
ATIAM
Internship Report

Learning latent spaces for
real-time synthesis of audio waveforms

Author :
Cyran AOUAMEUR

Supervisors :
Phillipe ESLING

Gaëtan HADJERES

March 12th - August 31st 2018

Acknowledgments

I would first like to express my gratitude to my supervisors Philippe and Gaëtan, for
their constant availability and help.

I would also like to thank Sony CSL and Ircam teams for having shared their knowledge
and their helpful hints all along this internship.

2

Abstract

Modern synthesizers are getting increasingly powerful and now provide
an overwhelming amount of parameters to carve a sound spectrum. This
simultaneously increases creative freedom but can also complicate the
sound design process. In parallel, recent generative learning models have
been developed towards audio synthesis.
Here, we aim at providing an intuitive control over sound synthesis with
deep learning models, through synthesis by learning. Only a scarce number
of approaches have been proposed to deal with this new type of synthesis,
which allow to learn a synthesizer directly from audio sample examples.
One of the most notable proposal rely on the framework of variational
autoencoders, which allows to generate sounds from a parameter latent
space, by simultaneously learning inference and generation networks from
existing data. However, handling temporal information with such models
is still a central issue that hampers their generalization to complex sounds.
In this work, we develop generative models for audio synthesis that are able
to handle complex temporal information, thus, allowing to generate a wide
variety of sounds. To evaluate the capacity of such models, we collected
and labeled a dataset representing a variety of percussive sounds. Here,
we developed three separate models based on combinations of variational
autoencoders and convolutional neural networks for audio synthesis.
First, we introduce an architecture using 2-dimensional convolutions that
is able to learn and generate time-frequency representations. We show
that, while the former approach produces accurate drum distributions and
provides intuitive control over the latent space, it is unable to provide
a real-time audio synthesis system, due to the need to invert the time-
frequency representations. Hence, we propose an inversion model based
on recurrent network designed to perform the inversion of time-frequency
representations to audio waveform. Although the model is able to train
correctly, we show that it fails to generalize on examples without prior
information. We analyze the reasons behind this problems and propose
directions of future work to enhance the model.
Finally, we expand the original 2-d synthesis model using 1-dimensional
convolutions in order to learn and generate audio waveforms directly. This
model, trained on slices of audio waveform, yields variable reconstruction
quality depending on the nature of the sounds. While performing poorly
on noisy sounds, it gives interesting results for kick samples. We provide
extensive experimentations and analyses of results.

4

Contents

1 Introduction 8

1.1 Sound synthesis . 8

1.2 The importance of control . 9

1.3 Generative models in audio . 10

1.4 Learning latent spaces for audio . 11

1.5 Our proposal . 12

2 State of the art 14

2.1 Artificial Neural Networks . 14

2.1.1 Convolutional Neural Networks 15

2.1.2 Recurrent Neural Networks . 17

2.1.3 Supervised or unsupervised . 18

2.2 Unsupervised variational learning . 19

2.2.1 Unsupervised learning and auto-encoders 19

2.2.2 Variational Inference . 20

2.2.3 Variational Auto-Encoder . 23

2.3 Generative models for waveform . 24

2.3.1 SampleRNN . 24

2.3.2 WaveNet autoencoder . 26

2.4 Time-frequency representations . 28

2.4.1 Constant-Q Transform . 28

2.4.2 Non-Stationary Gabor Transform 28

3 Experiments and results 30

3.1 Drums dataset . 30

3.2 Convolutional VAE . 30

3.2.1 Data processing . 31

3.2.2 Architecture . 31

3.2.3 Amplitude only . 32

3.2.4 Amplitude and phase . 36

3.3 Transform inversion model . 38

5

3.3.1 Data processing . 38

3.3.2 Architecture . 39

3.3.3 Model architecture experimentations 40

3.4 Convolutional-Temporal VAE . 42

3.4.1 Data processing . 43

3.4.2 Architecture . 43

3.4.3 Results . 44

3.4.4 Kicks only . 46

4 Discussion and conclusion 49

A Model parameters configurations 53

6

1 Introduction

Research in computer music is usually divided between two main purposes, which are
either to create tools to better analyze existing music or to find new ways of creating
music. Hence, researchers usually benefit from scientific advances in concomitant fields
to consider these problems from a different perspective [1]. However, the recent advent
of deep learning, which is now commonly used in fields like Natural Language Processing
(NLP), is still a long way from being fully adapted to the specificities of musical creation.
Indeed, even if music analysis has benefited from machine learning in the framework
of Music Information Retrieval (MIR), the use of such techniques in music generation
seems to be only sporadic yet. Very recently, some deep learning models were developed,
focusing on speech generation [2, 3]. These generative models perform what we could
define as synthesis by learning . In this work, we aim at using these new generative
learning approaches in order to create a novel type of audio synthesis technique, based
on learning, that would give a wide range of creative expression while being easily
controllable. The following short introduction details our motivation.

1.1 Sound synthesis

Sound synthesis has been a field of interest for over a century now, opening interesting
avenues for both musicians and scientists alike [4]. We can define sound synthesis as
the process of generating sound, using electronic hardware or software. Research in this
field was mainly motivated by the will to expand the degrees of freedom in sounds and
creative expression. Concretely, it allows to generate sounds that are not necessarily
feasible with existing acoustic instruments. The tremendous success of synthesizers in
the late 60’s shaped the sound of new generations so much that the synthesizers are
amongst the most widely used instruments in nowadays western music production. This
novelty in music was also made possible by yet another type of scientific advances: the
continuous technological improvements in terms of computational resources. Moreover,
descending costs of computer technology made synthesizers affordable to the general
public, which greatly stimulated researches in synthesis techniques.

Since the beginning of the 20th century, researchers have developed numerous tech-
niques based on a wide variety of paradigms. Here, we propose a simplified classification
of the most noticeable audio synthesis approaches, relying on the taxonomy proposed by
[4]. We refer interested readers to this article for more details.

Spectral model The development of the harmonic analysis by Joseph Fourier in 1807
led to the formalization of a so-called spectral model for sound. In this model, a sound
pressure wave y(t) is seen and decomposed as a sum a sinusoids

y(t) =
N∑
i=1

Ai(t)sin[θi(t)] (1)

8

where Ai(t) is the amplitude of i-th partial and θi(t) its phase over time t. Based
on this formulation, we can generate a wide variety of sounds by adding pure tones
(sinusoids), a process called additive synthesis. Reciprocally, subtractive synthesis starts
from a spectrally rich sound (usually a broadband noise) and, then, filters out specific
frequencies in order to carve the sound spectrum.

Physical model Researches in instrument making and acoustics also led scientists
to model instruments as systems ruled by equations. In physical modeling synthesis
[5], the sound to be generated is computed with a mathematical model that attempts
to replicate the acoustical laws governing the production of sound. For example, one
could model how the strings of a guitar are vibrating, and how this movement is coupled
with those of the neck and the soundboard. Examples of application of these models
are the Karplus-Strong algorithm [6] or the modal methods [7], which aim to describe
instruments as a group of oscillators with various resonance frequencies.

Abstract algorithms The terminology of abstract models has been proposed by some
researchers [4], based on the fact that these methods were not designed as an attempt to
replicate an existing physical phenomenon. An important example includes the Frequency
Modulation (FM) synthesis method, introduced in 1973 by Chowning [8] which is based
on chained oscillators. However, we can consider later experiments such as the work by
Risset on brasses as part of the spectral paradigm, since they used the FM principle
jointly with spectral observations.

Direct (or waveform-based) synthesis Finally, the class of waveform-based meth-
ods takes advantage of recorded sounds in order to use them in a synthesis process. The
simplest example is sampling-based synthesis where pre-recorded sounds are used and
processed to play drum sounds on a keyboard for example. Concatenative and granular
synthesis [9, 10] can be seen as extensions to sampling methods. Indeed, these techniques
are also based on pre-recorded sounds but the samples are sliced into "grains" that are
recombined based on statistical transition models.

As we can see, the existing methods for direct waveform synthesis are solely based
on the recombination of existing recorded chunks. This stems from the fact that the
raw waveform data (usually recorded at 44100 samples per second) is of very high
dimensionality, which renders its direct modeling a daunting task. In this work, we will
address this complex category, in order to tackle novel avenues in musical creativity.

1.2 The importance of control

Recently, music production has turned essentially digital, hence, drastically increasing
the scope of possibilities in terms of sounds synthesis. Modern synthesizers are getting
increasingly powerful thanks to the computational power provided by new generations of

9

CPUs. This has led to a concomitant increase in the creative freedom provided by sound
synthesizer. However, even if it is now theoretically possible to tune a sound to one’s
will, the sound design process has become increasingly complex given the overwhelming
amount of parameters provided by modern synthesizers.

This casts the light on the crucial trade-off between control richness and ease of
use. Therefore, a method allowing an easy and rich fine-tuning of sounds becomes a key
requirement in music production, especially for non-expert users. Citing Julius O. Smith
(1991) [4], "the problem [of musical control] can be better appreciated by considering that
instruments made of metal and wood are played by human hands; therefore, to transfer
past excellence in musical performance to new digital instruments requires either providing
an interface for a human performer or providing a software control layer that “knows” a
given musical context. The latter is an artificial intelligence problem".

Since this observation, numerous research efforts have been done in the domain of user
experience, in order to provide interfaces that enhance the fluidity of human-machine
interactions. However, artificial intelligence is not yet used in music generation and
control as much as in other fields like Natural Language Processing (NLP) or even Music
Information Retrieval (MIR). Only very recently, some machine learning models were
developed specifically for the problem of audio generation. These generative models
perform what we could define as synthesis by learning . Amongst machine learning
approaches that could suit our purpose, generative modeling allows to perform audio
synthesis by learning while tackling the question of intuitive parameter control [11].

1.3 Generative models in audio

Generative models are a flourishing class of machine learning approaches whose purpose
is to generate novel data based on the observation of existing examples [12]. This process
is usually performed by trying to model the underlying probability distribution of the
data. Hence, based on a dataset of audio samples, seen as multi-dimensional vectors
(as audio is encoded in 44,1 kHz, one second of audio is a 44100-dimensional vector),
a generative model will try to capture the underlying dependencies between different
dimensions to understand the distribution of this data [12].

To formalize this problem, we rely on a set of data {xn}n∈[1,N] defined in a high-
dimensional space xi ∈ Rdx . We assume that these examples follow an underlying
probability distribution p (x) that is unknown. The goal of generative models will be to
approximate this distribution, so that examples that are coherent with the dataset are
highly probable, while irrelevant data is less probable. Having access to this distribution,
we can later sample from it and, therefore, generate novel data having characteristics
similar to that of the dataset. Furthermore, we introduce a set of latent variables z in the
model. These latent variables can be understood as a higher-level representation of the
data in a simpler space that could have led to generate a given example. Therefore, the
set of latent variables (which we call the latent code) is defined in a lower-dimensional
space z ∈ Rdz with dz � dx. The relationship between the data x that we want to model

10

and the latent variables z that might generate our data can be expressed through their
joint probability distribution

p(z,x) = p(z)p(x | z)

There is an essential advantage in introducing latent variables: they enhance the
expressiveness of the model. Indeed, these variables can be interpreted as a representation
of the generative factors leading to the data. Hence, we make the assumption that different
latent codes z can allow the model to generate various sounds coherent with the examples
x (with similar properties), while being more expressive than the original data space.
Thus, the latent space can be seen as a continuous synthesis parameters’ space that we
can sample from in order to generate an infinite variety of sounds (see Fig. 1).

Figure 1: Learning and generation with latent variables. Similar latent codes z1 and
z2 should generate similar waveforms x1 and x2. A very different latent code z3 should
generate a very different waveform x3

1.4 Learning latent spaces for audio

As we discussed in the previous sections, only few systems have been very recently
proposed to address the learning of latent spaces for audio data. Prior systems were
specifically designed to model sequences including time-dependent information. Recurrent
Neural Networks (RNN) have proven very efficient on processing such sequences [13, 14].
Some variants were designed to model and synthesize waveforms, such as SampleRNN [3]
but it does not allow the user to control the synthesis in real-time. Similarly, Google’s
Wavenet succeeds in modeling waveforms with Convolutional Neural Networks (CNN),
thanks to dilated causal convolutions. However, these models give little cue and control
over the output or the features it results from. Moreover, these models require very large
number of parameters, long training times and a large number of examples.

Separately from these approaches, the framework of Variational Auto-Encoders (VAE)
was recently developed [15]. VAEs are generative machine learning models based on a
Bayesian framework, which allow to model the data distribution even with a small number
of examples and also provide an explicit modeling of the latent space. Using VAEs, Esling
et al. [11] created a system capable of learning a generative space where instrumental
sounds are organized with respect to their timbre. One of the main drawbacks of
this system is that it has been trained on single frames of spectrums. Therefore, each

11

latent code is associated with a single spectrum and the model lacks temporal modeling.
Hence, this hampers the capacity of the model to easily allow users to generate evolving
structured temporal sequences.

For instruments whose frequency content is highly varying across time, this problem
becomes widely problematic (as shown in Fig. 2). This is why, in this work, we will
tackle this aspect by trying to extend the VAE to learn temporal dynamics of spectral
distributions and model specifically drum sounds. We will first rely on time-frequency
representations and try to learn sounds through these representations that intrinsically
contain both the temporal and frequency evolution of sounds. Then, we will address
modeling sounds directly from the raw waveform data. Thus, we will try to learn from
the waveform directly while benefiting from the control provided by VAEs.

x
<latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit>

z
<latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit>

Parameters

Audio

In
fe
re
nc

e

Synthesis Pitch

C
en

tro
id

Pitch

C
en

tro
id

Figure 2: Spectrograms of a kick drum and a flute and their positions in the latent
space. On the right, we show a latent space constituted with single frames. For the
flute, the frequency content is pretty stable through frames so we could generate a sound
from one single point. Nevertheless, is impossible to generate convincing drums without
a complicated interpolation strategy. Since we want to generate all types of sounds
effortlessly, a potential solution is that the whole transforms are encoded as a single
latent position (left situation).

1.5 Our proposal

In this work, we aim to create a controllable audio synthesis space that explicitly contains
informations about time so that we can use it to synthesize novel sounds in an intuitive
manner. Navigating in this space should allow us to explore the whole diversity of
sounds we have trained the model on, and also generalize from the learning process to
generate novel sounds. Hence, the latent space should be organized along understandable
properties and generation from such a model should be fast enough for the exploration
to be smooth (real-time sound rendering), to ease interactivity.

12

In the remainder of this document, we provide an introduction to deep learning,
starting from the basic concepts of neural networks (Sec. 2.1). Then, we introduce the
Variational Auto-Encoder (VAE) (Sec. 2.2.3) framework that we will use, based on the
concept of Variational Inference (VI). Then, we briefly present recent generative models
targeted at learning waveform data and how we can adapt them to fit into the variational
approach (Sec. 2.3). After this state-of-the-art, I will present the 3 models that I have
developed along this internship and present the experimentations and results that I have
obtained based on a drum sound dataset that I collected specifically for this work.

1. First, the convolutional VAE model, which is able to generate full time-frequency
spectrums (Sec. 3.2)

2. Second, a RNN-based inversion model that tries to retrieve a sound waveform
from its amplitude spectrum (Sec. 3.3)

3. Third, an hybrid temporal model, that takes advantage of dilated convolutions to
learn directly on the waveform data (Sec. 3.4)

This will be followed by a discussion and comparisons of the different experimentations,
in order to analyze and understand the strength and weaknesses of different approaches.
Finally, a brief conclusion will summarize the content of the report, stress my contributions
and introduces directions of future work.

13

2 State of the art

In this work, we will mostly rely on Variational Auto-Encoders (VAEs), which have
been recently introduced based on Variational Inference (VI) [15]. Although VAEs are
defined as a probabilistic extension to traditional AEs, they still rely on Artificial Neural
Networks (ANNs) as one of their core components. Hence, we here only briefly introduce
the basic principles of ANNs (2.1) before developing certain architectures, namely CNNs
and RNNs that will be used throughout our work (2.1.2). Then, we will stress out the
differences between supervised and unsupervised learning, leading to the formulation of
VAEs (2.2). Finally, we will detail some of the recent generative models introduced for
handling raw waveform data (2.3).

2.1 Artificial Neural Networks

An artificial neural network is a network composed of units called neurons. Each of these
neurons receive a set of inputs x and outputs a value a called activation by computing

a = φ (w.x + b)

where w is a set of parameters called weights and φ is an activation function, which is
non-linear. Usually, the functions used for φ are the sigmoid or ReLU(x) = max(0,x)
activations. Thus, through the linear combination of input values and the application
of such a function, each neuron performs a non-linear transformation of its input. The
complete network is built by having layers of independent neurons that are connected
to neurons in the following layer, overall defining a weighted graph and producing an
output y (see fig. 3) from the neurons of its last layer.

If we denote as Θ the set of all parameters (weights and biases of all neurons) in the
network Θ = {W,b}, we can see that another way to see neural networks is that they
define a function gΘ : X → Y parametrized by a set of parameters Θ. The goal of neural
network is usually that they act as a function approximator by learning to produce an
expected answer y∗ to each input x

y∗ ≈ y = gΘ (x)

14

Figure 3: Neural Networks are composed of layers of neurons. These neurons produce
an output which is the result of its activation function f applied to a weighted sum of
its input x (plus a bias b). The activation of neurons at layer l becomes the input of
neurons at layer l + 1 and so on.

Hence, training such a network consists in optimizing Θ to minimize the difference
between the output of the network y and the desired output y∗. To do so, the weights
are optimized through gradient descent, by iteratively reducing the approximation error

g∗Θ = argmin
Θ
L (y∗,y)

where L is a loss function allowing to measure our approximation error, such as the
Mean Squared Error (MSE) L (y∗,y) = ‖y∗ − y‖2. For the sake of brevity, we will
not go deeper in the specificities of neural networks, but interested readers can find a
more-in-depth discussion on neural networks in [16, 17].

2.1.1 Convolutional Neural Networks

Each layer in a Convolutional Neural Network (CNN) consists in a set of N kernels (or
filters) that are convolved across the input. We denote {kln}n∈[1;N] this set of kernels
for the layer l. For a given layer, these kernels all share a unique size kernel size. By
convolving each one of its N kernels across a d-dimensional input x, a convolutional
layer produces N d-dimensional outputs (one for each kernel) called feature maps that
we denote {aln}n∈[1;N]. Hence, the computation of the n-th activation map in layer l for
input x is defined as

aln =
M∑
m=1

kln ? xm + bln (2)

Thus, the feature map corresponding to kernel n consists in the sum of the d-dimensional
discrete convolutions (denoted by the ? operator) between the kernel n and each one of
the d-dimensional data {xm}m∈[1;M], plus an optional bias.

Since the exact expression of the d-dimensional discrete convolution is highly dependent
on other hyper-parameters (padding, stride), we will just explain the basic principle of
this operation. The 2-dimensional discrete convolution consists in sliding a kernel over

15

an input. For each position, we compute the dot product between the kernel and the
zone of the input located "under" the kernel (see Fig. 4).

Figure 4: 2D discrete convolutions: the kernel is slid over the input data. For each
position, the dot product between the kernel and a particular zone of the input is
computed, producing an activation map.

While learning in a convolutional layer consists in finding the optimal kernels, several
parameters can be tuned when defining the layer architecture such as the size of the
kernels (I, J), their number n, the stride parameter (step size when sliding the kernel
over the input) and the padding of both the input and the output.

Figure 5: AlexNet architecture: Each convolutional layer is followed by a ReLU. The
last linear layer outputs predictions over the 1000 classes available (image from [18])

CNNs are now widely used and several architectures have been proposed, such as
AlexNet [19] shown in figure 5. This network built for image classification is constituted
with 5 convolutional layers (each one followed by a ReLU activation) and 3 fully-connected
linear layers. This illustrates a classic use of a NN after convolutional layers to process
the last features maps (after vectorization). We will use this structure when considering
our convolutional synthesis model (Sec. 3.2).

16

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have the ability to model structured sequential data.
To do so, the networks are augmented with recurrent loops, allowing to retain information
across time steps. RNNs have proven to be efficient on learning temporal problems, even
with application to high-level musical concepts such as chords sequences [20].

Figure 6: The Vanilla RNN in its folded and unfolded forms. At timestep t, the network
is fed with both the input and the hidden state output at time t− 1

Formally, given a sequence X = {xt}, RNNs can handle the dependency between
elements xt by having a recurrent hidden state ht whose value at each time depends on
both that of the previous time and the input. Hidden states are updated following

ht =

{
φ(x0) if t = 0

φ(ht−1,xt), otherwise
(3)

where φ is generally a non-linear function. Hence, RNNs are composed with traditional
layers as NN that process the input (main blocks in purple in Fig. 6), along with the
previous time state ht−1. Therefore, we can see h as a form of memory since it keeps
information from elements at previous time steps and the network use these when
processing a new sample.

Thanks to the memory introduced by h, the system has a knowledge of the context
and if it has been successfully trained, it should be able to predict the next steps of a
given sequence (Fig. 7). Theoretically, RNNs should always be able to perform such
tasks, no matter how extended the temporal information is. However, it has been shown
that simple RNNs do not scale well to situations that require a longer context because of
problems like vanishing or exploding gradients [21]. Therefore, simple RNNs are usually
bound to perform well only on short-term dependencies.

17

Figure 7: A Vanilla RNN dealing with "short-term" dependencies. The missing final
word can be predicted from a quite local context.

To tackle this issue, various specific architectures have been designed, such as the Long
Short-Term Memory (LSTM) units or Gated Recurrent units (GRU) [14]. Despite the
improvements brought by these architectures, they still fail to model complex temporal
tasks where the input has a very high dimensionality. We face this issue when processing
audio waveforms because of the high sampling rates. Furthermore, the waveform is made
of complex dependencies and at different timescales. Indeed, correlations exist between
neighboring values as well as between those that are thousands of samples apart. Thus,
some RNN models have been designed specifically to deal with these different timescales
(see section 2.3.1).

2.1.3 Supervised or unsupervised

As discussed in previous sections, most machine learning approaches have been designed
to solve supervised tasks, where we want to approximate known solutions to a problem.
Indeed, supervised learning requires the training data to be labeled. For each dataset
entry x, a label y∗ is associated and this label is precisely what we want to predict with
our learning techniques. This is typically applied when one wants to perform classification
or regression task. For example, we can consider the task of instrument classification. If
each sound is associated with a discrete label (defining the corresponding instrument),
one can perform classification, by learning to recognize the specificities of different sounds.
Then, given a new audio sample, we could predict the corresponding instrument.

However, the supervised paradigm requires a large set of labeled examples, which is
hard to gather. Furthermore, supervised tasks lead to discriminative systems without
any generative abilities. On the other hand, unsupervised learning is performed when
one does not have access to labels (or any type of ground truth). In absence of such
labels, we wish to learn the inherent structure of our data. This is typically what we aim
at doing for sound synthesis: we want to understand the inner structure of our audio
examples in order to be able to create some new ones.

18

2.2 Unsupervised variational learning

2.2.1 Unsupervised learning and auto-encoders

Auto-encoders are a particular type of networks trained to learn an efficient encoding z of
any unlabeled input data x [22]. They were originally designed to perform dimensionality
reduction on the data. As there is no ground truth for the encoding, auto-encoders are
unsupervised models. To perform such a task, auto-encoders are trained to both encode
the data x in a code z and then to decode that information to produce an output x′

which is aimed to be as close to x as possible. Thus, an auto-encoder is always made
of two parts: the parametric encoder Eφ whose task is to compress the data, and the
parametric decoder Dθ whose task is to uncompress the code (see Fig. 8).

Figure 8: Basic architecture of an auto-encoder. The encoder compresses each input x
to a position z in the latent space. The decoder then tries to reconstruct the input.

Hence, we can summarize the behavior of auto-encoders as

z = Eφ (x)

x′ = Dθ (z) = Dθ (Eφ (x))

As we see from the previous definitions, these functions are neural networks
parametrized by φ and θ (as defined in the previous sections), respectively for the
encoder E and decoder D. Therefore, training an auto-encoder consists in finding the op-
timal encoding and decoding functions (respectively E∗ and D∗), by performing gradient
descent on the difference L between x and x′

E∗,D∗ = arg min
φ,θ

L (x,Dθ(Eφ(x))

where L can be any reconstruction error function such as the previously defined MSE.

Usually, we want the code z to be of smaller dimensionality than the input as this acts
as an incentive for the network to find the principal factors of variations in the dataset.

19

This is why we can expect the code to be somewhat expressive about the input data. In
the framework of audio synthesis, we could interpret z as a set of synthesis parameters
(or generative factors) that have produced this sound. Hence, auto-encoders would seem
adapted to our generative endeavor. However, as they are deterministic, there is no
guarantee that the resulting code space could allow a robust generalization.

Indeed, since the decoder always relies on z values that comes from a proper encoding
of a given input x, there is no way to ensure that any random z would generate a
meaningful output (see Fig. 9a). We could assume that a latent code close to the ones
that generate a hi-hat sound should also generate a sound close to a hi-hat but the
deterministic mapping performed by standard auto-encoders is usually not robust to
small perturbations [23].

(a) An auto-encoder latent space (2 dimensions).
Since the network has never tried to reconstruct
a z that does not directly come from an encoding,
it has no generalization property

(b) A potential solution to this problem: each
data is encoded as a distribution over z, thus
enabling generalization

Figure 9: The problem of generalization in standard auto-encoders

This represents a main issue in our framework as we want to design a generative
model. Indeed, our main goal is not to reconstruct existing sounds, but rather to be able
to generate novel meaningful data. Therefore, to reach our goal, we would rather like
to know which latent codes can generate (decode) a broad variety of a given sound, by
mapping each input sound to a distribution p(z|x) in the latent space rather than a single
point. Therefore, we are going to use the recently introduced paradigm of Variational
Inference (VI) to tackle this issue.

2.2.2 Variational Inference

Our aim is to design an audio synthesizer based on learning. Here, the type of sounds
that we want to generate are represented by dataset entries x and their corresponding
parameters would be the set of latent variables z. Therefore, to learn our parametric
synthesizer directly from examples, we have to learn simultaneously an encoding distribu-
tion p(z|x) (learning what is the optimal space of parameters) and decoding distribution
p(x|z) (generating a sound from a set of parameters). First, we will consider the encoding

20

distribution p(z|x), which we can rewrite as

p(z|x) =
p(x, z)

p(x)

The denominator is the marginal probability distribution of the data p (x) (also called
evidence). Based on the relation between the distribution of latent variables p (z) and
the probability of generating the data given the latent variable p (x | z) we could find
p(x) by marginalizing z from the joint probability as follows

p(x) =

∫
p(x | z)p(z)dz

However, this still requires to know how to generate the data given the latent variable
p (x | z) and also the distribution of the latent variable p (z) itself (or equivalently the
joint distribution p (x, z)). However, for most models, this integral can not be found in
closed form or might need a prohibitive time to compute.

For decades, the dominant paradigm for approximating this distribution has been
through sampling [12], based on a conceptually simple approach. First, we first sample
a large number of latent values zi, i ∈ [1, n]. Then, we approximate the probability
distribution of the data by taking its expectation p(x) ≈ 1

n

∑
i p(x | zi). However, we can

clearly see that the most important issue with sampling approaches is that the quality of
the approximation directly depends on the number of sampling operations. But as x lies
in a very high-dimensional space, the number of samples to compute might be extremely
large before we have an accurate estimate of p(x). Therefore, the application of sampling
methods has been mostly confined to low-dimensional problems.

Another approach to solving this problem has recently been proposed through the
framework of Variational Inference (VI) [24]. The key idea behind VI is to rely on
optimization rather than sampling. To do so, VI works under the assumption that even
though the distribution itself is too complex to find, we could find a simpler approximate
distribution that still models the same data, while trying to minimize its difference to
the original distribution. Hence, VI approximates a given distribution p(z|x) by choosing
a distribution q(z|x) from a family Q. Each distribution q ∈ Q is an approximation of
p(z|x). In order to find the closest one, we can use a measure of the difference between
two distributions, such as the Kullback-Leibler Divergence (KLD) defined by

DKL[q(z|x)‖p(z|x)] = Ez∼q[log q(z|x)− log p(z|x)]

The best candidate is then found by minimizing the KLD. Thus, the previous integra-
tion problem has become an optimization problem formulated as

q∗(z|x) = arg min
q∈Q

DKL(q(z|x)||p(z|x))

Once we have found q∗(z|x), we obtain the best approximation of p(z|x) inside Q. In
order to solve this KLD minimization problem, we can develop this expression [25] by

21

expanding the conditional probability p(z|x) and distributing the log, leading to

DKL[q(z|x)‖p(z|x)] = Ez∼q

[
log q(z|x)− log

p(x|z)p(z)

p(x)

]
= Ez∼q[log q(z|x)− log p(x|z)− log p(z) + log p(x)]

A dependence with log p(x) now appears. Recall that we do not have access to this
quantity and thus it prevents us from computing this objective. However, as log p(x)
does not depend on z, it can be taken out of the expectation and moved to the left
member of the equation. Hence, we can obtain the following development

log p(x)−DKL[q(z|x)‖p(z|x)] = −Ez∼q[log q(z|x)− log p(x|z)− log p(z)]

= Ez∼q[log p(x|z)]−DKL[q(z|x)‖p(z)]

This leads to the formulation of an objective that we can optimize. Indeed, the left
side describes the negative divergence that we seek to minimize, plus log p(x), which is
here an added constant as it does not depend on q(z). Hence, we can define

L(q) = Ez∼q[log p(x|z)]−DKL[q(z|x)‖p(z)] (4)

L(q) is called ELBO (Evidence Lower BOund) because as shown by equation 5, with
the KLD always being positive, L(q) is a lower bound for the evidence log p(x) .

log p(x) = L(q) +DKL[q(z|x)‖p(z|x)] (5)

Maximizing this ELBO will solve our original variational problem as we can finally
rewrite the optimization problem under the new form

q∗(z|x) = arg min
q∈Q

DKL(q(z|x)‖p(z|x))

= arg max
q∈Q

L(q)

Finally, optimizing our generative model will amount to optimize the parameters φ
and θ of these distributions (omitted until here for clarity), leading to the objective

L(θ, φ) = Eqφ(z)
[

log pθ(x|z)
]︸ ︷︷ ︸

reconstruction

−DKL

[
qφ(z|x) ‖ pθ(z)

]︸ ︷︷ ︸
regularization

(6)

Analyzing this expression, we can associate each term with its role :

• The first term Ez∼qφ
[

log pθ(x|z)
]
is the likelihood of the data x generated from the

set of latent variable z. Maximizing this is conceptually equivalent to minimizing
a reconstruction error.
• The second term DKL

[
qφ(z|x) ‖ pθ(z)

]
is the distance between qφ(z|x) and pθ(z).

It represents the error that we make by using the approximate qφ(z|x) instead of
the true latent distribution pθ(z). Minimizing this will regularize the distribution
qφ(z|x) to make it closer to pθ(z).

22

Overall, the model can be optimized by maximizing log pθ(x | z), while regularizing
the approximate distribution qφ(z | x) to match a prior distribution pθ(z). The first term
can be obtained through a traditional maximum likelihood estimation with any classifier
or loss function. However, the second term requires that we define a prior p(z). As we
will later want to sample from that distribution to generate some data, the easiest choice
would be to choose p(z) ∼ N (0, 1). Hence, all that remains is to choose the family of
variational densities Q from which to select our approximation.

The mean-field family The complexity of the family Q determines the complexity
of the optimization. One of the most simple and widespread family used in VI is the
mean-field variational family, where all the latent variables are mutually independent
and are each parametrized by a distinct variational parameter

q(z) =
m∏
j=1

qj(zj) (7)

Here we can see that each latent zj follows an independent variational factor, defined
by qj(zj). As the parameters that we aim to model are continuous, we can choose these
factors to be Gaussian. This means that each dimension of the latent space will be
governed by an independent Gaussian distribution with its own mean and variance.
Thus, for each latent dimension we have qj(zj) = N (µj,Σj). In the VAE, we have more
specifically qj(zj) = N (µj(x),Σj(x)), where the parameters depend on the input data.
Based on this choice, the KL divergence in our objective can be computed as

DKL

[
N (µ(x),Σ(x)) ‖ N (0, 1)

]
=

1

2

∑
k

(
exp(Σ(xk)) + µ2(xk)− Σ(xk)− 1

)
(8)

Therefore, we now have a straightforward way of computing the optimization objective.
The generic definition of the mean-field family is expressive enough to capture any density
of independent latent variables z. However, because of this independence, the mean-field
family cannot capture correlations between these parameters [24].

2.2.3 Variational Auto-Encoder

As we discussed in the previous section, we will simultaneously optimize qφ(z | x) which
encodes the data x into the latent representation z and a decoder pθ(x |z), which generates
a data x given a latent configuration z. Hence, this whole structure defines a Variational
Auto-Encoder (VAE) where both the encoder and decoder are neural networks. On one
hand the decoder takes a data vector x as input but rather than producing a deterministic
latent code z, it outputs the pair µ(z|x),Σ(z|x), which are parameters of the multivariate
Gaussian probability density qφ(z|x). Then, we can sample from this density to feed the
decoder (see Fig. 10).

The decoder is another neural network, whose input is a latent representation z
sampled from the distribution predicted by the encoder. The decoder also outputs the

23

Encode Decode

q�(z | x)
<latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit>

p✓(x | z)
<latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit>

x
<latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit>

z
<latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit><latexit sha1_base64="Q2NMLJ9q+RQSfQIr/7wdzlUxWwQ=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZCrXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADMVZOd</latexit>

x̃
<latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit>

Input Latent space Output

Figure 10: Basic architecture of a VAE. Rather than encoding an input x as a single
position z in the latent space, the encoder outputs the parameters of the distribution
qφ(z|x). The latent space has turned from deterministic to stochastic.

pair µ(x|z),Σ(x|z) which are the parameters of the probability distribution of the data
given the latent code. To retrieve the generated data x, it seems logical to sample
the mean x = µ(x|z) as it guarantees to generate the sound that is the most likely to
correspond to this latent code. Here, we underline the fact that the encoder and decoder
can be any neural network model. The resulting whole VAE model will be trained by
performing gradient descent with the ELBO (Eq. 6) acting as a loss function.

Re-parametrization trick In order to train the VAE with gradient descent, it should
be fully differentiable. However, VAEs features a non-differentiable operation, namely
sampling from the distribution p(z|x). The re-parametrization trick [15] was introduced
to tackle this issue by observing that we can z = µ(z|x) + Σ(z|x)× ε where ε ∼ N (0, 1).
This moves the sampling operation outside of the computational graph, by sampling a
set of fixed ε, making it fully differentiable (see Fig. 11).

2.3 Generative models for waveform

As discussed in the previous section, the encoder and decoder architectures can be defined
as any parametric network. However, the architecture and type of these sub-networks will
directly determine the capacity of our system to model different type of data. Hence, as
we are interested in modeling audio data, we present some recent models that succeeded
in handling waveform data, thus making it adapted to our purpose.

2.3.1 SampleRNN

As explained in Section 2.1.2, the RNNs can explicitly take advantage of the dependences
into a sequence. However, they usually fail at modeling long-term dependencies. This
problem is particularly crucial when trying to model waveforms. Furthermore, audio

24

Reparametrization

x
<latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit>

x̃
<latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit>

q�
<latexit sha1_base64="BfLTwN0cWre+m+Nuaj1MTp56RqM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/QlpKk03ZsXp1MxFpc+QNu9cfEP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i9U0+iVHis5kV+JJqukzCfh6wmufRZMxbMCVyfNdzRmYo3bphIeBReyUnMOoEzCHmfe44kqj7utuMh7xZLVtnSy5wHdgZKyFY1Kr6gjR4ieEgRgCGEJOzDQUJPCzYsxMR1MCVOEOI6znCPAmlTymKU4RA7ou+Adq2MDWmvPBOt9ugUn15BShMHpIkoTxBWp5k6nmpnxf7mPdWe6m4T+ruZV0CsxJDYv3SzzP/qVC0SfZzqGjjVFGtGVedlLqnuirq5+aUqSQ4xcQr3KC4Ie1o567OpNYmuXfXW0fE3nalYtfey3BTv6pY0YPvnOOdB/ahsW2X78rhUqWSjzmMP+zikeZ6ggnNUUSPvazziCc/GhTE2bo27z1Qjl2l28W0ZDx/TjpGi</latexit><latexit sha1_base64="BfLTwN0cWre+m+Nuaj1MTp56RqM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/QlpKk03ZsXp1MxFpc+QNu9cfEP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i9U0+iVHis5kV+JJqukzCfh6wmufRZMxbMCVyfNdzRmYo3bphIeBReyUnMOoEzCHmfe44kqj7utuMh7xZLVtnSy5wHdgZKyFY1Kr6gjR4ieEgRgCGEJOzDQUJPCzYsxMR1MCVOEOI6znCPAmlTymKU4RA7ou+Adq2MDWmvPBOt9ugUn15BShMHpIkoTxBWp5k6nmpnxf7mPdWe6m4T+ruZV0CsxJDYv3SzzP/qVC0SfZzqGjjVFGtGVedlLqnuirq5+aUqSQ4xcQr3KC4Ie1o567OpNYmuXfXW0fE3nalYtfey3BTv6pY0YPvnOOdB/ahsW2X78rhUqWSjzmMP+zikeZ6ggnNUUSPvazziCc/GhTE2bo27z1Qjl2l28W0ZDx/TjpGi</latexit><latexit sha1_base64="BfLTwN0cWre+m+Nuaj1MTp56RqM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/QlpKk03ZsXp1MxFpc+QNu9cfEP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i9U0+iVHis5kV+JJqukzCfh6wmufRZMxbMCVyfNdzRmYo3bphIeBReyUnMOoEzCHmfe44kqj7utuMh7xZLVtnSy5wHdgZKyFY1Kr6gjR4ieEgRgCGEJOzDQUJPCzYsxMR1MCVOEOI6znCPAmlTymKU4RA7ou+Adq2MDWmvPBOt9ugUn15BShMHpIkoTxBWp5k6nmpnxf7mPdWe6m4T+ruZV0CsxJDYv3SzzP/qVC0SfZzqGjjVFGtGVedlLqnuirq5+aUqSQ4xcQr3KC4Ie1o567OpNYmuXfXW0fE3nalYtfey3BTv6pY0YPvnOOdB/ahsW2X78rhUqWSjzmMP+zikeZ6ggnNUUSPvazziCc/GhTE2bo27z1Qjl2l28W0ZDx/TjpGi</latexit><latexit sha1_base64="BfLTwN0cWre+m+Nuaj1MTp56RqM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlwI7ipYB/QlpKk03ZsXp1MxFpc+QNu9cfEP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i9U0+iVHis5kV+JJqukzCfh6wmufRZMxbMCVyfNdzRmYo3bphIeBReyUnMOoEzCHmfe44kqj7utuMh7xZLVtnSy5wHdgZKyFY1Kr6gjR4ieEgRgCGEJOzDQUJPCzYsxMR1MCVOEOI6znCPAmlTymKU4RA7ou+Adq2MDWmvPBOt9ugUn15BShMHpIkoTxBWp5k6nmpnxf7mPdWe6m4T+ruZV0CsxJDYv3SzzP/qVC0SfZzqGjjVFGtGVedlLqnuirq5+aUqSQ4xcQr3KC4Ie1o567OpNYmuXfXW0fE3nalYtfey3BTv6pY0YPvnOOdB/ahsW2X78rhUqWSjzmMP+zikeZ6ggnNUUSPvazziCc/GhTE2bo27z1Qjl2l28W0ZDx/TjpGi</latexit>

p✓
<latexit sha1_base64="P2ytuM4/aPZKDhAITgLcJzD//2s=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw40aoYB9gS0mm03ZoXkwmQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3Pv9ZNApMpxXgvWwuLS8kpxtbS2vrG5Vd7eaaZxJhlvsDiIZdv3Uh6IiDeUUAFvJ5J7oR/wlj8+0/HWDZepiKMrNUl4N/SGkRgI5imi2kmvo0Zceb1yxak6ZtnzwM1BBfmqx+UXdNBHDIYMITgiKMIBPKT0XMOFg4S4LqbESULCxDnuUSJvRipOCo/YMX2HtLvO2Yj2Omdq3IxOCeiV5LRxQJ6YdJKwPs028cxk1uxvuacmp77bhP5+niskVmFE7F++mfK/Pl2LwgCnpgZBNSWG0dWxPEtmuqJvbn+pSlGGhDiN+xSXhJlxzvpsG09qate99Uz8zSg1q/cs12Z417ekAbs/xzkPmkdV16m6l8eVWi0fdRF72MchzfMENZyjjoaZ4yOe8GxdWKl1a919Sq1C7tnFt2U9fAAcIJKK</latexit><latexit sha1_base64="P2ytuM4/aPZKDhAITgLcJzD//2s=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw40aoYB9gS0mm03ZoXkwmQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3Pv9ZNApMpxXgvWwuLS8kpxtbS2vrG5Vd7eaaZxJhlvsDiIZdv3Uh6IiDeUUAFvJ5J7oR/wlj8+0/HWDZepiKMrNUl4N/SGkRgI5imi2kmvo0Zceb1yxak6ZtnzwM1BBfmqx+UXdNBHDIYMITgiKMIBPKT0XMOFg4S4LqbESULCxDnuUSJvRipOCo/YMX2HtLvO2Yj2Omdq3IxOCeiV5LRxQJ6YdJKwPs028cxk1uxvuacmp77bhP5+niskVmFE7F++mfK/Pl2LwgCnpgZBNSWG0dWxPEtmuqJvbn+pSlGGhDiN+xSXhJlxzvpsG09qate99Uz8zSg1q/cs12Z417ekAbs/xzkPmkdV16m6l8eVWi0fdRF72MchzfMENZyjjoaZ4yOe8GxdWKl1a919Sq1C7tnFt2U9fAAcIJKK</latexit><latexit sha1_base64="P2ytuM4/aPZKDhAITgLcJzD//2s=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw40aoYB9gS0mm03ZoXkwmQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3Pv9ZNApMpxXgvWwuLS8kpxtbS2vrG5Vd7eaaZxJhlvsDiIZdv3Uh6IiDeUUAFvJ5J7oR/wlj8+0/HWDZepiKMrNUl4N/SGkRgI5imi2kmvo0Zceb1yxak6ZtnzwM1BBfmqx+UXdNBHDIYMITgiKMIBPKT0XMOFg4S4LqbESULCxDnuUSJvRipOCo/YMX2HtLvO2Yj2Omdq3IxOCeiV5LRxQJ6YdJKwPs028cxk1uxvuacmp77bhP5+niskVmFE7F++mfK/Pl2LwgCnpgZBNSWG0dWxPEtmuqJvbn+pSlGGhDiN+xSXhJlxzvpsG09qate99Uz8zSg1q/cs12Z417ekAbs/xzkPmkdV16m6l8eVWi0fdRF72MchzfMENZyjjoaZ4yOe8GxdWKl1a919Sq1C7tnFt2U9fAAcIJKK</latexit><latexit sha1_base64="P2ytuM4/aPZKDhAITgLcJzD//2s=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw40aoYB9gS0mm03ZoXkwmQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3Pv9ZNApMpxXgvWwuLS8kpxtbS2vrG5Vd7eaaZxJhlvsDiIZdv3Uh6IiDeUUAFvJ5J7oR/wlj8+0/HWDZepiKMrNUl4N/SGkRgI5imi2kmvo0Zceb1yxak6ZtnzwM1BBfmqx+UXdNBHDIYMITgiKMIBPKT0XMOFg4S4LqbESULCxDnuUSJvRipOCo/YMX2HtLvO2Yj2Omdq3IxOCeiV5LRxQJ6YdJKwPs028cxk1uxvuacmp77bhP5+niskVmFE7F++mfK/Pl2LwgCnpgZBNSWG0dWxPEtmuqJvbn+pSlGGhDiN+xSXhJlxzvpsG09qate99Uz8zSg1q/cs12Z417ekAbs/xzkPmkdV16m6l8eVWi0fdRF72MchzfMENZyjjoaZ4yOe8GxdWKl1a919Sq1C7tnFt2U9fAAcIJKK</latexit>

µ (x)
<latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit>

Encoder

Decoder⌃ (x)
<latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit>

Sampling

kx � x̃k2
<latexit sha1_base64="QJ1xbj/LRN5LAz9nr8GJ8bOSzZw=">AAADAXicjVHLTttAFD24Dyh9YMqSzagRUjeN7JAQkLpAYtMlSCQgxTSynUkyYvzQeFwVRVn1T9ixQ2z7A92WTcUfwF9wZ3BEu4joWLbvnHvOmbn3RrkUhfa8mwXn2fMXLxeXXi2/fvP23Yq7+r5bZKWKeSfOZKaOo7DgUqS8o4WW/DhXPEwiyY+i0z2TP/rGVSGy9FCf5fwkCUepGIo41AT13c+B5EMdyC5XmgVJqMfRcPJ9yj6xQAs54JNHbMoCJUZjHShL/soafbfm1Xdam36rzby6Z5cJmt7WVpv5FVJDtfYz9w8CDJAhRokEHCk0xRIhCnp68OEhJ+wEE8IURcLmOaZYJm1JLE6MkNBT+o5o16vQlPbGs7DqmE6R9CpSMmyQJiOeoticxmy+tM4Gnec9sZ7mbmf0jyqvhFCNMaFP6WbM/9WZWjSG2LY1CKopt4ipLq5cStsVc3P2V1WaHHLCTDygvKI4tspZn5nVFLZ209vQ5m8t06BmH1fcEnfmljTg2RTZ/KDbqPte3T9o1na3q1EvYR0f8JHm2cYuvmAfHfI+xy/8xrXzw7lwLp2rB6qzUGnW8M9yft4DwSCoZw==</latexit><latexit sha1_base64="QJ1xbj/LRN5LAz9nr8GJ8bOSzZw=">AAADAXicjVHLTttAFD24Dyh9YMqSzagRUjeN7JAQkLpAYtMlSCQgxTSynUkyYvzQeFwVRVn1T9ixQ2z7A92WTcUfwF9wZ3BEu4joWLbvnHvOmbn3RrkUhfa8mwXn2fMXLxeXXi2/fvP23Yq7+r5bZKWKeSfOZKaOo7DgUqS8o4WW/DhXPEwiyY+i0z2TP/rGVSGy9FCf5fwkCUepGIo41AT13c+B5EMdyC5XmgVJqMfRcPJ9yj6xQAs54JNHbMoCJUZjHShL/soafbfm1Xdam36rzby6Z5cJmt7WVpv5FVJDtfYz9w8CDJAhRokEHCk0xRIhCnp68OEhJ+wEE8IURcLmOaZYJm1JLE6MkNBT+o5o16vQlPbGs7DqmE6R9CpSMmyQJiOeoticxmy+tM4Gnec9sZ7mbmf0jyqvhFCNMaFP6WbM/9WZWjSG2LY1CKopt4ipLq5cStsVc3P2V1WaHHLCTDygvKI4tspZn5nVFLZ209vQ5m8t06BmH1fcEnfmljTg2RTZ/KDbqPte3T9o1na3q1EvYR0f8JHm2cYuvmAfHfI+xy/8xrXzw7lwLp2rB6qzUGnW8M9yft4DwSCoZw==</latexit><latexit sha1_base64="QJ1xbj/LRN5LAz9nr8GJ8bOSzZw=">AAADAXicjVHLTttAFD24Dyh9YMqSzagRUjeN7JAQkLpAYtMlSCQgxTSynUkyYvzQeFwVRVn1T9ixQ2z7A92WTcUfwF9wZ3BEu4joWLbvnHvOmbn3RrkUhfa8mwXn2fMXLxeXXi2/fvP23Yq7+r5bZKWKeSfOZKaOo7DgUqS8o4WW/DhXPEwiyY+i0z2TP/rGVSGy9FCf5fwkCUepGIo41AT13c+B5EMdyC5XmgVJqMfRcPJ9yj6xQAs54JNHbMoCJUZjHShL/soafbfm1Xdam36rzby6Z5cJmt7WVpv5FVJDtfYz9w8CDJAhRokEHCk0xRIhCnp68OEhJ+wEE8IURcLmOaZYJm1JLE6MkNBT+o5o16vQlPbGs7DqmE6R9CpSMmyQJiOeoticxmy+tM4Gnec9sZ7mbmf0jyqvhFCNMaFP6WbM/9WZWjSG2LY1CKopt4ipLq5cStsVc3P2V1WaHHLCTDygvKI4tspZn5nVFLZ209vQ5m8t06BmH1fcEnfmljTg2RTZ/KDbqPte3T9o1na3q1EvYR0f8JHm2cYuvmAfHfI+xy/8xrXzw7lwLp2rB6qzUGnW8M9yft4DwSCoZw==</latexit><latexit sha1_base64="QJ1xbj/LRN5LAz9nr8GJ8bOSzZw=">AAADAXicjVHLTttAFD24Dyh9YMqSzagRUjeN7JAQkLpAYtMlSCQgxTSynUkyYvzQeFwVRVn1T9ixQ2z7A92WTcUfwF9wZ3BEu4joWLbvnHvOmbn3RrkUhfa8mwXn2fMXLxeXXi2/fvP23Yq7+r5bZKWKeSfOZKaOo7DgUqS8o4WW/DhXPEwiyY+i0z2TP/rGVSGy9FCf5fwkCUepGIo41AT13c+B5EMdyC5XmgVJqMfRcPJ9yj6xQAs54JNHbMoCJUZjHShL/soafbfm1Xdam36rzby6Z5cJmt7WVpv5FVJDtfYz9w8CDJAhRokEHCk0xRIhCnp68OEhJ+wEE8IURcLmOaZYJm1JLE6MkNBT+o5o16vQlPbGs7DqmE6R9CpSMmyQJiOeoticxmy+tM4Gnec9sZ7mbmf0jyqvhFCNMaFP6WbM/9WZWjSG2LY1CKopt4ipLq5cStsVc3P2V1WaHHLCTDygvKI4tspZn5nVFLZ209vQ5m8t06BmH1fcEnfmljTg2RTZ/KDbqPte3T9o1na3q1EvYR0f8JHm2cYuvmAfHfI+xy/8xrXzw7lwLp2rB6qzUGnW8M9yft4DwSCoZw==</latexit>

KL [N (µ(x),⌃(x)) k p(z)]
<latexit sha1_base64="L8mZoD2qxCspE0f3u+m8+tUBhz4=">AAADJnicjZHNTxQxGMYfBhXErwWPXho3JktiNjMIrNxIvJBoDEZ3IdnZkE7p7jZ0PtLpGGCz/D38J9y4GeLNox686tW3ddbggWgnM/P2977P075tUmhV2jD8PBfM37p9Z2Hx7tK9+w8ePmosr/TKvDJCdkWuc7Of8FJqlcmuVVbL/cJIniZa7iVHr1x+76M0pcqzD/akkIOUjzI1VIJbQgcN/vpNrOXQ9uOU27HgevJ26kErTquWh8lwcjxdfR6/V6OUX0exUaOxXWWx7klj2Rkr/mRPp4R9enDQaIbtrY0X0UaHhe3QDxesh5ubHRbVpIl67OaNK8Q4RA6BCikkMliKNThKevqIEKIgNsCEmKFI+bzEFEukrahKUgUnekTfEc36Nc1o7jxLrxa0iqbXkJLhGWlyqjMUu9WYz1fe2dGbvCfe0+3thP5J7ZUStRgT/ZduVvm/OteLxRAvfQ+Keio8cd2J2qXyp+J2zq51ZcmhIObiQ8obioVXzs6ZeU3pe3dny33+q6901M1FXVvhm9slXfDsFtnNQW+tHYXt6N16c3utvupFPMFTtOg+O9jGDnbRJe8LfMcP/AzOg8vgU3D1uzSYqzWP8dcIvvwC6nq3dg==</latexit><latexit sha1_base64="L8mZoD2qxCspE0f3u+m8+tUBhz4=">AAADJnicjZHNTxQxGMYfBhXErwWPXho3JktiNjMIrNxIvJBoDEZ3IdnZkE7p7jZ0PtLpGGCz/D38J9y4GeLNox686tW3ddbggWgnM/P2977P075tUmhV2jD8PBfM37p9Z2Hx7tK9+w8ePmosr/TKvDJCdkWuc7Of8FJqlcmuVVbL/cJIniZa7iVHr1x+76M0pcqzD/akkIOUjzI1VIJbQgcN/vpNrOXQ9uOU27HgevJ26kErTquWh8lwcjxdfR6/V6OUX0exUaOxXWWx7klj2Rkr/mRPp4R9enDQaIbtrY0X0UaHhe3QDxesh5ubHRbVpIl67OaNK8Q4RA6BCikkMliKNThKevqIEKIgNsCEmKFI+bzEFEukrahKUgUnekTfEc36Nc1o7jxLrxa0iqbXkJLhGWlyqjMUu9WYz1fe2dGbvCfe0+3thP5J7ZUStRgT/ZduVvm/OteLxRAvfQ+Keio8cd2J2qXyp+J2zq51ZcmhIObiQ8obioVXzs6ZeU3pe3dny33+q6901M1FXVvhm9slXfDsFtnNQW+tHYXt6N16c3utvupFPMFTtOg+O9jGDnbRJe8LfMcP/AzOg8vgU3D1uzSYqzWP8dcIvvwC6nq3dg==</latexit><latexit sha1_base64="L8mZoD2qxCspE0f3u+m8+tUBhz4=">AAADJnicjZHNTxQxGMYfBhXErwWPXho3JktiNjMIrNxIvJBoDEZ3IdnZkE7p7jZ0PtLpGGCz/D38J9y4GeLNox686tW3ddbggWgnM/P2977P075tUmhV2jD8PBfM37p9Z2Hx7tK9+w8ePmosr/TKvDJCdkWuc7Of8FJqlcmuVVbL/cJIniZa7iVHr1x+76M0pcqzD/akkIOUjzI1VIJbQgcN/vpNrOXQ9uOU27HgevJ26kErTquWh8lwcjxdfR6/V6OUX0exUaOxXWWx7klj2Rkr/mRPp4R9enDQaIbtrY0X0UaHhe3QDxesh5ubHRbVpIl67OaNK8Q4RA6BCikkMliKNThKevqIEKIgNsCEmKFI+bzEFEukrahKUgUnekTfEc36Nc1o7jxLrxa0iqbXkJLhGWlyqjMUu9WYz1fe2dGbvCfe0+3thP5J7ZUStRgT/ZduVvm/OteLxRAvfQ+Keio8cd2J2qXyp+J2zq51ZcmhIObiQ8obioVXzs6ZeU3pe3dny33+q6901M1FXVvhm9slXfDsFtnNQW+tHYXt6N16c3utvupFPMFTtOg+O9jGDnbRJe8LfMcP/AzOg8vgU3D1uzSYqzWP8dcIvvwC6nq3dg==</latexit><latexit sha1_base64="L8mZoD2qxCspE0f3u+m8+tUBhz4=">AAADJnicjZHNTxQxGMYfBhXErwWPXho3JktiNjMIrNxIvJBoDEZ3IdnZkE7p7jZ0PtLpGGCz/D38J9y4GeLNox686tW3ddbggWgnM/P2977P075tUmhV2jD8PBfM37p9Z2Hx7tK9+w8ePmosr/TKvDJCdkWuc7Of8FJqlcmuVVbL/cJIniZa7iVHr1x+76M0pcqzD/akkIOUjzI1VIJbQgcN/vpNrOXQ9uOU27HgevJ26kErTquWh8lwcjxdfR6/V6OUX0exUaOxXWWx7klj2Rkr/mRPp4R9enDQaIbtrY0X0UaHhe3QDxesh5ubHRbVpIl67OaNK8Q4RA6BCikkMliKNThKevqIEKIgNsCEmKFI+bzEFEukrahKUgUnekTfEc36Nc1o7jxLrxa0iqbXkJLhGWlyqjMUu9WYz1fe2dGbvCfe0+3thP5J7ZUStRgT/ZduVvm/OteLxRAvfQ+Keio8cd2J2qXyp+J2zq51ZcmhIObiQ8obioVXzs6ZeU3pe3dny33+q6901M1FXVvhm9slXfDsFtnNQW+tHYXt6N16c3utvupFPMFTtOg+O9jGDnbRJe8LfMcP/AzOg8vgU3D1uzSYqzWP8dcIvvwC6nq3dg==</latexit>

Non-differentiable

µ (x)
<latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit>

⌃ (x)
<latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit>

N (µ(x),⌃(x))
<latexit sha1_base64="b6KmYnDusu4kGUczCEqkpcLVDJ8=">AAAC/3icjVHLShxBFD124iMmmjEus2kyCCPIUD0YfKwEN67EYEYFW6S6rJkppvpBdbUowyzyJ9m5C9nmB7I1u5A/SP7CW2UPmIVoNd196tx7TtW9Nym0Ki1jf6aCFy+nZ2bnXs2/frOw+Lax9O6ozCsjZFfkOjcnCS+lVpnsWmW1PCmM5Gmi5XEy3HXx40tpSpVnn+11Ic9S3s9UTwluiTpvbMcptwPB9Wh/HGvZs604rVqeTHqjq/HqWnyo+il/SMVG9Qd29bzRZG3G2ObHrdCDKNq4B6zDwsgDxpqo10He+I0YF8ghUCGFRAZLWIOjpOcUERgK4s4wIs4QUj4uMcY8aSvKkpTBiR3St0+705rNaO88S68WdIqm15AyxAppcsozhN1poY9X3tmxj3mPvKe72zX9k9orJdZiQOxTuknmc3WuFoseNn0NimoqPOOqE7VL5bvibh4+qMqSQ0GcwxcUN4SFV076HHpN6Wt3veU+/tdnOtbtRZ1b4Z+7JQ14MsXwcXDUaUesHX1ab+506lHP4T0+oEXz3MAO9nCALnl/xU/c4lfwJbgJvgXf71ODqVqzjP9W8OMOtemnpA==</latexit><latexit sha1_base64="b6KmYnDusu4kGUczCEqkpcLVDJ8=">AAAC/3icjVHLShxBFD124iMmmjEus2kyCCPIUD0YfKwEN67EYEYFW6S6rJkppvpBdbUowyzyJ9m5C9nmB7I1u5A/SP7CW2UPmIVoNd196tx7TtW9Nym0Ki1jf6aCFy+nZ2bnXs2/frOw+Lax9O6ozCsjZFfkOjcnCS+lVpnsWmW1PCmM5Gmi5XEy3HXx40tpSpVnn+11Ic9S3s9UTwluiTpvbMcptwPB9Wh/HGvZs604rVqeTHqjq/HqWnyo+il/SMVG9Qd29bzRZG3G2ObHrdCDKNq4B6zDwsgDxpqo10He+I0YF8ghUCGFRAZLWIOjpOcUERgK4s4wIs4QUj4uMcY8aSvKkpTBiR3St0+705rNaO88S68WdIqm15AyxAppcsozhN1poY9X3tmxj3mPvKe72zX9k9orJdZiQOxTuknmc3WuFoseNn0NimoqPOOqE7VL5bvibh4+qMqSQ0GcwxcUN4SFV076HHpN6Wt3veU+/tdnOtbtRZ1b4Z+7JQ14MsXwcXDUaUesHX1ab+506lHP4T0+oEXz3MAO9nCALnl/xU/c4lfwJbgJvgXf71ODqVqzjP9W8OMOtemnpA==</latexit><latexit sha1_base64="b6KmYnDusu4kGUczCEqkpcLVDJ8=">AAAC/3icjVHLShxBFD124iMmmjEus2kyCCPIUD0YfKwEN67EYEYFW6S6rJkppvpBdbUowyzyJ9m5C9nmB7I1u5A/SP7CW2UPmIVoNd196tx7TtW9Nym0Ki1jf6aCFy+nZ2bnXs2/frOw+Lax9O6ozCsjZFfkOjcnCS+lVpnsWmW1PCmM5Gmi5XEy3HXx40tpSpVnn+11Ic9S3s9UTwluiTpvbMcptwPB9Wh/HGvZs604rVqeTHqjq/HqWnyo+il/SMVG9Qd29bzRZG3G2ObHrdCDKNq4B6zDwsgDxpqo10He+I0YF8ghUCGFRAZLWIOjpOcUERgK4s4wIs4QUj4uMcY8aSvKkpTBiR3St0+705rNaO88S68WdIqm15AyxAppcsozhN1poY9X3tmxj3mPvKe72zX9k9orJdZiQOxTuknmc3WuFoseNn0NimoqPOOqE7VL5bvibh4+qMqSQ0GcwxcUN4SFV076HHpN6Wt3veU+/tdnOtbtRZ1b4Z+7JQ14MsXwcXDUaUesHX1ab+506lHP4T0+oEXz3MAO9nCALnl/xU/c4lfwJbgJvgXf71ODqVqzjP9W8OMOtemnpA==</latexit><latexit sha1_base64="b6KmYnDusu4kGUczCEqkpcLVDJ8=">AAAC/3icjVHLShxBFD124iMmmjEus2kyCCPIUD0YfKwEN67EYEYFW6S6rJkppvpBdbUowyzyJ9m5C9nmB7I1u5A/SP7CW2UPmIVoNd196tx7TtW9Nym0Ki1jf6aCFy+nZ2bnXs2/frOw+Lax9O6ozCsjZFfkOjcnCS+lVpnsWmW1PCmM5Gmi5XEy3HXx40tpSpVnn+11Ic9S3s9UTwluiTpvbMcptwPB9Wh/HGvZs604rVqeTHqjq/HqWnyo+il/SMVG9Qd29bzRZG3G2ObHrdCDKNq4B6zDwsgDxpqo10He+I0YF8ghUCGFRAZLWIOjpOcUERgK4s4wIs4QUj4uMcY8aSvKkpTBiR3St0+705rNaO88S68WdIqm15AyxAppcsozhN1poY9X3tmxj3mPvKe72zX9k9orJdZiQOxTuknmc3WuFoseNn0NimoqPOOqE7VL5bvibh4+qMqSQ0GcwxcUN4SFV076HHpN6Wt3veU+/tdnOtbtRZ1b4Z+7JQ14MsXwcXDUaUesHX1ab+506lHP4T0+oEXz3MAO9nCALnl/xU/c4lfwJbgJvgXf71ODqVqzjP9W8OMOtemnpA==</latexit>

z ⇠
<latexit sha1_base64="epzyKm6UxHiATWLCylwhz6UXrX0=">AAAC0XicjVHLSsNAFD3GV31XXboJFsFVmRRF3QluXFa0VWhVknTaDubFzESoRRC3/oBb/SnxD/QvvDNNQReiE5KcOfeeM3PvDbJIKM3Y+4QzOTU9M1uam19YXFpeKa+uNVWay5A3wjRK5UXgKx6JhDe00BG/yCT34yDi58HNkYmf33KpRJqc6UHGL2O/l4iuCH1N1FU79nU/6A7v7ttKxNflCqsyxvZ3D1wLPG9vBFiNuZ4FjFVQrHpafkMbHaQIkSMGRwJNOIIPRU8LHhgy4i4xJE4SEjbOcY950uaUxSnDJ/aGvj3atQo2ob3xVFYd0ikRvZKULrZIk1KeJGxOc208t86G/c17aD3N3Qb0DwqvmFiNPrF/6caZ/9WZWjS62Lc1CKops4ypLixcctsVc3P3W1WaHDLiDO5QXBIOrXLcZ9dqlK3d9Na38Q+baVizD4vcHJ/mljTg8RTd30GzVvVY1TvZqRzWilGXsIFNbNM893CIY9TRIG+JZ7zg1Tl1Bs6D8zhKdSYKzTp+LOfpC6eblX0=</latexit><latexit sha1_base64="epzyKm6UxHiATWLCylwhz6UXrX0=">AAAC0XicjVHLSsNAFD3GV31XXboJFsFVmRRF3QluXFa0VWhVknTaDubFzESoRRC3/oBb/SnxD/QvvDNNQReiE5KcOfeeM3PvDbJIKM3Y+4QzOTU9M1uam19YXFpeKa+uNVWay5A3wjRK5UXgKx6JhDe00BG/yCT34yDi58HNkYmf33KpRJqc6UHGL2O/l4iuCH1N1FU79nU/6A7v7ttKxNflCqsyxvZ3D1wLPG9vBFiNuZ4FjFVQrHpafkMbHaQIkSMGRwJNOIIPRU8LHhgy4i4xJE4SEjbOcY950uaUxSnDJ/aGvj3atQo2ob3xVFYd0ikRvZKULrZIk1KeJGxOc208t86G/c17aD3N3Qb0DwqvmFiNPrF/6caZ/9WZWjS62Lc1CKops4ypLixcctsVc3P3W1WaHDLiDO5QXBIOrXLcZ9dqlK3d9Na38Q+baVizD4vcHJ/mljTg8RTd30GzVvVY1TvZqRzWilGXsIFNbNM893CIY9TRIG+JZ7zg1Tl1Bs6D8zhKdSYKzTp+LOfpC6eblX0=</latexit><latexit sha1_base64="epzyKm6UxHiATWLCylwhz6UXrX0=">AAAC0XicjVHLSsNAFD3GV31XXboJFsFVmRRF3QluXFa0VWhVknTaDubFzESoRRC3/oBb/SnxD/QvvDNNQReiE5KcOfeeM3PvDbJIKM3Y+4QzOTU9M1uam19YXFpeKa+uNVWay5A3wjRK5UXgKx6JhDe00BG/yCT34yDi58HNkYmf33KpRJqc6UHGL2O/l4iuCH1N1FU79nU/6A7v7ttKxNflCqsyxvZ3D1wLPG9vBFiNuZ4FjFVQrHpafkMbHaQIkSMGRwJNOIIPRU8LHhgy4i4xJE4SEjbOcY950uaUxSnDJ/aGvj3atQo2ob3xVFYd0ikRvZKULrZIk1KeJGxOc208t86G/c17aD3N3Qb0DwqvmFiNPrF/6caZ/9WZWjS62Lc1CKops4ypLixcctsVc3P3W1WaHDLiDO5QXBIOrXLcZ9dqlK3d9Na38Q+baVizD4vcHJ/mljTg8RTd30GzVvVY1TvZqRzWilGXsIFNbNM893CIY9TRIG+JZ7zg1Tl1Bs6D8zhKdSYKzTp+LOfpC6eblX0=</latexit><latexit sha1_base64="epzyKm6UxHiATWLCylwhz6UXrX0=">AAAC0XicjVHLSsNAFD3GV31XXboJFsFVmRRF3QluXFa0VWhVknTaDubFzESoRRC3/oBb/SnxD/QvvDNNQReiE5KcOfeeM3PvDbJIKM3Y+4QzOTU9M1uam19YXFpeKa+uNVWay5A3wjRK5UXgKx6JhDe00BG/yCT34yDi58HNkYmf33KpRJqc6UHGL2O/l4iuCH1N1FU79nU/6A7v7ttKxNflCqsyxvZ3D1wLPG9vBFiNuZ4FjFVQrHpafkMbHaQIkSMGRwJNOIIPRU8LHhgy4i4xJE4SEjbOcY950uaUxSnDJ/aGvj3atQo2ob3xVFYd0ikRvZKULrZIk1KeJGxOc208t86G/c17aD3N3Qb0DwqvmFiNPrF/6caZ/9WZWjS62Lc1CKops4ypLixcctsVc3P3W1WaHDLiDO5QXBIOrXLcZ9dqlK3d9Na38Q+baVizD4vcHJ/mljTg8RTd30GzVvVY1TvZqRzWilGXsIFNbNM893CIY9TRIG+JZ7zg1Tl1Bs6D8zhKdSYKzTp+LOfpC6eblX0=</latexit>

X X

µ (x)
<latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit><latexit sha1_base64="BbedJgPFyro2VTQga9qisAPQcVA=">AAAC33icjVHLSsNAFD3GV31X3ekmWIS6KUkRdFlw41LB2oIpMonTdjAvJhOxlII7d+LWH3CrfyP+gf6Fd8YIPhCdkOTMufecmXuvn4YiU47zPGaNT0xOTZdmZufmFxaXyssrx1mSy4A3gyRMZNtnGQ9FzJtKqJC3U8lZ5Ie85Z/v6XjrgstMJPGRGqS8E7FeLLoiYIqo0/KaF+VeyLuq6kVM9f3u8HLkSdHrq63TcsWpOWbZP4FbgAqKdZCUn+DhDAkC5IjAEUMRDsGQ0XMCFw5S4joYEicJCRPnGGGWtDllccpgxJ7Tt0e7k4KNaa89M6MO6JSQXklKG5ukSShPEtan2SaeG2fN/uY9NJ76bgP6+4VXRKxCn9i/dB+Z/9XpWhS62DU1CKopNYyuLihcctMVfXP7U1WKHFLiND6juCQcGOVHn22jyUzturfMxF9Mpmb1Pihyc7zqW9KA3e/j/AmO6zXXqbmH25VGvRh1CevYQJXmuYMG9nGAJnlf4R4PeLSYdW3dWLfvqdZYoVnFl2XdvQGLG5pu</latexit>

⌃ (x)
<latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit><latexit sha1_base64="lG4+h48m3lMGnckDFAXOHPwXL94=">AAAC4nicjVHLSsNAFD2Nr/quuhQhWATdlKQIuiy4cVnRqmBEJum0HcyLyUQspSt37sStP+BWP0b8A/0L74wRfCA6IcmZc+85M/dePw1FphznuWSNjI6NT5Qnp6ZnZufmKwuLh1mSy4C3giRM5LHPMh6KmLeUUCE/TiVnkR/yI/98R8ePLrjMRBIfqH7KTyPWjUVHBEwRdVZZ8fZFN2JeyDtq3YuY6vmdweXQk6LbUxtnlapTc8yyfwK3AFUUq5lUnuChjQQBckTgiKEIh2DI6DmBCwcpcacYECcJCRPnGGKKtDllccpgxJ7Tt0u7k4KNaa89M6MO6JSQXklKG2ukSShPEtan2SaeG2fN/uY9MJ76bn36+4VXRKxCj9i/dB+Z/9XpWhQ62DY1CKopNYyuLihcctMVfXP7U1WKHFLiNG5TXBIOjPKjz7bRZKZ23Vtm4i8mU7N6HxS5OV71LWnA7vdx/gSH9Zrr1Ny9zWqjXoy6jGWsYp3muYUGdtFEi7yvcI8HPFpt69q6sW7fU61SoVnCl2XdvQGd45ub</latexit>

✏ ⇠ N (0, 1)
<latexit sha1_base64="TLkGVZIz7eS2RxVXypfhJ3sAFx0=">AAAC7HicjVHLShxBFD3TGjUmMaMus2kcQgyEoXqIqDshG1cygYwKtkh1WTNTWP2gqlqQwU9w506yzQ9kq98h+YP4F94qeyBZSFJNd586955Tde/NKq2sY+xXK5qZfTE3v/By8dXrN0tv28sr+7asjZADUerSHGbcSq0KOXDKaXlYGcnzTMuD7OyLjx+cS2NVWXxzF5U8zvmoUEMluCPqpP0hlZVVuixSq/I0524suJ7sXaZaDt06+5SkRo3G7uNJu8O6jLGtje04gCTZfAKsx+IkAMY6aFa/bN8jxSlKCNTIIVHAEdbgsPQcIQFDRdwxJsQZQirEJS6xSNqasiRlcGLP6Dui3VHDFrT3njaoBZ2i6TWkjPGeNCXlGcL+tDjE6+Ds2ee8J8HT3+2C/lnjlRPrMCb2X7pp5v/qfC0OQ2yFGhTVVAXGVycalzp0xd88/qMqRw4VcR6fUtwQFkE57XMcNDbU7nvLQ/x3yPSs34smt8aDvyUNeDrF+Hmw3+smrJt8/dzZ6TWjXsA7rGGd5rmJHeyijwF5X+EnbnEXFdF1dBN9f0qNWo1mFX+t6McjMeKfmQ==</latexit><latexit sha1_base64="TLkGVZIz7eS2RxVXypfhJ3sAFx0=">AAAC7HicjVHLShxBFD3TGjUmMaMus2kcQgyEoXqIqDshG1cygYwKtkh1WTNTWP2gqlqQwU9w506yzQ9kq98h+YP4F94qeyBZSFJNd586955Tde/NKq2sY+xXK5qZfTE3v/By8dXrN0tv28sr+7asjZADUerSHGbcSq0KOXDKaXlYGcnzTMuD7OyLjx+cS2NVWXxzF5U8zvmoUEMluCPqpP0hlZVVuixSq/I0524suJ7sXaZaDt06+5SkRo3G7uNJu8O6jLGtje04gCTZfAKsx+IkAMY6aFa/bN8jxSlKCNTIIVHAEdbgsPQcIQFDRdwxJsQZQirEJS6xSNqasiRlcGLP6Dui3VHDFrT3njaoBZ2i6TWkjPGeNCXlGcL+tDjE6+Ds2ee8J8HT3+2C/lnjlRPrMCb2X7pp5v/qfC0OQ2yFGhTVVAXGVycalzp0xd88/qMqRw4VcR6fUtwQFkE57XMcNDbU7nvLQ/x3yPSs34smt8aDvyUNeDrF+Hmw3+smrJt8/dzZ6TWjXsA7rGGd5rmJHeyijwF5X+EnbnEXFdF1dBN9f0qNWo1mFX+t6McjMeKfmQ==</latexit><latexit sha1_base64="TLkGVZIz7eS2RxVXypfhJ3sAFx0=">AAAC7HicjVHLShxBFD3TGjUmMaMus2kcQgyEoXqIqDshG1cygYwKtkh1WTNTWP2gqlqQwU9w506yzQ9kq98h+YP4F94qeyBZSFJNd586955Tde/NKq2sY+xXK5qZfTE3v/By8dXrN0tv28sr+7asjZADUerSHGbcSq0KOXDKaXlYGcnzTMuD7OyLjx+cS2NVWXxzF5U8zvmoUEMluCPqpP0hlZVVuixSq/I0524suJ7sXaZaDt06+5SkRo3G7uNJu8O6jLGtje04gCTZfAKsx+IkAMY6aFa/bN8jxSlKCNTIIVHAEdbgsPQcIQFDRdwxJsQZQirEJS6xSNqasiRlcGLP6Dui3VHDFrT3njaoBZ2i6TWkjPGeNCXlGcL+tDjE6+Ds2ee8J8HT3+2C/lnjlRPrMCb2X7pp5v/qfC0OQ2yFGhTVVAXGVycalzp0xd88/qMqRw4VcR6fUtwQFkE57XMcNDbU7nvLQ/x3yPSs34smt8aDvyUNeDrF+Hmw3+smrJt8/dzZ6TWjXsA7rGGd5rmJHeyijwF5X+EnbnEXFdF1dBN9f0qNWo1mFX+t6McjMeKfmQ==</latexit><latexit sha1_base64="TLkGVZIz7eS2RxVXypfhJ3sAFx0=">AAAC7HicjVHLShxBFD3TGjUmMaMus2kcQgyEoXqIqDshG1cygYwKtkh1WTNTWP2gqlqQwU9w506yzQ9kq98h+YP4F94qeyBZSFJNd586955Tde/NKq2sY+xXK5qZfTE3v/By8dXrN0tv28sr+7asjZADUerSHGbcSq0KOXDKaXlYGcnzTMuD7OyLjx+cS2NVWXxzF5U8zvmoUEMluCPqpP0hlZVVuixSq/I0524suJ7sXaZaDt06+5SkRo3G7uNJu8O6jLGtje04gCTZfAKsx+IkAMY6aFa/bN8jxSlKCNTIIVHAEdbgsPQcIQFDRdwxJsQZQirEJS6xSNqasiRlcGLP6Dui3VHDFrT3njaoBZ2i6TWkjPGeNCXlGcL+tDjE6+Ds2ee8J8HT3+2C/lnjlRPrMCb2X7pp5v/qfC0OQ2yFGhTVVAXGVycalzp0xd88/qMqRw4VcR6fUtwQFkE57XMcNDbU7nvLQ/x3yPSs34smt8aDvyUNeDrF+Hmw3+smrJt8/dzZ6TWjXsA7rGGd5rmJHeyijwF5X+EnbnEXFdF1dBN9f0qNWo1mFX+t6McjMeKfmQ==</latexit>

X

+

Forward computation

Back propagation

Figure 11: The re-parametrization trick. The error functions which we have to back
propagate are shown in red. The upper sampling scheme is not differentiable because
the stochastic sampling operation blocks back propagation. Below, the scheme is fully
differentiable since the stochastic operation has been moved outside the backpropagation
graph

waveforms present an intrinsically multi-scale nature. Recently, SampleRNN [3] was
proposed to address these issues. This model is defined as a hierarchy of RNNs that
operates differently on either an increasingly longer timescale, or a lower temporal
resolution, to model longer term dependencies in audio waveforms. To do so, SampleRNN
models the probability of a variable-length sequence of samples x = (x1,x2, . . . ,xT)
(which is considered as a random variable over the inputs) as the product of the probability
of each sample conditioned on all the previous ones.

p(x1,x2, . . . ,xT) =
T∏
t=1

p(xt|x<t) (9)

Each conditional probability is then modeled by

p(xt|x<t) = g(ht) (10)

We display the overall architecture of SampleRNN in Fig. 12. As we can see, the model
introduces three specific mechanisms. First, the lowest modules (in red) are defined as
auto-regressive networks that output sample-level predictions. Second, a hierarchy of
RNNs are defined with different timescales (in purple), which handles the multi-scale

25

aspect of the memory. Finally, each module is conditioned by a variable-length portion
of the previous sequence (in green).

Figure 12: The SampleRNN architecture unrolled at timestep i with K = 3 tiers. The
model features auto-regressive components (in red) and the higher-level RNNs (in purple).
Different scales of waveform conditioning are shown in green.

For the sake of clarity, we are not going to detail the computations of each step, but
if the reader is interested in the specificities of the model, we redirect him to the original
article [3]. The important aspects to retain from this model are that

• Its hierarchical architecture allows to consider an increasingly large context, while
handling the notion of multiple scales of time

• The conditioning mechanism (in green) allows to strengthen the information of
the neighboring samples. This represents the fact that even if a larger context is
important, the autoregressive behavior is stronger near the sample of interest.

2.3.2 WaveNet autoencoder

Concurrently to SampleRNN, Van den Oord et al. proposed the WaveNet model [2], in
order to generate speech waveforms. Interestingly, and unlike SampleRNN, this model
does not rely on any recurrent module. However, the model mimics a recurrent by relying
on convolutions. Indeed, one of the key concept at the core of the success of WaveNet is
the introduction of dilated convolutions (see Fig. 13) also called a-trous convolutions. The
advantage of this structure is two-fold. First, by stacking layers of such convolutions, the
model receptive field grows exponentially, allowing to model long term dependences that
occur in waveforms while having a reasonably efficient structure. Second, this naturally
models the multi-scale nature of waveforms and allows to exploit the redundant nature

26

of harmonic series as a set of convolution kernels. Hence, the autoregressive behavior of
this model comes naturally from its convolution operations.

Figure 13: Representation of a stack of dilated causal convolutional layers. Here, the
dilation factor is multiplied by a factor of 2 at each layer. This allows the receptive field
of such stacks to be 2n, where n is the number of layers (image from [2]).

The WaveNet model was initially developed for speech synthesis. However, Engel
et al. later proposed a WaveNet-based autoencoder [26] that extends the purpose of
WaveNets to musical sounds generation. This autoencoder is not variational and remains
a deterministic mapping. However, because of the humongous amount of data used for
training, the latent space is sufficiently dense to generalize for audio synthesis.

Figure 14: The WaveNet autoencoder (from [26])

As stated in the original article, the authors tried to implement a stochastic latent
space through variational learning but the results were not satisfying as the latent code
was not used by the model. However, this is a known issue of VAEs [27] that comes from
the fact that a decoder with a too large capacity will bypass the latent space. In this
work, we will try to implement a VAE based on dilated convolutions, which can be seen
as a simplified, variational version of this WaveNet autoencoder.

27

2.4 Time-frequency representations

Before working with raw waveform data, we will start by expanding existing VAEs
approach to generative audio modeling by considering complete time-frequency repre-
sentations. We will mainly use two representations, namely the Constant-Q Transform
(CQT) and the Non-Stationary Gabor Transform (NSGT).

2.4.1 Constant-Q Transform

The CQT [28] is a time-frequency representation based on the Short-Time Fourier
Transform (STFT). The STFT for a frame shifted to sample m is defined as

X(k,m) =
N−1∑
n=0

x(n)W (n−m)e−j2πkn/N (11)

For each bin with center frequency fk and width δfk, we can define the quality factor

Q =
fk
δfk

Hence, we can express the window length for the k-th bin, given a data series sampled at
a frequency fs as

N(k) =
fs
δfk

= Q
fs
fk

(12)

In the computation of the classic STFT, δfk is constant with k. In the constant-Q
transform, as its name states, the quality factor Q remains constant with k. As a side
effect, the relative power of each bin will decrease with k as fewer terms will be summed.
A normalization by N(k) can compensate for this effect. Finally, equation 12 gives
fk
fs

= Q
N(k)

and we are left with

X(k) =

N(k)−1∑
n=0

x(n)W (k, n)e
−j2πQn
N(k) (13)

This transform is particularly well suited to musical data and convolutional processing.
Indeed, the log-frequency scale allows to consider any frequency with the same convolution
kernel. Moreover, it is easily computable based on the FFT algorithm. The main drawback
of this transform in our context is that it is not invertible. Hence, we are unable to
generate an audio signal from this transform without loss. This motivates our use of
another invertible, log-frequency transform: the CQ-NSGT. Nevertheless, as the CQT is
simpler to compute, we rely on this transform to train our inversion model (Sec. 3.3).

2.4.2 Non-Stationary Gabor Transform

The NSGT can be seen as a generalization of STFT that allows to adapt window size and
sampling density in time and frequency [29]. Hence, the CQ-NSGT defines a logarithmic
frequency scale with a constant-Q akin to that of the CQT. However, it offers the huge

28

advantage of being invertible which is essential to our purpose. Hence, we will use this
time-frequency representation as the main input to train some of our models, since we
will be able to generate data that we can then invert back to waveform. A deeper study
of the underlying principles of the NSGT being out of the scope of this report, we refer
interested readers to the original article by Holigaus et al. [29].

29

3 Experiments and results

As discussed earlier, we aim to develop an audio synthesis model for drum sounds based
on learning methods. Our main objectives are to obtain a system that can provide a
meaningful latent control space, while being able to generate novel audio content in
real-time. Hence, in this section, I will first briefly introduce the audio drums dataset
that I have created and used throughout this work (Sec. 3.1). Then, I will present the
three different models that I have designed (see Sec. 1.5) and the respective results of
the different experiments that I have conducted.

3.1 Drums dataset

In order to train learning models, we need a large set of examples of the desired audio
distribution. Hence, we first collected a dataset of various drums samples coming from
Sony CSL audio database. Overall, we collected more than 8,000 samples across various
drum categories. All sounds are WAV audio files PCM-coded in 16 bits and sampled at
44100 Hz. Then, we removed sounds that were longer than 1 second in order to obtain
an homogeneous set of audio samples. Indeed, learning models usually require that all
dataset entries are of the same dimensionality. Since we want our models to handle
temporal information, it is important that the sounds we use are complete and, hence,
incorporate the release part.

The final dataset is composed of 6094 samples that we have classified in four classes:
kick drums (2483 samples), snares (1180 samples), claps (1110 samples) and hi-hats
(1321 samples). All sounds in the dataset have a length between 0.1 and 1 seconds
(mean of 0.46 second). For all experiments, we have deliberately chosen to train our
latent spaces on all classes of sounds so that we can create some ’hybrid’ sounds (as
depicted in Fig. 9b). In order to validate our models, we performed a class-balanced split
between 80% training and 20% validation sets. All results presented are computed on
this validation set to ensure generalization.

For each type of model, different preprocessing or transformations to these audio data
were performed in order to fit the different requirements of each model. These treatments
are detailed in the corresponding sections.

3.2 Convolutional VAE

As discussed in section 1.4, our first objective is to enhance the VAE audio generation
model proposed by [11] to incorporate temporal information. In order to avoid the
drawbacks of handling time separately, we introduce a convolution-based VAE model
(see Fig. 15) able to process an entire time-frequency representation. Hence, this model
is a VAE whose encoder and decoder networks are CNNs.

30

The introduction of convolutions is aimed at providing a uniform treatment of frequency
and temporal dependencies. Moreover, convolutions also allow us to work on entire (as
opposed to sliced) samples, meaning that we can associate each sound to a single position
in the latent space. This approach can provide a simpler user interaction method by
making the synthesis process more straightforward.

3.2.1 Data processing

For this model, we will work with time-frequency representations. Therefore, we will
rely on the Non-Stationary Gabor Transform (NSGT) computed for each sample in the
dataset. First, all sounds waveform data are uniformly zero-padded to be of the same
length (1 second). Then we compute the CQ-NSGT of these sounds with a minimum
frequency of 30 Hz, a maximum of 11000 Hz and 48 bins per octave. In order to reduce
the dimensionality (for memory and computational load optimization), we downsize the
resulting transform by a factor of 2 on the time axis. Based on these parameters, we
obtain an input dimensionality of (410, 181), 410 being the total number of frequency
bins and 181 the number of frames (after downsizing).

Finally, all CQ-NSGTs are rescaled by first taking the logarithm of the amplitude and
then rescaling the whole dataset to a zero-mean unit-variance distribution (by subtracting
the mean and dividing by the standard deviation). This normalization step has proven
to be crucial for learning as other scaling processes have led to less efficient results.

The NSGT being a complex-valued transform, the phase information is usually removed
to perform learning solely on the amplitude part. Hence, we first developed a model
based on the amplitude information (Sec. 3.2.3). Then, we have tried to learn with the
same model by concatenating the amplitude and phase information (Sec. 3.2.4).

3.2.2 Architecture

Our proposed model is based on a VAE with convolutional layers. The encoder is defined
as a CNN with l layers of processing. Each layer is a 2-dimensional convolution followed
by a batch normalization and a ReLU activation. These layers are followed by traditional
fully-connected layers, in order to map the convolutional transforms to a given size dz of
the latent space (leading to a final dimensionality of 2∗dz as we need to model the means
and variances of our distributions). Here we selected a latent space of size dz = 128. The
decoder network is defined as almost a mirror to the encoder, so that they have a similar
capacity. However, we change the convolution to a deconvolution operation and adjust
the parameters so that the output size matches that of the input.

All models have been trained using the ADAM optimizer [30]. The initial learning
rate was fixed to 10−4 and a scheduler was set to divide the learning rate by a factor of 5
each time the validation loss did not decrease for 100 epochs.

31

Figure 15: The convolutional VAE model is composed of a convolutional encoder followed
by fully-connected layers and a mirrored decoder architecture.

In order to evaluate the impact of different components of our proposed architecture,
we tested several parameters configurations (number of layers, number of kernels, stride
parameters, capacity of the decoder). We will detail the results and parameters for each
architecture in the corresponding sections.

3.2.3 Amplitude only

First, we detail the results based on learning the audio time-frequency distributions while
retaining only the amplitude information. Learning is performed following three distinct
parameters configurations that are detailed in Appendix A.

First, we analyze the ability of different models to reconstruct the distributions of
audio samples from the evaluation set (Fig. 16). As we can see, the VAE is able to
perform an accurate reconstruction from different evaluation samples. Hence, we can
easily distinguish the kick drum and the clap representations based on the reconstructed
frequency content (the clap containing more high frequencies and the kick drum more
low frequencies). However, there is a striking difference in the overall blurriness of the
reconstructions. This can be explained as the known consequence of using a variational
mean-field approximation in the generative model [27].

32

Figure 16: Original amplitude (up) and reconstructions (down) from random entries in
the validation set, with configuration 2C-3L-3D. While being blurry, the reconstructions
can be considered as good since we can distinguish them from each other and associate
them with the original.

In order to quantitatively compare different models, we compute their overall re-
construction accuracies on the whole evaluation set (see Tab. 1). We denote each
configuration as a triplet C-L-D where C is the number of convolutional layers, L is the
number of fully connected layers in both the encoder and decoder, and D is the number
of deconvolutional layers. For example, configuration 2C-3L-3D has 2 convolutional
enconding layers, 3 fully connected layers in both the encoder and the decoder and
3 deconvolutional layers. Finally, to obtain a reference baseline, we use MSE loss to
compare our results with those obtained with a standard deterministic autoencoder using
configuration 2C-3L-3D.

As we can see, two of our models obtain better reconstruction results than those
obtained with a standard deterministic AE and configuration 2C-3L-3D. Overall, the
worse performing model is the 2C-2L-2D configuration. This can be explained by a
too low capacity of our model that features only two fully-connected layers. Also, the
stride parameter is very high in all of our layers which means that the step used to move
the kernels is too large. This stride prevents this model from precisely reconstructing
the inputs. The best performing model is obtained with the 2C-3L-3D configuration .
Compared to the 4C-4L-4D, this configuration features bigger kernels as well as equally

33

Table 1: Quantitative evaluation of reconstructions on the validation set (amplitude only)

Configuration Reconstruction Loss KL Divergence Total Loss MSE

Convolutional AE - - - 360.56

2C-3L-3D -116.2 29.2 -87.0 360.21

2C-2L-2D -87.2 27.0 -60.2 360.82

4C-4L-4D -95.2 20.3 -74.9 360.40

(a) 2-dimensional PCA
(b) 3-dimensional PCA

Figure 17: Principal component analysis on the latent space obtained with configuration
2C-3L-3D (zdim = 64). The network performs a good discrimination of the 4 classes.
Moreover, the x axis seems to encode a feature related to the spectral centroid which is a
very interesting feature to use for control.

small stride, which may allow to detect more global patterns, thus making the final audio
distributions more coherent. Compared to the standard AE with the same configuration,
it obtains better results, as predicted when we introduced VAEs (Fig. 9b).

As discussed in the previous sections, we aim to obtain models which provide both a
high quality of synthesis, but also an intuitive latent control space. We recall that this
space will be analogous to a synthesis parameters space (as any point in this space can
be decoded into a complete time-frequency distribution). Hence, we want this space to
be well organized, enabling intuitive exploration. We study the structure of the latent
space built with configuration 2C-3L-3D, which provides the most efficient synthesis.

As the original latent space is high-dimensional (zdim = 64), we use Principal Com-
ponents Analysis (PCA) to visualize it. This ensures to have a linear transform of the
original latent space that we map to a 3-dimensional space and display the results in
Figure 17. As we can see, the classes are well discriminated in the latent space and seem
to be intuitively organized. Indeed, the group of kick sounds and hi-hats occupy clear
regions of the space, while claps and snares are mixed, which appears logical. Indeed,

34

Momentum m = 0 m = 0.99

Iterations 100 200 500 1000 100 200 500 1000

Time (s) 8.7 17.2 43.9 87.2 8.7 17.2 44.0 87.2

ODG

Kicks -2.579 -2.578 -2.576 -2.574 -2.579 -2.579 -2.578 -2.577

Claps -2.575 -2.573 -2.571 -2.569 -2.576 -2.575 -2.575 -2.575

Snares -2.577 -2.576 -2.575 -2.575 -2.579 -2.579 -2.578 -2.578

Hihats -2.553 -2.546 -2.539 -2.536 -2.555 -2.552 -2.543 -2.540

Table 2: Mean generation time and ODG for different GLA hyper-parameters (results
on amplitude only). Time is for a CPU computation. Our model uses configuration
2C-3L-3D

the separation between these classes is not easy even for a trained ear, with the snares’
spectral centroid usually considered lower than that of claps. Hence, a very interesting
result is that the latent space that we learned seem to organize sounds with respect to
their centroid. Thus, our model allows to generate hybrid sounds from this space while
providing intuitive control to the user.

Up to now, our model provide both a good NSGT reconstruction quality and an
interesting latent space structure. However our final goal is to generate audio waveforms.
Here, because the phase information has been removed, the inversion of the NSGT
is performed with the Griffin-Lim Algorithm (GLA) [31]. This algorithm estimates a
signal from its amplitude spectrum by first initializing the phase as a Gaussian noise
and, then, iteratively refines it through the successive computations of the inverse and
forward transforms. Finally, the signal is regenerated by inverse transform of the original
amplitude and the latest phase found by the algorithm.

To evaluate the quality of generated audio, we computed the average Objective
Degradation Grade (ODG) between the original audio and the reconstruction for random
samples from the evaluation set (100 samples per class). The ODG is a score coming
from the Perceptual Evaluation of Audio Quality (PEAQ) algorithm [32] which simulates
perceptual properties of the human ear and then integrates multiple model output
variables into a single metric named ODG which ranges from 0 (imperceptible degradation)
to -4 (very annoying perturbation). We compare different configurations for GLA in terms
of reconstruction quality but also computation time and summarize these in Table 2.
As we can see, our model is able to generate medium-quality percussive audio samples.
As predicted, the number of iteration has a role in the quality of the audio samples but
apparently, 1000 iterations still are not enough, imposing very long computation times
to get high quality audio. To cut this time, we tried to use the fast version of GLA (with
m = 0.99 as described in [33]), but this does not work in our situation. Therefore, this
prohibits the use of our models for a real time application.

35

3.2.4 Amplitude and phase

Due to the long computation times required by GLA to obtain high-quality audio from
our generated amplitude spectra, we propose to use the same models to learn the phase
information jointly with the amplitude. Indeed, this would allow us to apply the inverse
NSGT directly on the output of the network and thus to generate the signal in the
easiest and fastest way possible. To do so, learning is performed using two groups of
convolutions. First, we pass the phase and amplitude through two different convolutional
networks (in order to avoid convolving informations of different natures). Then, we join
the outputs of these networks before passing the resulting vector through the linear block.
This allows us to get a single latent code despite having separated the first part of both
trainings. The same principle is used for decoding. Once again, we evaluate several
configurations, which are the same as those tested in the previous section.

Looking at the reconstruction plots (Fig. 18), results on amplitude seem to be similar
to those with the phase discarded. However, when considering the phase reconstruction,
it seems that the model is not able to perform an accurate reconstruction. Indeed, the
original phase information varies much faster than the amplitude and, by nature, is very
sharp. Hence, the blurriness of the phase reconstruction is way more problematic than
that of the amplitude.

(a) Original amplitude (left) and their recon-
structions (right)

(b) Original phase (left) and their reconstruc-
tions (right)

Figure 18: Reconstruction results from the validation set, obtained with configuration
2C-3L-3D. While the amplitude is pretty well reconstructed, the phase information is
severely degraded

36

Configuration Reconstruction Loss KL Divergence Total Loss

2C-2L-2D 165.4 30.6 196.0

4C-4L-4D 168.6 18.8 187.4

2C-3L-3D 153.3 26.7 180.0

Table 3: Average losses on the validation set (amplitude and phase)

Now we compare our models in terms of mean losses. Table 3 presents the mean losses
computed from the validation set for each of these configurations.

The loss values are way higher which can be explained by the introduction of the phase
information. Nevertheless, the performance order has not changed and the configuration
2C-3L-3D is still the most efficient in terms of average and reconstruction losses. We
develop the results it yielded by first studying the structure of the latent space.

(a) 2-dimensional PCA
(b) 3-dimensional PCA

Figure 19: Principal component analysis on the latent space obtained with configuration
2C-3L-3D (zdim = 128). This model also performs a decent discrimination between kick
sounds and and noisy sounds (hi-hats, claps and snares)

Regarding the latent space, the PCA leads to the same conclusions as before. The
phase information seems to have not perturbed the organization of this space and the
centroid-related axis is still present.

When it comes to generation, using the blurry phase output by the network yields
low-quality samples. Indeed, as said above, the reconstruction is too blurry to represent
a coherent phase. Thus, we still need to reconstruct the signal using the Griffin-Lim
algorithm. To still try to take advantage of the learning on phase, we chose to initialize the
GLA with the phase output by the network hoping that it provides a better initialization

37

Momentum m = 0 m = 0.99

Iterations 100 200 500 1000 100 200 500 1000

Time (s)

ODG

Kicks -3.897 -3.900 -3.902 -3.903 -3.902 -3.905 -3.906 -3.907

Claps -3.854 -3.856 -3.857 -3.860 -3.892 -3.894 -3.893 -3.894

Snares -3.891 -3.886 -3.875 -3.868 -3.902 -3.901 -3.900 -3.899

Hihats -3.823 -3.841 -3.855 -3.857 -3.878 -3.885 -3.887 -3.889

Table 4: Generation time and ODG for different GLA hyper-parameters. Here, the
initialization of GLA has been done with the phase output by the network.

than gaussian noise. To compare with the previous case, we tested all previous GLA
configurations. The results will be shown in table 4 in an updated version of this report

A surprising result is that increasing the number of GLA iterations is worsening
the resulting audio. Moreover, comparing these results with those obtained with the
Gaussian noise initialization shows that the network-predicted phase does not provide a
better initialization. Finally, the phase retrieval problem is leaving us unable to perform
real-time audio synthesis. Indeed, the computation time needed to get a convincing
audio from GLA is too long. To tackle this issue, we developed a model which aims at
performing a faster NSGT-to-signal transformation.

3.3 Transform inversion model

Based on our convolutional model, we are able to learn a latent space that can synthesize
novel NSGT distributions. However, we have seen that the phase information is neither
learnable nor retrievable in a reasonable time. To tackle this issue, we developed an
inversion model aimed at directly estimating a signal from an amplitude spectrum.

3.3.1 Data processing

Because of the complexity of its computation, we have decided not to train the inversion
models on CQ-NSGT. Rather, we train the model on CQT whose frames are corresponding
to a fixed number of samples (the detailed parameters for CQT computation can be
found in appendix). Thus, we construct a dataset composed of joint slices of the CQT
and the associated waveform, as described in Figure 20

As shown in Figure 20, the waveform is not encoded in its original 16-bit resolution. As
done for SampleRNN [3], we encode sounds with a 8-bit µ-law encoding. This encoding
resolution is higher around zero than around -1 and +1. This is more suited to audio than
a linear 8-bit encoding since the distribution of samples value is closer to a zero-centered

38

Figure 20: From waveform to dataset entry. The CQT is computed and sliced, producing
nframes CQT slices. The waveform is encoded in 8-bit µ-law and sliced in nframes

Gaussian distribution than to a uniform distribution. Finally, one entry in the dataset is
composed of 8 CQT frames with the corresponding waveform of 1016 samples.

3.3.2 Architecture

The model we are focusing on is based on RNNs that are hierarchically stacked similarly
to the SampleRNN model. First, we designed the model depicted in Figure 21), composed
of three RNNs. The frame-level RNN (Tier 1 on Figure 21) processes the 8 CQT frames.
The output of this first RNN, which length is equal to that of the CQT sequences is then
up-sampled to a 64 vectors sequence, processed by the RNN in tier 2. The output of
the RNN in tier 2 is once again up-sampled to be a 1016-long vector. Finally, this last
sequence is processed by the sample-level RNN to output a set of 1016 predictions over
the 256 µ-law classes. Indeed, because we have encoded our waveform in 8-bit µ-law, the
values it takes are integers between 0 and 255 which allows us to perform a classification
task rather than a regression task. Thus, the loss function used to train the model is a
Categorical Cross-Entropy loss. In our experiments, we have tried to set our RNNs as
being either LSTMs or GRUs with a hidden space of size 512.

39

Figure 21: The first transform inversion model. RNNs first process the CQT frames and
upsmaple the output. This upsampling step is repeated in tier 2. Red lines denote a
change of input for the RNN

3.3.3 Model architecture experimentations

This first model was unable to learn anything and yielded no result with both the
training and evaluation datasets. It produced white noise or silence outputs, with a
sample prediction accuracy of 0.003, corresponding to a random guess. We then tried
many improvements in order to make this model learn. Here, we describe the successive
improvements, their motivations, and their effects on the results.

• First, we chose to replace the sample-level RNN with a MLP, as done in [3]. This
was notably motivated by the will to cut the long training times imposed by three
RNNs. The MLP used is made of two hidden layers of size 1024, followed by
ReLUs. This did reduce training time but did not improve accuracy.
• Then, we removed the first RNN layer as we thought that it might be redundant
with the second one. Furthermore, we also wanted to strengthen the influence
of the CQT information so we added conditioning from the CQT frames at the
sample-level MLP by concatenating these frames to the input of the MLP at each
time step. Once again, that did not improve the accuracy.
• The next modification we made is to condition each layers with the samples output
by the network. We thought it could be beneficial, especially for the last RNN

40

which thereafter had a knowledge of the context. To do so, the samples we want to
condition upon are first embedded through an embedding layer which transforms
the 0-255 integer range into a range of 64-dimensional vectors. First, we tried to
condition only the last RNN with the three preceding samples. Then, we tried
to condition all RNNs with a decreasing number of samples as done in [3]. None
of these substantially improved the results. This may be due to the fact that we
condition with the samples output by the network, rather than the ground truth.
Then, because the network outputs wrong samples in early training, it is difficult
for it to learn to use the conditioning information.

• To overcome the issue of conditioning on wrong samples in early training, we
have implemented teacher forcing [34]. Teacher forcing consists in randomly
replacing some samples in the conditioning (that previously came from the output
of the network) with those coming from the ground truth. The replacement of one
sample has a probability p to be performed. If p = 1, the network is exclusively
conditioned on ground truth. If p = 0 the model is trained as before.

All these modifications led the model to the architecture presented in Figure 22.

Figure 22: The latest transform inversion model. Green arrows represent CQT and
samples conditioning.

The effect of introducing teacher forcing is largely beneficial. With a coefficient p = 0.5,
the model now reaches approximately 61% accuracy on the training dataset (see Fig. 23).
However, no changes have been observed on the evaluation dataset (see Fig. 24). In
fact, during evaluation, teacher forcing is disabled since we do not have access to the
ground truth of samples values. First, we thought that this asymmetry was the reason
for the failure of evaluation results. To counter this, we tried to progressively reduce the
teacher-forcing probability p down to zero but this did not yield better results.

41

Figure 23: Waveform reconstruction results from CQT in the training set

Figure 24: Waveform reconstruction results from CQT in the validation set

This last experiment pointed to the possibility that the network was actually learning
to recover samples only in an autoregressive way, without relying on the CQT input. This
could explain its overall failure at evaluation time. To test this hypothesis, we decided to
train the model while replacing the CQT with an array made of white noise. Thus, if
the model was able to usefully use the information from the CQT, its accuracy should
have collapsed since we did not provide this information anymore. The results from this
last test is that the model fed with wrong CQTs still obtains around 61% accuracy on
the training set. This explicitly proves that the network was not using the information
given by the CQT. Hence, this explains why our model was unable to provide the same
accuracy on the training and evaluation datasets.

3.4 Convolutional-Temporal VAE

As discussed earlier, despite giving convincing results on amplitude generation, learning
on time-frequency representations has the drawback of not allowing to generate audio
signals in real-time (because of the phase retrieval problem). Hence, our last model aims
at bypassing the inverse transformation issue by directly learning from the waveform

42

information. This would allow learning a control space from which decoding to the
waveform would be straightforward, hopefully improving generation time.

3.4.1 Data processing

Because of the high-dimensionality of raw audio, it is impossible to train our model on
the waveform without slicing the example files into smaller vectors. Thus, all files are
sliced in 1024 samples windows, with a step size of 512 samples. Then, as done in the
previous section, we encode all slices in 8-bit mu-law encoding, transforming the all
waveform windows into sequences of 1024 one-hot vectors. Finally, in order to keep the
release of the sounds, the last slices are zero-padded rather than dropped.

3.4.2 Architecture

In the original WaveNet autoencoders article [26], the authors explicitly mention a failure
of the variational framework to create a stochastic and robust latent space. The WaveNet
decoder actually ignored the latent code and performed the next sample prediction task
based on the previous samples only. Indeed, WaveNet decoder is so powerful that it can
perform well while ignoring the latent code. However, this is a known issue in variational
encoder, discussed notably in [27]. Thus, we have designed a model that tries to use the
principle of dilated convolutions in a simpler fashion, in order not to have a decoder with
limited capacity. Our model is thus a VAE whose encoder is made of a convolutional
block and a hidden FC layer, mimicking the temporal encoder structure found in [26].

The convolutional block of the encoder is defined as a stack of multiple convolutional
layers. Each layer is defined as a ReLU, a dilated convolution and a second ReLU. The
output of each layer is the addition between the input and the output of the last ReLU
(this direct link from the input to the output is called a residual connection). The decoder
is designed as the perfect mirror of the encoder, with the convolutional layers being
replaced with deconvolutional layers.

Inside a block, the dilation factor starts from 1 and is doubled at each layer, as done
for WaveNets. Regarding hyper-parameters, our model features 2 blocks of 10 layers
in both the encoder and decoder. The kernel size for convolutions is 3, the number of
kernels is always 64, so as the embedding size. For the fully-connected hidden layer, its
size is 512 and is followed by a ReLU. Finally, the latent space is 128-dimensional.

43

Figure 25: Our dilated convolutions-based temporal model. The stacked convolutional
blocks are made of 10 layers each. The 1x1 blocks denote convolutional layers with a
kernel size of 1. They are used with only one kernel when we want to linearize data, like
the output of the encoder’s and decoder’s convolutional blocks. With 64 filters, they are
used to un-linearize data, for example the output of the FC layer in the decoder.

3.4.3 Results

As in the convolutional model (Sec. 3.2), we first applied our model to learn all types
of samples simultaneously (kicks, snares, claps and hi-hats). Indeed, this would allow
generating hybrids by interpolating between various types of sound. The reconstructions
results from random entries of the validation dataset are presented in Figure 26.

First, we notice that the reconstruction quality is uneven among classes. A closer look
at the reconstruction plots shows that the reconstruction is good for the slowly-varying
parts of the signal. This excludes the high frequency components and noise. Once again,
this could be attributed to the natural blurriness of VAEs we already mentioned. The
high-speed variations and randomness in noisy sounds such as claps, snares and hihats
make it difficult for the VAE to learn something. Thus, we can see that the slices that
are better reconstructed are coming from kick drums. Indeed, they have the lowest
frequencies and are quite sinusoidal and not very noisy (apart from the attack). Moreover,
as a result, the projections of latent codes in the PCA (Fig. 27) is well distributed for
kick drums, whereas for other classes, we observe very a small distribution, meaning
that the model struggled to find an underlying structure. Obviously, we cannot expect a
decent decoding of this information which seems to have been badly encoded.

44

Figure 26: Random waveforms from the evaluation dataset and their reconstructions.
Noisy components are less well reconstructed than sinusoidal ones

Figure 27: Principal component analysis on the latent space (z = 64). The claps/snares
are always projected in the same dense zone, meaning that the encoding is performed
badly.

45

Quantitatively, this model yields 8.5% accuracy on the evaluation set. This must
be caused by the noisy entries of the dataset that the network fails to model. Indeed,
the training phase is interesting to study: In early training, the network tries to do
optimize the output for all situations equally, giving plots similar to Figure 28. Then,
the network seems to privilege the reconstruction of kicks (which represent half of the
slices) to minimize the error.

Figure 28: Results on validation set in early training. On the second row, we can see
that the network tries to mix high speed variations with the sinusoidal shape, yielding a
sort of kick envelope (the red curve is just the original curve (left) that we superposed)

Thus, despite a failure on noisy sounds, this models has proven somewhat successful
on kicks. Thus, we have trained a model on kicks only to get rid of the information that
could not be learned, thus interfering with training.

3.4.4 Kicks only

Trained on kick drums only, the model now yields 25.3% accuracy, proving that the
noisy sounds were causing a drop in the performances of the model. Figure 29 shows
reconstruction plots for the model that has been trained on kick drums only.

Looking at the reconstruction plots, it could seem like the model is performing better
than 25%. However, the categorical accuracy measure we use does not distinct between
a very wrong and slight wrong prediction. Thus, if 232 is the value to predict, a 233 will
be considered just as a 50. Therefore, we assume that our model is often very close to
the truth, but not exact.

Another interesting remark is that the first sample seem to always be wrong. In fact,
having no previous context, the network cannot be able to predict this sample. For future
use of the model, we could just delete it.

46

Figure 29: Random kick drum waveforms from the evaluation dataset and their recon-
structions.

Through a PCA (Fig. 30), we can see that the latent space is well distributed, with
no depleted zone. This is a good result for generation since it almost guarantees to have
meaningful decoding from every point in the latent space

A last criteria we use to evaluate the structure of the latent space is how well it
discriminates different types of slices (attack, release). To do so, rather than labeling
each slice (which could be laborious), we chose to plot the sequence of latent positions
corresponding to slices from a single audio file. If a clear mean path appears for different
files, we could separate the space in regions containing a single type of slice and recombine
a given number of slices from each zone to get a entire sound.

Looking at the plots on figure 31, no particular structure emerges. The trajectories
are always located in the middle of the space and not very spread. At first sight, it will
not be easy to synthesize coherent sounds as we might place the attack after a slice of
release. Another way to think about it is that it greatly expands the recombination
opportunities so we are currently exploring some recombination strategies to synthesize
from this space, to decide whether this shape is desirable or not.

Sound results are not convincing yet, but we can already say that such a model
can produce approximately 110 slices of 1024 samples per second, allowing real-time
generation at 22050 Hz.

47

Figure 30: Principal component analysis on the latent space (z = 64). The space is
well-distributed

Figure 31: Trajectories representing the sequence of latent points associated with the
sequence of slices for three kick sounds. Yellow is beginning, red is ending. Trajectories
are always narrow and we can extract no representative mean.

48

4 Discussion and conclusion

In this internship, our main objective was to develop a generative model for audio
synthesis allowing for an intuitive sound synthesis. To design such a model, we took
advantage of variational autoencoders that allow to model a sound as a data generated
by a space of latent parameters. Also, we benefited from recent advances in the use
of convolutional neural networks for audio. Therefore, our contribution consists in the
development of two variants of a CNN-VAE model combining both approaches for audio
processing and generation.

First, we proposed a model able to process and reconstruct time-frequency represen-
tations (namely th CQ-NSGT). The results it yields are very encouraging. Indeed we
have shown that it is able to reconstruct and generate high-quality amplitude spectra.
Moreover, a study of the latent space structure revealed that the training procedure
allowed to extract important perceptual features from these amplitude spectra. This
latent space organization, is an essential need for the future development of intuitive
user interfaces. However, this first model is limited by its inability to generate a decent
phase information. Indeed, amplitude alone cannot be inverted back to the signal domain
This implies that generation has to be done through many iterations of the Griffin-Lim
algorithm, which greatly increases generation time.

This opens interesting avenues for future work. A first solution could be to generate
sharper phase representations, which would allow to generate waveforms through a simple
inversion of the complex CQ-NSGT. To achieve this, some papers have shown that
changing the training loss of VAEs is beneficial. Indeed, the L2 loss might be mostly
responsible for the blurriness of generated data [27].

In this report, we also presented a second variant of our CNN-VAE model which
directly processes and generates waveform. This model handles time information through
1D dilated convolutions in a WaveNet fashion. Despite its inability to generate convincing
samples of noisy sounds such as claps, this model is suitable for real-time kick drums
generation. With more time, we would investigate on interpolation strategies to recon-
struct a sound from the latent space. We think that being able to tweak the trajectories
could lead to interesting sound generation. Also, forcing the space to clusterize attack or
release slices could allow more coherent trajectories and enhance the ease-of-use

From a practical point of view, a comparison between both variants let us think
that the first one might be the most promising. Indeed, the fact that we can generate
one entire sound from a single point in the latent space is a very desirable feature that
enables a quite simple interactivity between the user and the system. Such an approach
could lead to the development of user interfaces where parameter knobs are assigned to
coordinates in the latent dimensions with the highest variance (e.g. through a PCA).
Thus, tweaking the knobs would allow to explore a wide range of new sounds. Moreover,
the fact that it can process all types of sounds at once is a great feature leading to the
possibility to generate hybrid sounds.

49

References
[1] M. V. Mathews, “The digital computer as a musical instrument,” Science, vol. 142,

no. 3592, pp. 553–557, 1963.

[2] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

[3] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, and
Y. Bengio, “Samplernn: An unconditional end-to-end neural audio generation model,”
arXiv preprint arXiv:1612.07837, 2016.

[4] J. O. Smith, “Viewpoints on the history of digital synthesis,” in Proceedings of the In-
ternational Computer Music Conference, pp. 1–1, INTERNATIONAL COMPUTER
MUSIC ACCOCIATION, 1991.

[5] D. Schwarz, “State of the art in sound texture synthesis,” in Digital Audio Effects
(DAFx), pp. 221–232, 2011.

[6] K. Karplus and A. Strong, “Digital synthesis of plucked-string and drum timbres,”
Computer Music Journal, vol. 7, no. 2, pp. 43–55, 1983.

[7] G. Eckel, F. Iovino, and R. Caussé, “Sound synthesis by physical modelling with
modalys,” in Proc. International Symposium on Musical Acoustics, pp. 479–482,
1995.

[8] J. M. Chowning, “The synthesis of complex audio spectra by means of frequency
modulation,” Journal of the audio engineering society, vol. 21, no. 7, pp. 526–534,
1973.

[9] C. Roads, “Automated granular synthesis of sound,” Computer Music Journal, vol. 2,
no. 2, pp. 61–62, 1978.

[10] B. Truax, “Real-time granular synthesis with a digital signal processor,” Computer
Music Journal, vol. 12, no. 2, pp. 14–26, 1988.

[11] P. Esling, A. Bitton, et al., “Generative timbre spaces with variational audio synthesis,”
arXiv preprint arXiv:1805.08501, 2018.

[12] C. M. Bishop and T. M. Mitchell, “Pattern recognition and machine learning,” 2014.

[13] A. Graves, “Generating sequences with recurrent neural networks,” arXiv preprint
arXiv:1308.0850, 2013.

[14] A. Karpathy, “The unreasonable effectiveness of recurrent neural networks,” Andrej
Karpathy blog, 2015.

[15] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” 12 2013.

50

[16] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and architectures,”
Neural networks, vol. 1, no. 1, pp. 17–61, 1988.

[17] R. J. Schalkoff, Artificial neural networks, vol. 1. McGraw-Hill New York, 1997.

[18] X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-trained alexnet architecture with
pyramid pooling and supervision for high spatial resolution remote sensing image
scene classification,” Remote Sensing, vol. 9, no. 8, p. 848, 2017.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
pp. 1097–1105, 2012.

[20] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation
and transcription,” arXiv preprint arXiv:1206.6392, 2012.

[21] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[22] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[23] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, ACM, 2008.

[24] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review
for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518,
pp. 859–877, 2017.

[25] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,
2016.

[26] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan, and M. Norouzi,
“Neural audio synthesis of musical notes with wavenet autoencoders,” arXiv preprint
arXiv:1704.01279, 2017.

[27] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever,
and P. Abbeel, “Variational lossy autoencoder,” arXiv preprint arXiv:1611.02731,
2016.

[28] J. C. Brown, “Calculation of a constant q spectral transform,” The Journal of the
Acoustical Society of America, vol. 89, no. 1, pp. 425–434, 1991.

[29] N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill, “A framework for invertible,
real-time constant-q transforms,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 4, pp. 775–785, 2013.

51

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[31] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 2,
pp. 236–243, 1984.

[32] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends, and
C. Colomes, “Peaq-the itu standard for objective measurement of perceived audio
quality,” Journal of the Audio Engineering Society, vol. 48, no. 1/2, pp. 3–29, 2000.

[33] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast griffin-lim algorithm,” in
Applications of Signal Processing to Audio and Acoustics (WASPAA), 2013 IEEE
Workshop on, pp. 1–4, IEEE, 2013.

[34] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks,” in Advances in Neural Information
Processing Systems, pp. 1171–1179, 2015.

52

A Model parameters configurations

2C-3L-3D Input channels Number of filters Kernel size Stride Padding

Encoder

Conv 1 1 (2 with phase) 16 (15,10) (5,3) -

Conv 2 16 32 (15,10) (5,3) -

FC 1 Input size, output size = 5376, 1024

FC 2 Input size, output size = 1024, 512

FC 3 Input size, output size = 512, 128

Decoder

FC 1 Input size, output size = 128, 512

FC 2 Input size, output size = 512, 1024

FC 3 Input size, output size = 1024, 5376

Deconv 1 32 16 (15,10) (3,3) -

Deconv 2 16 8 (20,10) (3,3) -

Deconv 3 8 1 (2 with phase) (5,5) (2,1) -

2C-2L-2D Input channels Number of filters Kernel size Stride Padding

Encoder

Conv 1 1 (2 with phase) 16 (20,10) (10,5) (2,2)

Conv 2 16 32 (10,5) (4,4) (0,2)

FC 1 Input size, output size = 1344, 512

FC 2 Input size, output size = 512, 128

Decoder

FC 1 Input size, output size = 128, 512

Linear 2 Input size, output size = 512, 1344

Deconv 1 32 16 (10,5) (5,4) (1,1)

Deconv 2 16 1 (2 with phase) (16,9) (11,5) -

53

4C-4L-4D Input channels Number of filters Kernel size Stride Padding

Encoder

Conv 1 1 (2 with phase) 8 (10,10) (2,2) (1,1)

Conv 2 8 8 (7,7) (2,2) (3,3)

Conv 3 8 16 (3,3) (2,2) -

Conv 4 16 32 (2,2) (2,2) -

FC 1 Input size, output size = 4000, 2048

FC 2 Input size, output size = 2048, 1024

FC 3 Input size, ouptut size = 1024, 512

FC 4 Input size, output size = 512, 128

Decoder

FC 1 Input size, output size = 128, 512

FC 2 Input size, output size = 512, 1024

FC 3 Input size, output size = 1024, 2048

FC 4 Input size, output size = 2048, 4000

Deconv 1 32 16 (11,8) (3,3) (3,3)

Deconv 2 16 8 (7,4) (3,3) (2,4)

Deconv 3 8 8 (3,3) (2,2) (4,6)

Deconv 4 8 1 (2 with phase) (3,2) (1,1) (3,5)

54

	Introduction
	Sound synthesis
	The importance of control
	Generative models in audio
	Learning latent spaces for audio
	Our proposal

	State of the art
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Supervised or unsupervised

	Unsupervised variational learning
	Unsupervised learning and auto-encoders
	Variational Inference
	Variational Auto-Encoder

	Generative models for waveform
	SampleRNN
	WaveNet autoencoder

	Time-frequency representations
	Constant-Q Transform
	Non-Stationary Gabor Transform

	Experiments and results
	Drums dataset
	Convolutional VAE
	Data processing
	Architecture
	Amplitude only
	Amplitude and phase

	Transform inversion model
	Data processing
	Architecture
	Model architecture experimentations

	Convolutional-Temporal VAE
	Data processing
	Architecture
	Results
	Kicks only

	Discussion and conclusion
	Model parameters configurations

