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Modeling and predicting the neural activity achieved in the auditory brain is a
main concern in the field of auditory neuroscience. Our main goal, which is a current
challenge, was to create a computational model which can predict neural activity in
response to natural stimuli. Much of the computational work has been focusing on
simple stimuli such as tones and synthetic noise. Here we try to understand the neu-
ral computation applied to real life sounds. To do so, neural spiking activity from
the auditory cortex of passively listening ferrets was used to train our models and
test their predictive accuracies.

We have investigated the simple linear model (STRF), which is widely used in the
domain. And have extended this model, based on the hypothesis that nearby neu-
rons share computation. A common low dimensional linear subspace was created
and trained to fit the spiking data. Each neuron’s activity was described by a weighted
sum of a set of STRF kernels. The low dimensional subspace discovered let us out-
perform the predictive accuracy of the STRF model, and find interesting properties
of the subspace.

We have also investigated a linear transformation which reduces the dimensional-
ity while smoothing the data (GPFA). The improvement in predictive performance
based on this transformation wasn’t observed when returning to the initial spike
subspace. Finally, an attempt to beat actual performances by adapting a deep convo-
lutional network, tailored for the prediction of neural activity from the visual cortex,
was achieved.
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Introduction

Sensory neuroscience is in need of computational models that can predict brain ac-
tivity in response to a wide range of stimuli. Natural stimuli (eg : wind, speech and
music in the auditory domain) are of great interest both because they are complex
and varied, and because sensory systems are plausibly adapted to represent them
[Simoncelli and Olshausen, 2001]. We lack good models for how the sensory sys-
tem encodes natural stimuli, particularly in the auditory domain. Where most of the
prior work is based on responses to simple tones and synthetic noise stimuli.
Obtaining a computational model with good predictive accuracy opens up many
possibilities. For example, one can perform an unlimited number of synthetic exper-
iments via simulation. Predictions from these simulations can then be tested with
actual experiments, which are often invasive and time consuming, and which can
only be used to test a small number of specific hypotheses. Computational models
can also be used to perform experiments that would be impossible in the lab. For
example, given a computational model one can synthesize sounds that should yield
a strong response as a way to investigate the properties of that response [Freeman
and Simoncelli, 2011, Norman-Haignere and McDermott, 2018]. A related creative
example of application, as it has been investigated in vision using deep generative
networks (DGN) and deep neural networks (DNN) [Nguyen et al., 2016], is the syn-
thesis of totally novel sounds highly activating a set of desired neurons.

Lastly, computational models can yield insights into the computational function of a
sensory system. For example, many hearing organisms species are able to recognize
various common sounds across a wide range of variation in the acoustic environ-
ment (e.g due to reverberation, background noise, source direction and intensity).
Presumably, the auditory system has been adapted to capture these invariances and
computational models that can predict responses to natural sounds provide one way
to understand how these invariances are neurally implemented.

Most existing computational models are neuron-specific: distinct instances of the
model are used to predict the activity of each neuron. The Spectro Temporal Recep-
tive Field (STRF) is one of the most commonly used neuron specific model in the au-
ditory domain. Neural responses are predicted by linearly filtering a time-frequency
representation of the stimulus, similar to a spectrogram. Physiology recordings and
natural sounds were used during this project, further described in the Data record-
ing section.

Responses from many neurons can often be predicted by a small number of com-
ponents response patterns [Cunningham and Byron, 2014]. Here we focus on lin-
ear subspaces which provide a set of basis functions which can be combined via
weighted sums to approximate neural activity. Linear subspaces have been shown
to capture much of the behaviorally relevant information in the neural population.
For example work on visual cortex has shown that linear decoders, which operate
on the neural subspace, are sufficient to predict complex behaviors to a wide range
of natural stimuli [Hung et al., 2005,Hong et al., 2016].



A second key property of sensory responses is that they are often highly nonlin-
ear with respect to the stimulus, particularly in the cortex [Kozlov and Gentner,
2016, Sahani and Linden, 2003, Atencio, Sharpee, and Schreiner, 2008]. Our goal
is thus to develop low-dimensional representations of sound that can be used to
predict neural responses to many neurons, and which are nonlinear with respect to
the input stimulus. This is a challenging problem, and we have made two steps
along these lines. First, we developed a low-dimensional extension of the standard
single-neuron STRF model (which is mostly linear). Second, we have inferred a low-
dimensional representation from neural responses to natural sounds, and tested how
much of this low-dimensional space can be explained by our low-dimensional STRF
model. During our discussion, we suggest how the STRF model can be extended to
account for more nonlinear response properties.


alexis



Data recording

We initially had an opportunity to collect recordings from human subjects. Electro-
corticography (EcOG) data precisely. This type of recording is made by placing a
grid of electrodes at the surface of the cortex. It is similar to electroencephalogra-
phy (EEG), technology wise. The main difference being that opening the skull is
necessary to place the electrodes. Hence, a better sensitivity is obtained as no bone
reduces electrical conductivity. This technique is used to monitor, locate and remove
epileptogenic zones of human patients with severe epilepsy. Some patients can then
perform experimental tasks such as actively listening to natural sounds during the
recording of their auditory cortex.

Not being able to fetch this type of data, we decided to work with
single unit, microelectrode array recordings on ferrets, also pas-
sively listening to natural sounds. Our audition team at ENS are
experts in ferret data collection, but our data was provided by
Stephen David from the Oregon Hearing Research Center. A long
surgery, a craniotomy, is made on the ferrets to place a headpost
and a cap under sterile conditions, permitting head-fixation and
access to auditory brain areas. The probe includes 64 electrodes
that all fit in 1mm of height and 85um of width (Figure 1). Their
size are small enough to theoretically measure single neurons” ac-
tivity in a ferret. Additional processing is needed to ensure single
unit recordings : spike sorting. It performs segregation of the sig-
nals from single unit as opposed to multi unit, using clustering
methods from the polytrode sorting software.

The choice of the ferret is shared across many laboratories study-
ing auditory neuroscience. It is big enough to have properties
similar to the human and it is far more docile than monkeys when
performing experiments.

The ferret was trained to passively listen to all the natural audi-
tory stimuli selected. These contain ferret sounds, environmental
sounds and human speech. All stimuli last 3 seconds with a 2 second silence tran-
sition. 288 train sounds were presented once. While 18 test sounds, different from
the train stimuli, were presented 10 times each. The whole length of the recording
was 35 minutes. During all that time, the spiking activity of the neurons is recorded
and binned at 100Hz, resulting in a Post Stimulus Time Histogram (PSTH). We have
worked on 4 different recordings, three were made on an unique ferret but in vari-
ous zones of the auditory cortex (A1) and the fourth recording in another ferret, also
in Al. The hole from the craniotomy is let to regrow after enough recordings have
been made from it.

1.050 mm

FIGURE 1: The
probe inserted in
the ferrets brains






Chapter 1

Investigating the subspace for
auditory neural computation

The data we have been working on was single unit recordings made in the auditory
cortex (Al) of ferrets passively listening to natural sounds. A detailed description of
the data can be found in the Data Recording section.

1.1 The initial Spectro-Temporal Receptive Field model

Many computational models exist for predicting neural information. One of the
simplest and most standard is the Spectro Temporal Receptive Field (STRF) model.
It is similar to the impulse response in the acoustic field, the difference being that
it is bi-dimensional and that it models a neuron’s spiking activity. Convolving the
time frequency representation of the input stimulus with a 2D impulse response (the
STRF) provides the model’s prediction of the time-varying spike rate (convolution
is performed across the time axis, but not frequency). The goal is to predict the
peristimulus time histogram (PSTH), which provides an estimate of the neuron’s
spiking activity, in response to stimulus s, in fixed time bins (here we use 10ms).

For neuron 7, stimulus s, time t and frequency f :

Stimuluss(f,t) * STRE,(f,t) = PSTH ,(t)

One benefit of this representation is that it is easily interpretable. Plotting the image
of the STRF shows the time-frequency region the neuron is sensitive to. In addition,
most of the auditory brain areas have a tonotopic mapping [Romani, Williamson,
and Kaufman, 1982]. This refers to the fact that neurons are spatially distributed in
brain areas in relation to their tuning to specific frequency bands. Neurons located
in a same spatial area will have similar frequency tuning. This is a property which is
used, in combination with others, to determine the function region where the probe
was inserted in the brain of the animal.

The STREF also has the property of being relatively simple to fit, since it is a linear
model. In the simplest case, the loss function is convex which obviates any worry
about local optima. A visual example of a STRF can be seen in figure 1.1.
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FIGURE 1.1: A STRF example fit on spiking data from cochleograms
// 2 recurring kernel examples from the 5 kernel model

A widely used extension of this model is the Generalized Linear Model [Cal-
abrese et al., 2011]. GLMs contain a linear model followed by an output non linear-
ity. For example, a rectified linear unit (ReLU) can be used to set negative activations
to zero, which is useful when modeling spike rates which are strictly positive. For
simplicity, here we refer to STRFs with an output nonlinearity as STRFs rather than
noting the nonlinearity every time.

The first step in STRF fitting was to convert the auditory stimuli into “cochlea-
grams”: a spectrogram-like time frequency representation where physiological prop-
erties of the cochlea are modeled [Slaney, 1998]. The frequency scale is logarithmic
(approximately mimicking how frequency is mapped along the basilar membrane of
the cochlea), and cochlear amplification of low-amplitude sounds is modeled with
a compressive nonlinearity. We used estimates of cochlear bandwidths in ferrets to
compute the cochleagrams to account for the relatively coarse frequency resolution
of the ferret cochlea compared with humans [Alves-Pinto et al., 2016].

Our implementation of the STRF model was made with Keras and Tensorflow, us-
ing a simple one layer convolutional neural network. Once the network was trained,
we correlated the measured and predicted spike rates for the test data. As a sanity
check of our code, we compared our prediction accuracy scores with existing code
for STREF fitting that has been engineered to produce good predictions by placing
constraints on the properties of the STRFs (we refer to this as the fine-tuned model,
from [Thorson, Liénard, and David, 2015], see figure 1.2).
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= ) 7 e
. ) .
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0.0 0.2 0.4 0.6 0.8 1.0

Our STRF

FIGURE 1.2: Test correlation comparison of two STRF models : the
fine tuned vs ours
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As we can see on this figure, our STRF predictions are comparable to those for
the fine-tuned model . Our code yields test correlations that are only 16% lower
than this model. We didn’t go into deep tuning of this model as the goal was to
demonstrate that we could fit STRFs to our recordings using the optimization pack-
age provided by TensorFlow (since this allowed us to explore subspace models as
discussed below).

20.00

N 10724

T 1 -

X 5.745 4

3 3,083
qc_, 1.653
S 4
o 0.886 -
e -
T 0.4754

0.255 +

0.137 4

0 0.46 0.92 1.38 1.85 2.31 2.77 3
Time (s)

FIGURE 1.3: Best predictive STRF from the fine tuned model

Figure 1.3 shows the STRF corresponding to the best-predicted neuron (0.84 test
correlation), as determined by the fine-tuned model. Most of the neurons from the
recordings we have obtained are high-frequency tuned, perhaps because the record-
ings were made in the high-frequency region of the tonotopic map.

1.2 A shared STRF subspace

In the initial model implemented, a STRF is fit separately for each neuron with no
constraints on the similarity of responses across neurons.

In this model, we use the property that neurons located in the same brain area share
common computation. This key idea enables the benefit of using the potential of
large numbers of neurons recorded at once to constrain the models learned for each
neuron. Modern recording techniques, such as two photon imaging [Stosiek et al.,
2003] promise the ability of recording thousands of neurons at once. General di-
mensionality reduction techniques over this data have been studied to capture the
variance shared across neurons [Cunningham and Byron, 2014].

Klindt et al., 2017 use this idea and fit a multi layered CNN with a shared subspace
to predict a large number of neurons’ responses to images, in the visual cortex. We
decided to pursue a variant of this idea here.

The visual description of the shared subspace is shown in figure 1.4 : A number
S of STRFs are fit during the training of the whole set of N neurons. Instead of each
neuron having a set of best frequency bands and time bins, each neuron now has
a set of best STRFs, which we refer to as kernels. By constraining the number of
component kernels to be small, we force the dimensionality of neural responses to
be low and their responses to be similar. A re-weighting layer (S by N matrix in
figure 1.4) is inserted in the neural network, which linearly maps the S STRFs to
the N neurons. During training, each cochleogram of the training stimulus set was
presented a number of times depending on the number of iterations and the batch
size.
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Cochleograms STRFs Reweighting Neurons
- S , Neuron 1
® -4 Neuron 2
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FIGURE 1.4: Shared Kernel STRF model’s principle - Predicting neu-
ral data with cochleograms

S
Neuron, (t) = Y, Reweight(s,n) x [Kernels(f,t) ® Cochleogram.(f,t)]
s=1

Tuning the model

The first question we wanted to answer was how many kernels yielded the best
prediction accuracy. .
Based on the whole data set, we first trained our model to find the optimal set of the
entire hyper parameters, except from S, the number of kernels which was set to ar-
bitrary values and searched alone afterwards. The combination of hyper parameters
which maximized our test correlation were the following :

Learning rate | Weight initialization | Batch size | Number of iterations | Early stopping
0.01 0.01 10 500 0

With the following sizes :

Cochleograms size | Kernels size | Number of neurons
18 x 300 18 x 15 70

We then fixed the found set of hyper parameters and trained our model iteratively
with 1 to 30 intermediate kernels, comparing each trainings’ test performances. In
figure 1.5, we can see that an optimal number of 5 kernels was found.

0.35

0.34

0.32

Test correlation

0.31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of kernels

FIGURE 1.5: Finding the optimal number of kernels based on test
correlation
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After moderately fine tuning the hyper parameters based on 5 kernels, we were
able to beat the STRF model fit with both our code (which is arguably the more fair
comparison) and with the fine-tuned model :

1.0
Il Reference STRF - mean correlation : 0.333

Il 1 kernel STRF - mean correlation : 0.273
[ 5 kernels - mean correlation : 0.357

4
©

e
o

Test correlation
o
>

e
)

=4
=)

Neurons

FIGURE 1.6: The STRF model was outperformed by the 5 kernel
model (cyan) - Average test correlation for each neuron is shown -
Red and black bars are overlapped as opposed to stacked.

On figure 1.6, the score from the fine tuned (reference) STRF model is shown in

red. The score from our STRF model is shown in black, different from the one plotted
in figure 1.2 as it was trained on more neurons. One must be careful while reading
the figure values : the red and black bars are overlapped as opposed to stacked.
Finally, the shared 5 STRF model is plotted in cyan. Its mean correlation outperforms
slightly the STRF model. The increase in performance is small but stable. In figure
1.8, we can see that for 100 various network initializations, 96 beat the fine tuned
STRF model (i.e. mean test correlation is above 0.333).
We can also see that in the 5 kernels model, no neurons are left unpredictable. The
minimum test correlation for this model is 0.1, whereas for the reference STRF and
1 kernel model, their test correlations reach negative values. As we can see on the
figure, the correlations for neurons 18 and 67 are below 0. This is likely due to the
regularizing effect of the subspace for noisy neurons.

This discovery confirms our hypothesis that neurons share computation in a sub-
space which is represented by a limited number of components. 5 shared kernels
describe better the neurons’ responses than 70 STRFs fit independently.

Regularizing the re-weighting

As an attempt to improve the model, we have added a regularization term to
improve the re-weighting sparsity. As we can see in figure 1.9, the 3% recording had
a distribution of weights which was sparser. In the performance figure (1.6), we
can see that the 37 recording, i.e. from neuron 42 to 60, has the best average test
correlation score over the other 3 recordings. Therefore trying to force sparsity is
sensible.

The following expression was added to the loss function :

S N
A Y., Y |Reweight(s,n)]
s=1n=1
with || : the absolute value,
and A : the sparsity factor, which is constant, i.e. unlearned during training.
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FIGURE 1.7: The influence of re-weighting sparsity on predictive per-
formance

As we can see on figure 1.7, performance is maximum when no sparsity is set.
It then decreases regularly when we increase the amount of sparsity. The curve
continues to reveal decrease in performance even with the sparsity factor being 4
orders of magnitude higher. This suggests that sparsity is not useful here, possibly
because of the small number of kernels. This could also be due to the fact that A was
unlearned, we decided to try a set of constant values for A so that we could easily
try the method with no implementation complexity.
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1.3 Properties of the subspace discovered

Patterns are similar across various initializations

An interesting property of the learned subspace is that the time frequency patterns
from the 5 kernels are similar across various random initializations.

As an example, were are showing 2 kernels from one of the random initialization
(Figure 1.1). These types of kernels appear very frequently. They reveal a high fre-
quency tuning of the neurons based on both a long and short time scale. The ad-
vantage of the shared subspace paradigm is that the re-weighting function can then
fine tune for each neuron the combination of the kernels that predicts their response
the best. The excitatory zones also tend to have a symmetrical inhibitory zone at
lower frequencies. Because these 5 STRFs explain responses from many neurons,
these properties might reflect an important and general feature of neural coding in
Al.

Correlation of kernels is opposed to performance

An experiment we have tried is to assess the stability of our neural network. We

initialized it randomly 100 times and compared its overall predictive accuracy for
each initialization. Figure 1.8 shows the mean test correlation for each initialization.
We can see that the overall test correlation is bound between a relatively small range
(0.32 and 0.36), suggesting that the training procedure is not getting caught in local
optima (or if it is, the optima have similar test accuracies).
On the x-axis we have also plotted the average correlation between 5 kernel re-
weights. If they were all identical, the value would be 1. We can see that their
value is relatively small (<0.5), and that when the average correlation increases, the
predictive accuracy decreases. This pattern suggests that the subspace is most effec-
tive when the distribution of weights across neurons for each kernel is uncorrelated.
This observation provides a potential way to improve upon our model in future
work by encouraging the subspace to learn kernels with uncorrelated weights (e.g.
by including a correlation term in the cost function).

0.37 A

0.36

0.35 A

0.34

0.33 1

Mean test correlation

0.321

0.314

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26
Mean kernels correlation

FIGURE 1.8: 100 initializations of the same network - Studying the
relationship between mean test correlation and mean kernels correla-
tion



12 Chapter 1. Investigating the subspace for auditory neural computation

Expressiveness of the 5 kernel model

As explained in the Data Recording section, we can see the in figure 1.9, the 4 var-

ious recordings. This plot represents the values of the weights from the re-weighting
layer (i.e. that maps kernels/STRFs to the neurons). For example, cell 46 is highly
activated by kernel 5 whereas cell 70 is activated by none of the kernels.
The main evidence is that the third recording, from a different ferret, exploits in a
greater range the expressiveness of the 5 kernels. Whereas recordings 2 and 4 are
mostly tuned to kernel 1. This involves that the various neurons from the ferrets
recording zones live in a relatively different subspace. Nevertheless, the common
subspace that was learned is expressive and constrained enough to gain prediction
accuracy in comparison to the initial STRF model.

BRT033b BRT026¢ bbl099g BRT032e
Ferret A Ferret A Ferret B Ferret A 10
Recording 1 Recording 2 Recording 3 Recording 4

Kernels
w
||
|
o
o

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
Cells

FIGURE 1.9: The learned re-weighting map - The 4 different record-
ings are split
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1.4 Discussion

Complexity reduction is essential to understanding neural encoding, allowing a
small number of parameters to represent the activities of many neurons. Our re-
sults provide a proof-of-concept that a standard encoding model can be improved
and simplified using low-dimensional subspaces. Nevertheless, the performances
gains were modest. We would expect a larger improvement in performance as the
number of neurons recorded increases. One way to test this hypothesis would be to
study the variation in performance when increasing the amount of neurons used by
the network.

However, working with a shared subspace consumes less hyper parameter search
time. As optimization is run only once versus as many times as the number of neu-
rons for the STRF model. The space of hyper-parameters can therefore be searched
much more precisely. The gain in performance increasing again when the number
of neurons recorded rises.

When looking at the kernels time frequency patterns, we can see that they are
similar to dilated and shifted versions of a common high frequency tuned kernel.
This type of structure can be captured by wavelet models, where each kernel is di-
lated version of a basis kernel. Modeling STRFs using wavelets may thus provide
another avenue with which to improve and simplify the STRF model.

Finally, another interesting question is whether the low dimensional subspaces
are columnar, i.e. whether neurons that are part of the same “cortical column” live in
the same subspace? Knowing that the probes are inserted vertically and in a variety
of brain zones, one could train a network on neurons from one recording, and test
if it better predicts responses from the same vs. a different recording. If true, this
would provide evidence that neurons in the same column share a similar subspace.






15

Chapter 2

Towards deep nonlinear subspace
models

2.1 The limits of the linear model

All the analyses described in the previous chapter implicitly assumed that the en-
coding of sound in the auditory cortex is primarily linear (except for a point wise
non-linearity in the activations). However, given the complexity of the auditory
pathway from the cochlea to the auditory cortex, it is natural to hypothesize that
cortical responses are highly non-linear [Sahani and Linden, 2003].

After sound is transduced into electrical signals in the cochlea, responses are passed
through a series of bilateral subcortical nuclei: the cochlear nucleus, the superior
olive, the inferior colliculus and the medial geniculate before reaching primary au-
ditory cortex. Information is initially segregated by ear, but then combined in the su-
perior olivary complex, where binaural processing for sound localization is thought
to first occur. In comparison, the visual subcortical pathway is much simpler as there
is only a single mandatory relay between the retina and the cortex (the lateral genic-
ulate nucleus). Thus, here we explore whether there is a shared subspace of neural
activity that is nonlinear with respect to a cochleogram representation.

How can we explore this idea? Here, we begin by learning a low-dimensional
linear subspace directly from the neural data itself (using GPFA and DSS, described
below), and then we test the extent to which the basis functions of that subspace can
be predicted from the input using a linear STRF.

There are also behavioral and computational reasons to expect cortical responses

Auditory

Medial
cortex .
geniculate
nucleus
Inferior
colliculus
Left ear Superior
olivary
nucleus
Auditory nerve Cochlear

nucleus

FIGURE 2.1: The auditory path - [McDermott, 2013]

to be highly nonlinear. Many of the tasks that humans excel at (e.g. recognizing
phonemes in speech) have only been replicated by highly nonlinear systems with
many parameters tuned to accomplish the desired task (e.g. deep networks). Such
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models often transform the input representation using a series of nonlinear trans-
formations. The final layers of the network (which are nonlinear with respect to
the inputs) can often be linearly retrained for a variety of different tasks, suggest-
ing that they have learned a nonlinear subspace that makes abstract information ex-
plicit. Particularly, relevant are recent studies showing that later layer of deep neural
networks can be linearly mapped to cortical responses, in some cases dramatically
outperforming simpler models [Yamins et al., 2014].

One way to test the hypothesis that neurons live in a nonlinear subspace would
be to investigate prediction of the activity of one left-out neuron using a linear map-
ping of the activity from the remaining neurons. If better predictive accuracy was
demonstrated relative to a linear encoding computed from a spectrogram-like repre-
sentation, this would imply a shared nonlinear subspace. As a first step along these
lines, we decided to attempt to learn a low-dimensional subspace directly from the
population data we recorded (described next). This subspace could then be used to
test the predictive accuracy of the model in left-out neurons in future work.

2.2 The Gaussian Process Factor Analysis transformation

The most standard way to learn a low-dimensional subspace is with PCA. However,
PCA has several limitations which are suboptimal from the standpoint of extracting
a sensory subspace from neural spiking data. Instead, we begin by applying Gaus-
sian Process Factor Analysis (GPFA) [Byron et al., 2009]. GPFA is a transformation
which has two goals : finding an optimal amount of temporal smoothing, and find-
ing a low dimensional subspace. The subspace and smoothing kernels are inferred
simultaneously. GPFA typically performs better than first smoothing the data and
then applying classical dimensional reduction techniques such as PCA. Gaussian
process is used as a probabilistic technique for fitting a multi-variate Gaussian to a
set of data. The covariance matrix used for defining the Gaussian process (squared
exponential), can be used to model and infer the similarity of spiking data across
neurons and time. Factor analysis like PCA finds a low dimensional subspace which
captures the variance that the neurons share. But unlike PCA, the model can account
for variable amounts of noise across neurons.

— — GPFA
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Prediction error
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State dimensionality

FIGURE 2.2: GPFA search of the optimal number of components
based on prediction error
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First, we have applied the GPFA transformation to our data, and found the op-
timal number of components which yield the maximum cross-validated prediction
accuracy (as measured by the squared error for left out trials) (see figure 2.2). The
results of this analysis suggest that 16 components was optimal, but we decided to
use 20 components to be conservative, since these components were going to be fur-
ther compressed by a subsequent transformation described next.

As the aim of our analysis was to find a low-dimensional subspace which is stim-
ulus driven. To accomplish this goal, we have chosen to apply a second transforma-
tion to enhance this property. We accomplished this objective using a second tech-
nique : Denoising Source Separation (DSS) (the name is somewhat misleading in
this context) [Cheveigné and Parra, 2014]. We use DSS to find components that are
maximally reliable across repetitions of the same stimulus. The approach works by
(1) whitening the input subspace (here from GPFA) (2) averaging across repetitions
and (3) applying PCA again to sort components by their reliability. Below we plot
the reliability of the components found. We note that in principle we could have ap-
plied DSS to the raw data without GPFA, but we expect this to lead to poorer results
because there is no way to infer an optimal smoothing kernel using DSS.

1
0ol ——Before DSS|_|
—e— After DSS

Reliability
T
I

1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Component number

FIGURE 2.3: Comparison of the reliability of the components before
and after DSS transformation

Figure 2.3 shows the reliability for each component after GPFA transformation.
Reliability was computed per component, by averaging across two independent
splits of data (i.e. different repetitions of the same stimuli), and correlating responses
across the two splits. The responses for each split are shown in appendix B as stim-
ulus by time images (one image per split and component) before and after DSS. We
can see in figure 2.3 that the top DSS components are substantially more reliable than
the top GPFA components. In particular, the top 11 components are highly reliable
(they produce a very similar response across multiple repetitions of the same stimu-
lus). We have thus focused on trying to understand these components.

We used the STRF model to predict the 20 DSS components directly, based on the
cochleograms previously computed. Since these components are highly reliable and
account for a substantial fraction of the neural response variance, the ability of the
STRF model to account for these component responses provides a measure of how
nonlinear the neural subspace is. After finding an optimal set of hyper-parameters,
average prediction accuracies on the test data were computed for each component
(figure 2.4)
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FIGURE 2.4: GPFA-DSS components predicted by the STRF model -
Studying the test accuracy for each component

As in standard PCA methods, components explain less variance as they increase.
With an average test accuracy of 0.24 on the 20 components, we can say that the
components from the low dimensional GPFA-DSS subspace can’t relatively well be
predicted by the linear model. As the transformation enhances explained variance
of the data (at least for the first components), poor performance in linearly predict-
ing them provides further evidence on how non linear the subspace is.

For better understanding, we represented the subspaces from which we have
performed transformations, trained our model and from which we we will compare
prediction accuracies (figure 2.5).

Initial Subspace GPFA subspace GPFA-DSS subspace
. . _GPFA | _Dbss | Stimulus driven
Spikes activity m Raw components ? components
N x t ChXxt ChXxt

FIGURE 2.5: Visual description of the GPFA-DSS transformations

With N = 70 being the number of neurons and C,, = 11 the number of low
dimensional components.
This primary result showed how linear the subspace is, the question being to know
if we could predict the raw temporal spiking data better by first predicting these
components and then applying the inverse transform before training our data. We
have tested this method and the global results are shown in figure 2.6.
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various GPFA-DSS predictions vs. direct spikes prediction vs spikes.
reconstruction accuracy - Detailed explanation is found below

As in figure 1.5, red and black bars are overlapped as opposed to stacked. The
same for the cyan and orange bars. The 4 types of bars represent the average test
correlation across the 18 test stimuli of various predictions with the spiking data, in
the initial subspace :

e The red bars represent accuracy when directly predicting the spiking activity,
from the initial subspace. It is the same one to one STRF method as in part 1.1.

e The orange bars represent the accuracy of predicting the spikes which were
first transformed in the GPFA-DSS subspace, then inverse transformed back to
the initial subspace and then predicted. Using 11 components.

e The black bars show the correlation between the initial spikes and the spikes
which were reconstructed after being GPFA-DSS transformed and inverse trans-
formed to the initial subspace.

e Finally, the cyan bars show the accuracy of predicting the components from
the GPFA-DSS subspace and then inverse transforming these predictions into
the initial subspace.

As shown in figure 2.6, the direct prediction of the spikes in the initial subspace
has the best performance (red bars). The performances of our attempts haven’t
reached our expectations. Nevertheless, we have similarity in performance with the
methods shown in cyan and in orange. As they are the same computations achieved
in a different order, their difference in average correlation is only 0.033. We decided
to show the black bars : the correlation between the spikes and their reconstruction,
to show that poor performance with the two GPFA-DSS methods (cyan and orange)
were often correlated with a bad reconstruction of the spikes. For example, neuron
65 is much better reconstructed than it is fitted by the STRF (0.41 correlation for the
GPFA-DSS reconstructed spikes against 0.08 correlation for the STRF fitted spikes),
so the two GPFA-DSS methods beat the standard STRF method with a factor of 3.6
and 4.1, for the cyan and the orange methods respectfully. Whereas when the black
bars are low compared to the red, the GPFA-DSS methods perform badly.
Ultimately, no improvements were achieved in predicting the spiking data with this
method.
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2.3 Multilayer network performance analysis

The analyses from section 2.2 suggest that neurons in Al live in a common subspace
that is nonlinear with respect to a spectrogram representation. How is this sub-
space computed? Here we made a first attempt to directly learn this subspace using
recent advances in neural network training. Specifically we attempted to adapt a
previously published method [Klindt et al., 2017] for training multi-layered CNNs
to predict spiking activity from visual cortex. Our main hypothesis is similar to the
one we used in section 1.2 : nearby neurons share computation, so a shared sub-
space should predict responses better, but here we made a first attempt to learn a
shared subspace that is nonlinear. The main issue in adapting the Klindt et al., 2017
model was that the algorithm was designed to predict the spike rate of visual cortical
neurons to static natural images (the model was tested on data from mouse visual
cortex). To adapt the model, we considered our auditory neural time series as a se-
quence of average responses to images that were shifted in time, where the images
were slices of cochleograms. This provides a natural way to build in the notion of
temporal convolution into a model that does not have a notion of time. However,
this approach led to an increase in memory usage which was a challenge for GPU
training (e.g. for a 3 second recording at 100Hz, 300 cochleograms were fed to the
network compared to feeding 1 image).

The model is the following (figure 2.7) : We used a model with 3 layers. The in-

Feature Space Receptive Fields Responses Original

convolution
» Neuron 1

o N

e K T Neuron N
%2

*%

48x48 32x32xK (32x32+K xN Nx1 48x48

FIGURE 2.7: Vision CNN model that we adapted to audition data
[Klindt et al., 2017]

put “image” was 48 x 48. Then K kernels of size 17 x 17 were “spatially” convolved
with the image (i.e. convolved in time and frequency), resulting in a 32 x 32 x K fea-
ture space. The final read out layer is actually double as there is both a reweighting
of the various kernels and of the various kernel zones. With our auditory data, this
implies that the network trains for each neuron, to find a set of kernels, and a time
frequency zone that it prefers.

In addition to this shared feature space model, 3 regularization terms were imple-
mented by Klindt et al., 2017. First an L1 sparsity penalty on the kernel re-weighting,
just as we used in part 1.2, to encourage the model neurons in the penultimate layer
to resemble neural activity.. Then a second L1 sparsity penalty, but this time for the
"per kernel based" re-weighting. And finally a L2 smoothness penalty applied to the
different kernels.

Our first issue was due to the sparsity of the data. Whatever combination of hyper-
parameters we used, the network was predicting the average of the data, with no
variance. Over fitting wasn’t the issue as it was happening during the first iterations
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with very low learning rates. By slightly low pass filtering the training data, the
issue was fixed. The network should have been able to learn this filtering but no
visible cause was found.

Getting the network to predict reliable responses was relatively difficult during
our first attempts. So we decided to start by maximizing training accuracy, by at-
tempting to over-fit the data. Our best set of hyper-parameters led us to the scores
in figure 2.8, where we compare with the training correlation of the STRF model.
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FIGURE 2.8: Over fitting the data (sanity check) with the Klindt CNN
model

During our first attempts, we also selected the 19 out of 70 most reliable neurons
to reduce fitting difficulty. Reliability was measured in the same way as in part 2.2.
This result was obtained with no regularization, no early stopping, and the follow-
ing parameters :

Learning rate | Weight initialization | Batch size | Number of iterations | Filter sizes
0.005 0.27-0.27 -0.27 600 30000 30-30-30

After a random search over 200 combinations of parameters and a grid search on
the 3 regularization parameters. Our best predictive model for test data was found
and figure 2.9 shows how it compares to the STRF model.
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0.6 Klindt CNN
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Most reliable neurons
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FIGURE 2.9: Maximum test correlation obtained after largely search-
ing the hyper parameter space with the CNN model

Our model’s maximum performance was in average 40% below the STRF model.
However, some cells gain from a better performance of the model.
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2.4 Discussion

As a global consideration, the same lack of data could have been limiting the power
of our models, probably more than in the 1% section. Especially for the deep convo-
lutional network where it has been proven to outperform vision neurons predictions,
with a much larger amount of data than what we have been using.

Nevertheless, a way of improvement would have been to investigate further the set
of neurons which perform the best. By finding properties which improve prediction,
such as reliability, these properties could have been used to tailor a specific transfor-
mation that leads to a subspace which is better linearly predictable.

The assumptions made by our GPFA-DSS transformation may have been wrong in
relation to our data. We could have compared prediction performance of our GPFA
components with a standard PCA dimensionality reduction. As GPFA emphasizes
more on both covariance and the modeling of spiking noise.

Applying DSS was however sensible as many issues while training the CNN
were due to the sparsity of the data. We had to manually low-pass filter the data as
the network was not able to achieve the smoothing. Some attention was drawn to
sparsity, while creating increasingly complex synthetic data during our first training
attempts. A deeper focus on this aspect could have been undertaken.

Finally, the neural data has been proven to be fairly non linear with respect to the
input. But no improvement was gained in predicting the spiking data, while using
the methods experimented.
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Conclusion

We have built, trained and tested models predicting neural activity in response to
sound. The models’ transfer functions range from purely linear to moderately non-
linear. We confirmed that the responses are highly non linear with respect to the
stimulus. We could have used considerably deep neural networks to model the
computation performed in the brain but we decided to use simpler models. The
reason is partly due to the little amount of data we disposed of, but was mainly in
the interest of being able to interpret the results obtained.

However, all our models were relatively general and considered the neural data
as any type of data. An exception can be made for the GPFA transformation which
accounted for spiking noise. This noise however could be similar to another type
of data noise. Therefore, we carried out a short experiment, not referred to in the
report, to try and model a known neurological property : gain control. It is per-
formed by neurons to adapt to extreme differences in intensity of stimuli. We created
a model that computes this property but no improvements in predictive accuracy
were found. It showed that even simple neural functions are challenging to model
computationally.

However, we have found a low-dimensional linear subspace which performs
better than the linear STRF model. Proving that nearby neurons share computation.
Data from two different ferrets were used and the combination of both spiking ac-
tivity also improved the predictive accuracy. This suggests that neurons from the
primary auditory cortex share computation even across various brains.

Even though ferret cognition, and more generally, the neural network from any
auditory brain is not perfectly understood, we are able to model a part of the com-
putation and generate accurate spiking predictions (see appendice A). The shared
subspace concept seems promising and further effort should be made to capture
non linearities from the neural data.
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Temporal predictions
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FIGURE A.1: An example of some accurate predictions with the 5
kernel subspace model
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Reliability before and after DSS
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FIGURE B.1: Reliability before DSS
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