21: The U-Net trained on MUSDB with different augmentation
methods (vocals).

41

Chapter 5

Discussions and future work

5.1 Discussion

In this internship, we studied different modalities on supervised singing voice separation
systems.

We first re-implemented two state-of-the-art systems and trained them on datasets with
various size and quality characteristics. We obtained good results with the U-Net, and more
limited performances on the DenseNet and MMDenseNet. We believe that this is due to the
significant memory requirement of the DenseNets, which made it impossible in our setup to
build a very deep network and to train with large batches. But we could observe significant
performance variations depending on the training dataset for each system.

We studied the impact of the training loss and concluded that depending on the final
application of the separation, we would either recommend the L1 loss or MSE for training.
We tested different data augmentation methods on the spectrograms and found that the
impact was probably not much larger than an ensembling of the same system with different
seeds. The post-processing method, however, has a significant impact both on objective and
perceptive measures. It allows one to re-balance the compromise between the interferences
and the artifacts.

In conclusion, we have built a variety of singing voice separation algorithms, associated
to a performance benchmark which provides directions to choose some parameters accord-
ing to the desired application. We also created a demonstration script which separates any
track of Deezer’s catalog, using the U-Net trained on Bean. Anis Khlif ported it to a mobile
application for demonstrating the viability of such a feature to Deezer’s C-level.

5.2 Future work

We showed that it was possible to produce good estimates of the vocal and instrumental
tracks of a song, provided it follows the scheme of standard western songs. While the in-
strumental estimates are often very convincing, the vocals, even if well isolated, do not
sound always realistic. We believe that there is still room for improvement on this part
of the problem. An idea would be to train the vocals-dedicated network to auto-encode a
capella songs during the training. We could alternate training samples of a capella songs to
be auto-encoded with training samples of mixtures to be separated. For this task, a comple-
mentary dataset of a capella songs would be easy to create using a music streaming service
catalog. The use of Generative Adversarial Networks (GANs) is another way to enforce the
realistic aspect of the vocals (Goodfellow et al., 2014). GANs have proven efficiency to pro-
duce realistic images in the field of computer vision (Isola et al., 2017). In this architecture,
two neural network compete, one to produce realistic voice spectrograms from the mixture,
and the other to discriminate the estimate from real voice spectrograms (Fan, Lai, and Jang,
2017).

42 Chapter 5. Discussions and future work

During our experiments, we faced some dilemma about the design of the training and
validation datasets. Should the dataset represent very wide variety of genres, with the risk
of being less consistent (should black metal lyrics be considered as singing voice or not)?
Or should we design the dataset as close as possible to the music that it will be evaluated
on? Of course, the answer to this question depends on the final application of the separation
algorithm. Further studies could be conducted by filtering the Catalog dataset by genre, for
example.

Finally, the way to assess the quality of the separation must equally take into account the
final application. While the objective metrics already provide good insights on the general
quality of the algorithm, we noticed that they could not cover every aspect of our percep-
tion of the separation (Cano, FitzGerald, and Brandenburg, 2016). In particular, the fact the
computation of the metrics do not depend on the frequency makes it likely to have audible
artifacts in high frequencies, even with a system judged "good" by the objective evaluation.
Concerning the interpretation of the metrics, a comprehensive study on the statistical rele-
vance of the results could be conducted, as in Simpson et al., 2016.

43

Appendix A

Code snippets

A.1 An example of a score file produced by the Museval package
for a short song.

{
"targets": [

{
"frames": [

{
"duration": 1.0,
"metrics": {

"SIR": 17.08709,
"ISR": 13.08037,
"SDR": 8.72669,
"SAR": 9.54819

},
"time": 0.0

},
{

"duration": 1.0,
"metrics": {

"SIR": 9.29407,
"ISR": 10.96202,
"SDR": 6.68774,
"SAR": 6.42729

},
"time": 1.0

}
],
"name": "vocals"

},
{

"frames": [
{

"duration": 1.0,
"metrics": {

"SIR": 15.74727,
"ISR": 19.81654,
"SDR": 10.12923,
"SAR": 11.34651

44 Appendix A. Code snippets

},
"time": 0.0

},
{

"duration": 1.0,
"metrics": {

"SIR": 14.67816,
"ISR": 16.85895,
"SDR": 10.43156,
"SAR": 12.52901

},
"time": 1.0

}
],
"name": "accompaniment"

}
]

}

45

Appendix B

Details of network architectures

B.1 The transposed convolution used in the upsampling path of
the networks.

On Figure B.1, we can see an illustration of the transpose convolutional layer used in the
upsampling path of the U-Net, the DenseNet and the MMDenseNet. The idea is to apply
a standard convolution to a feature maps that was first padded with zeros between each
original value. In our case, the stride is 2, so the number of zeros between two successive
coefficients is stride− 1 = 1.

An alternative to the padding is to linearly interpolate the feature map to double its size,
then apply the convolution.

FIGURE B.1: Image from:
towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

47

Bibliography

Arberet, Simon et al. (2010). “Nonnegative matrix factorization and spatial covariance model
for under-determined reverberant audio source separation”. In: Information Sciences Sig-
nal Processing and their Applications (ISSPA), 2010 10th International Conference on. IEEE,
pp. 1–4.

Bittner, Rachel M et al. (2014). “MedleyDB: A Multitrack Dataset for Annotation-Intensive
MIR Research.” In: ISMIR. Vol. 14, pp. 155–160.

Cano, Estefanía, Derry FitzGerald, and Karlheinz Brandenburg (2016). “Evaluation of qual-
ity of sound source separation algorithms: Human perception vs quantitative metrics”.
In: Signal Processing Conference (EUSIPCO), 2016 24th European. IEEE, pp. 1758–1762.

Chan, Tak-Shing T and Yi-Hsuan Yang (2017). “Informed Group-Sparse Representation for
Singing Voice Separation”. In: IEEE Signal Processing Letters 24.2, pp. 156–160.

Chandna, Pritish et al. (2017). “Monoaural audio source separation using deep convolu-
tional neural networks”. In: International Conference on Latent Variable Analysis and Signal
Separation. Springer, pp. 258–266.

Dieleman, Sander and Benjamin Schrauwen (2014). “End-to-end learning for music audio”.
In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE, pp. 6964–6968.

Dupin, Maxime et al. (2011). “Effects of the training dataset characteristics on the perfor-
mance of nine species distribution models: application to Diabrotica virgifera virgifera”.
In: PLoS One 6.6, e20957.

Durrieu, Jean-Louis et al. (2009). “Main instrument separation from stereophonic audio sig-
nals using a source/filter model”. In: Signal Processing Conference, 2009 17th European.
IEEE, pp. 15–19.

Fan, Zhe-Cheng, Yen-Lin Lai, and Jyh-Shing Roger Jang (2017). “SVSGAN: Singing Voice
Separation via Generative Adversarial Network”. In: arXiv preprint arXiv:1710.11428.

Févotte, Cédric, Rémi Gribonval, and Emmanuel Vincent (2005). “BSS_EVAL toolbox user
guide–Revision 2.0”. In:

Gómez, Emilia et al. (2018). “Deep Learning for Singing Processing: Achievements, Chal-
lenges and Impact on Singers and Listeners”. In: arXiv preprint arXiv:1807.03046.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural information
processing systems, pp. 2672–2680.

Grais, Emad M and Mark D Plumbley (2017). “Single channel audio source separation using
convolutional denoising autoencoders”. In: arXiv preprint arXiv:1703.08019.

Hansen, Michael S et al. (2004). “On the influence of training data quality in k-t BLAST
reconstruction”. In: Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine 52.5, pp. 1175–1183.

He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification”. In: Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky (2012). “Neural networks for ma-
chine learning lecture 6a overview of mini-batch gradient descent”. In: Cited on, p. 14.

Huang, Gao et al. (2017). “Densely Connected Convolutional Networks.” In: CVPR. Vol. 1.
2, p. 3.

48 BIBLIOGRAPHY

Huang, Po-Sen et al. (2014a). “Deep learning for monaural speech separation”. In: Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
pp. 1562–1566.

— (2014b). “Singing-Voice Separation from Monaural Recordings using Deep Recurrent
Neural Networks.” In: ISMIR, pp. 477–482.

Humphrey, Eric et al. (2017). “Mining labeled data from web-scale collections for vocal ac-
tivity detection in music”. In: Proceedings of the 18th ISMIR Conference.

Humphrey, Eric J, Juan Pablo Bello, and Yann LeCun (2012). “Moving Beyond Feature De-
sign: Deep Architectures and Automatic Feature Learning in Music Informatics.” In: IS-
MIR. Citeseer, pp. 403–408.

Isola, Phillip et al. (2017). “Image-to-image translation with conditional adversarial net-
works”. In: arXiv preprint.

Jansson, Andreas et al. (2017). “Singing voice separation with deep U-Net convolutional net-
works”. In: Proceedings of the International Society for Music Information Retrieval Conference
(ISMIR), pp. 323–332.

Japkowicz, Nathalie and Shaju Stephen (2002). “The class imbalance problem: A systematic
study”. In: Intelligent data analysis 6.5, pp. 429–449.

Jégou, Simon et al. (2017). “The one hundred layers tiramisu: Fully convolutional densenets
for semantic segmentation”. In: Computer Vision and Pattern Recognition Workshops (CVPRW),
2017 IEEE Conference on. IEEE, pp. 1175–1183.

Klatt, Dennis H and Laura C Klatt (1990). “Analysis, synthesis, and perception of voice qual-
ity variations among female and male talkers”. In: the Journal of the Acoustical Society of
America 87.2, pp. 820–857.

Kruspe, Anna M and IDMT Fraunhofer (2014). “Keyword Spotting in A-capella Singing.”
In: ISMIR. Vol. 14, pp. 271–276.

Li, Yipeng and DeLiang Wang (2005). Separation of singing voice from music accompaniment for
monaural recordings. Tech. rep. Ohio State University Columbus United States.

Liutkus, Antoine et al. (2017). “The 2016 Signal Separation Evaluation Campaign”. In: La-
tent Variable Analysis and Signal Separation - 12th International Conference, LVA/ICA 2015,
Liberec, Czech Republic, August 25-28, 2015, Proceedings. Ed. by Petr Tichavský et al. Cham:
Springer International Publishing, pp. 323–332.

McFee, Brian et al. (2015). “librosa: Audio and music signal analysis in python”. In: Proceed-
ings of the 14th python in science conference, pp. 18–25.

Mesaros, Annamaria (2012). “Singing voice recognition for music information retrieval”. In:
Tampereen teknillinen yliopisto. Julkaisu-Tampere University of Technology. Publication; 1064.

Mesaros, Annamaria and Tuomas Virtanen (2010). “Automatic recognition of lyrics in singing”.
In: EURASIP Journal on Audio, Speech, and Music Processing 2010, p. 4.

Mesaros, Annamaria, Tuomas Virtanen, and Anssi Klapuri (2007). “Singer Identification in
Polyphonic Music Using Vocal Separation and Pattern Recognition Methods.” In: ISMIR,
pp. 375–378.

Nair, Vinod and Geoffrey E Hinton (2010). “Rectified linear units improve restricted boltz-
mann machines”. In: Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807–814.

Nugraha, Aditya Arie, Antoine Liutkus, and Emmanuel Vincent (2016). “Multichannel mu-
sic separation with deep neural networks”. In: Signal Processing Conference (EUSIPCO),
2016 24th European. IEEE, pp. 1748–1752.

Orio, Nicola et al. (2006). “Music retrieval: A tutorial and review”. In: Foundations and Trends®
in Information Retrieval 1.1, pp. 1–90.

Ozerov, Alexey and Cédric Févotte (2010). “Multichannel nonnegative matrix factorization
in convolutive mixtures for audio source separation”. In: IEEE Transactions on Audio,
Speech, and Language Processing 18.3, pp. 550–563.

BIBLIOGRAPHY 49

Ozerov, Alexey et al. (2007). “Adaptation of Bayesian models for single-channel source sep-
aration and its application to voice/music separation in popular songs”. In: IEEE Trans-
actions on Audio, Speech, and Language Processing 15.5, pp. 1564–1578.

Pollastri, Emanuele (2002). “A pitch tracking system dedicated to process singing voice for
music retrieval”. In: Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE Interna-
tional Conference on. Vol. 1. IEEE, pp. 341–344.

Rafii, Zafar and Bryan Pardo (2013). “Repeating pattern extraction technique (REPET): A
simple method for music/voice separation”. In: IEEE transactions on audio, speech, and
language processing 21.1, pp. 73–84.

Rafii, Zafar et al. (2017). The MUSDB18 corpus for music separation. DOI: 10.5281/zenodo.
1117372. URL: https://doi.org/10.5281/zenodo.1117372.

Raj, Bhiksha et al. (2007). “Separating a foreground singer from background music”. In: Proc.
Int. Symp. Frontiers Res. Speech Music, pp. 8–9.

Royo-Letelier (2015). Detection and characterization of singing voice using deep neural networks.
Russakovsky, Olga et al. (2015). “ImageNet Large Scale Visual Recognition Challenge”. In:

International Journal of Computer Vision (IJCV) 115.3, pp. 211–252. DOI: 10.1007/s11263-
015-0816-y.

Ryynanen, Matti et al. (2008). “Accompaniment separation and karaoke application based
on automatic melody transcription”. In: Multimedia and Expo, 2008 IEEE International Con-
ference on. IEEE, pp. 1417–1420.

Schlüter, Jan (2017). “Deep Learning for Event Detection, Sequence Labelling and Similarity
Estimation in Music Signals”. Chapter 9. PhD thesis. Austria: Johannes Kepler University
Linz.

Schmidt, Mikkel N and Rasmus K Olsson (2006). “Single-channel speech separation using
sparse non-negative matrix factorization”. In: Ninth International Conference on Spoken
Language Processing.

Simpson, Andrew JR et al. (2016). “Evaluation of audio source separation models using
hypothesis-driven non-parametric statistical methods”. In: Signal Processing Conference
(EUSIPCO), 2016 24th European. IEEE, pp. 1763–1767.

Sivasankaran, Sunit et al. (2015). “Robust ASR using neural network based speech enhance-
ment and feature simulation”. In: Automatic Speech Recognition and Understanding (ASRU),
2015 IEEE Workshop on. IEEE, pp. 482–489.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Stoller, Daniel, Sebastian Ewert, and Simon Dixon (2018). “Wave-U-Net: A Multi-Scale Neu-
ral Network for End-to-End Audio Source Separation”. In: arXiv preprint arXiv:1806.03185.

Stöter, Fabian-Robert, Antoine Liutkus, and Nobutaka Ito (2018). “The 2018 Signal Sepa-
ration Evaluation Campaign”. In: International Conference on Latent Variable Analysis and
Signal Separation. Springer, pp. 293–305.

Takahashi, Naoya, Nabarun Goswami, and Yuki Mitsufuji (2018). “MMDenseLSTM: An effi-
cient combination of convolutional and recurrent neural networks for audio source sep-
aration”. In: arXiv preprint arXiv:1805.02410.

Takahashi, Naoya and Yuki Mitsufuji (2017). “Multi-Scale multi-band densenets for audio
source separation”. In: Applications of Signal Processing to Audio and Acoustics (WASPAA),
2017 IEEE Workshop on. IEEE, pp. 21–25.

Torralba, Antonio and Alexei A Efros (2011). “Unbiased look at dataset bias”. In: Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, pp. 1521–1528.

Uhlich, Stefan et al. (2017). “Improving music source separation based on deep neural net-
works through data augmentation and network blending”. In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2017 IEEE International Conference on. IEEE, pp. 261–265.

http://dx.doi.org/10.5281/zenodo.1117372
http://dx.doi.org/10.5281/zenodo.1117372
https://doi.org/10.5281/zenodo.1117372
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y

50 BIBLIOGRAPHY

Vembu, Shankar and Stephan Baumann (2005). “Separation of Vocals from Polyphonic Au-
dio Recordings.” In: ISMIR. Citeseer, pp. 337–344.

Virtanen, Tuomas, Annamaria Mesaros, and Matti Ryynänen (2008). “Combining pitch-based
inference and non-negative spectrogram factorization in separating vocals from poly-
phonic music.” In: SAPA@ INTERSPEECH, pp. 17–22.

Wang, Avery et al. (2003). “An Industrial Strength Audio Search Algorithm.” In: Ismir. Vol. 2003.
Washington, DC, pp. 7–13.

Weninger, Felix et al. (2014). “Discriminative NMF and its application to single-channel
source separation”. In: Fifteenth Annual Conference of the International Speech Communi-
cation Association.

	Introduction to Singing Voice Separation
	Internship context
	Practical applications
	The singing voice separation task
	Performances evaluation
	Unsupervised systems

	Deep neural networks for singing voice separation
	Supervised learning and regression problems
	Fully-connected neural networks
	Convolutional neural networks
	How to train a neural network
	Deep neural networks applied to singing voice separation

	Multi-tracks datasets for supervised learning and evaluation
	Standard databases
	Building a singing voice separation dataset
	The dataset problem in supervised machine learning
	Evaluation campaigns

	Experiments and results: the impact of various data-related parameters on performances
	Baseline systems
	Experimental framework and methodology
	The selected network architectures
	Experiments
	Experiment 1: different training datasets
	Experiment 2: different losses
	Experiment 3: different post-processing methods
	Experiment 4: different data augmentation methods

	Discussions and future work
	Discussion
	Future work

	Code snippets
	An example of a score file produced by the Museval package for a short song.

	Details of network architectures
	The transposed convolution used in the upsampling path of the networks.

	Bibliography

