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Computers are getting smarter all the time.
Scientists tell us that soon they will be able to talk to us.

And by ‘they’, I mean ‘computers’. I doubt scientists will ever be able to
talk to us.

— Dave Barry

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald Ervin Knuth



A B S T R A C T

This internship aims to develop new representations of musical symbolic.
Whereas the previous approaches are based on known mathematical rules,
we tried to develop a more empirical model through machine learning frame-
work. Our goal is to represent musical symbols in a space that carry seman-
tics relationships between them, called embedding space. This approach allows
to extract new descriptive dimensions that may be relevant for music analy-
sis and generation. Previous work in Natural Language Processing provided
such very efficient representation of words. Hence, starting from the possi-
ble analogy that exists between a text and a musical score, we tried to adapt
the best state-of-the-art word embedding algorithms to musical data. How-
ever, some critical differences between the structural properties of musical
and textual symbols, prompted us to develop a machine learning model es-
pecially tailored for music. To that end, we used a Convolutional Neural
Network in order to capture visual features of the piano-roll representation
of chords independently of the pitch class. Then, we added a Long Short
Term Memory network that aim to integrate information about time depen-
dencies of musical object in the final embedding space. Finally we proposed
some applications that allow to infer knowledge on musical concepts or to
encourage musical creativity.
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R É S U M É

Ce stage a pour but de développer de nouvelles représentations de la musique
symbolique. Alors que les précédentes approches sont basées sur des règles
de mathématiques prédéfinies, nous avons essayé de développer un mod-
èle plus empirique grâce au système d’apprentissage machine. Notre but
est d’apprendre comment représenter les symboles musicaux dans un es-
pace, appelé espace d’embedding, où apparaissent les relations sémantiques
que partagent ces objets. Cette approche permet d’extraire de nouvelles di-
mensions descriptives pouvant plus tard être utile à l’analyse et la généra-
tion de musique. De précédentes études dans le domaine du traitement
automatique du langage naturel ont conduis à des espaces d’embedding
très efficaces pour la représentation des mots. Ainsi, partant de la poten-
tielle analogie qui existe entre un texte et une partition de musique, nous
avons essayé d’adapter les meilleurs modèles de l’état de l’art des embed-
dings pour les mots aux symboles musicaux. Cependant, il existe des dif-
férences majeurs entre la structure d’un texte et celle d’une musique qui
nous a poussés a développer un modèle particulier pour la musique. Pour
cela, nous avons utilisés un réseau de neurones convolutionnels pour cap-
turer les caractéristiques harmoniques, indépendamment de l’octave, que
forme la représentation en piano-roll des accords. Puis nous avons exploré
l’utilité de l’ajout d’un réseau LSTM qui a pour objectif d’intégrer des infor-
mations sur la dépendance temporelle des symboles musicaux dans l’espace
d’embedding. Finalement, nous avons proposés des applications qui nous
permettent d’inférer des connaissances sur les concepts musicaux et d’aider
la créativité musicale.
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1
I N T R O D U C T I O N

When we hear an orchestral piece or read its musical score, we implicitly
interpret sets of information inside this complex data. Indeed, we can per-
form a link between this information and previously known concepts (e.g.
the piece is sad, percussive, melancholic, played in a concert hall or in the
street). These concepts can be thought of as high-level abstractions, oppositely
to low-level ones like acoustic signal values.
In the past decades, the field of computer music has precisely targeted these
problems of understanding musical concepts. Indeed, it is with this informa-
tion that we can provide tools to help composers and listeners but also define
methods of analysis and composition that improve our musical knowledge.
Nowadays, a wide variety of approaches have been taken forward but by do-
ing a comparison, we can see that there all largely rely on one crucial point:
the way we represent music.
This question has stirred up a huge interest in the music researchers commu-
nity that leaded on a lot of very interesting and efficient representations re-
ferred to musical spaces. If these formalizations efficiency was acknowledged,
there all share the same development process that consist of building the
space through known mathematical rules before representing any musical
data. In other words, these spaces are human-designed and based on exist-
ing knowledge. But could we try to let the computer itself learn an appro-
priate representation of music ?
In order to allow a machine to understand these concepts and disentangle
the correlations that exist in music, this machine should be given a way to
interpret orchestral scores as humans do. However, even if we manage to
gather a wide set of musical information, constructing techniques to under-
stand music in previously unseen contexts seems like a daunting task [9].
Tackling these difficult questions is the goal of the machine learning field.
In this chapter, we introduce the goals and context of this internship and the
general principles behind machine learning. We explain how deep learning
can be a promising framework to study these complex tasks and introduce
the different approaches and models which will be used as baselines for our
work.
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1.1 objectives 2

1.1 objectives

The main objective of this internship is to tackle the problem of finding effi-
cient spaces for representing music. Indeed, over the several compositional
tools have been developed over the past years [2, 4], the critical aspects in
their functioning is the musical representation itself. We provide here an
overview of the musical spaces and computer-assisted composition tools.
Then, we introduce our assumptions and hypotheses regarding the use of
learning algorithms for these kind of tasks.

1.1.1 Music as symbols

Music has been transcribed in a written format from a very ancient times
(with elements of musical scores seeming to date back to 1400 BC. [13]. The
marks and symbols that were developed along the past millenniums gradu-
ally informed on the duration and pitch of the corresponding melody. Then
dynamic and instrumentation of the different notes were introduced based
on the ever-expanding human instrumentarium [3].This evolution has shaped
musical notation as we know it today. Hence, we can see that the representa-
tion of music as symbols itself has been a central question in the history of
music. By increasingly specifying the notation, musicians could play a piece
of music closer to the original composer’s intention. In that sense, musical
notation could be thought of as a model which enables us to reason and
think about music.
Nowadays, with the apparition of the digital era, multiple machine-readable
scores formats have been developed such as the Musical Instrument Digi-
tal Interface (MIDI). This type of digital data format allows to treat music
through its symbolic representation since it is based on a finite alphabet
of symbols. A MIDI file encodes information for the different notes, dura-
tions and intensity through numerical messages with a pre-defined tempo-
ral quantification (a subdivision of a quarter note). Hence, this format has
been widely used in computer music research as it allows a compact repre-
sentation of music. Other formats have been developed using for instance
LISP [4] or XML [22]. However, in our internship, we will rely on the piano-
roll format extracted from MIDI files as this allowed us to construct a large
database of music.

1.1.2 Musical spaces

One of the core research question in computer music remains to find an ade-
quate representation for the relationships between musical objects. Indeed, the
transcription of music as symbols usually fails to provide information about
harmonic or timbral relationships. In that sense, we can loosely say that the
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(a) First version of Euler’s
Tonnetz in 1739.

(b) Another version of Eu-
ler’s tonnetz in 1774.

(c) IRCAM tonnetz used in
the Hexachord software.

Figure 1: Three different representation of Tonnetz. The tonal space are represented
in a grid where we transcribe the harmonic progression of a musical piece.
Figure 1a from [20], Figure 1b from [21], Figure 1c from [10]

goal would be to find a target space, which could exhibit such properties
between musical entities. Hence, finding representations of musical objects
as spaces has witnessed a flourishing interest in the scientists community
[11, 65–67]. Many of the formalizations proposed over the past decades en-
tail an algebraic nature that could allow to study combinatorial properties
and classify musical structures. Here, we delimit a distinction between these
methods into two types of representations: the rule-based and the agnostic ap-
proaches.
In the rule-based stream of research, several types of spaces have been devel-
oped since the Pythagoreans. Indeed, Marin Mersenne allowed to discover
many algrebraic and geometric structure in classical music through his cir-
cular representation of the pitch space in the 17th century [43, 44, 68]. Many
years later Henry Klumpenhouwer present a new space for representing
music called the K-nets [34]. This approach leaded to reveal some structural
aspects in music through the many isographies of the networks [39, 40, 53].
Finally, we can cite the well-known Tonnetz, a musical space invented by
Euler in the 18th century [20]. The main idea behind it is to represent the
tonal space in a grid (as depicted in figure 1) and then used it to put forward
harmonics relationships in musical pieces.
There are two main benefits of this type of rule-based approach. First, once

the model is built, it can be straightforward to analyze some of its proper-
ties (based on the defined sets of rules). Second, we can also understand the
scope where the model should be efficient based on its construction.

But as it is defined, a rule-based approach represent the particular vision
of the designer that has thought and crafted the corresponding rule sets.
Hence, the corresponding musical spaces will provide a given set of interac-
tions. It is interesting to ask if we could develop a more empirical discovery
of these spaces that could provide more generic musical relationships. These
kinds of spaces could allow to exhibit properties in musical scores in a way
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Figure 2: Country and capital embedding vectors projected by PCA. The figure
shows the possible ability of an embedding space to capture information
about human concepts and the relationships between them. Figure from
[46]

that we never would have thought. In doing so, we could then find some
new relevant features and metric relationships between musical entities and
develop innovative applications. Hence, in the following, we consider that
the important properties of a space are not necessarily its dimensions (like
in the rule-based approaches), but rather the metric relationships or distances
between objects inside this space (like in the agnostic approach that we seek
to develop) [46].

However, we remain conscious of the limitations of such agnostic spaces.
Indeed, these are still indirectly the product of our design of the learning
algorithms. Furthermore, they might be highly dependent on the dataset
(see 2.1) used for their construction. Finally, there might be no direct ways
to analyze their properties nor prove their efficiency.

1.1.3 Learning spaces

Recently, different breakthroughs in machine learning (and most notably in
the Natural Language Processing (NLP) field), has provided steps towards
our over-arching goal. This branch of computer science traces back to the
1950s and have seen some major progress during the last decade. Particu-
larly relevant to our work is the huge step forward in the development of
word embedding spaces. In these approaches, large datasets of sentences are
used to understand the relationships between words. The goal is to find a
space where words are represented as points (vectors), whose distances in
the space mirrors the semantic similarity between words. We can see an ex-
ample of this kind of space projected by PCA in Figure 2. We can see that
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the distance between all the countries and their corresponding capitals are
almost the same. It illustrates the ability of this space to capture information
about concepts and the relationships between them [46].
By using such vectors as a representational basis for other machine learning
tasks, scientists made colossal improvements and opened a lot of possibil-
ities for a wide variety of powerful applications. For instance, Tang et al.
developed a tool that classify the messages from Twitter according to their
sentiments [63]. Palangi et al. used word embedding to perform document
retrieval or web search tasks [50].

In our context some structural aspects in both field, language and music,
could hypothetically share some logical equivalence. Indeed, a sentence is
composed by words hierarchically located as a melody is composed by notes.
Moreover this kind of learning space could also be very valuable for the mu-
sical analysis and composition field. As well as being a potential analysis
and knowledge inference tools itself it could be an efficient and new basis
representation of music for many creative application. Moreover, this con-
tinuous space could provide melody generation or transformation directly
from it. But one of the most interesting challenge will be to link these infor-
mations with perception or signal processing knowledge as it has be done
in other field [5, 31, 32, 48]. Armed with this combined space we could find
some relevant features about music and develop powerful classification or
recommendation tools.
Setting out from this premise we decided to work on this kind of spaces for
musical symbolic.



2
S TAT E - O F - T H E - A RT

2.1 principles of machine learning

2.1.1 Formal description

Learning can be defined as the process of acquiring, modifying or reinforc-
ing knowledge by discovering new facts and theories through observations
[23]. To succeed, learning algorithms need to grasp the generic properties of
different types of objects by "observing" a large amount of examples. These
observations are collected inside training datasets that supposedly contain a
wide variety of examples.
There exists three major types of learning :

• Supervised learning: Inferring a function from labeled training data.
Every sample in the dataset is provided with a corresponding groundtruth
label.

• Unsupervised learning: Trying to find hidden structure in unlabeled
data. This leads to the important difference with supervised learning
that correct input/output pairs are never presented. Moreover, there is
no simple evaluation of the models accuracy.

• Reinforcement learning: Acting to maximize a notion of cumulative
reward. This type of learning was inspired by behaviorist psychology.
The model receives a positive reward if it outputs the right object and
a negative one in the opposite.

In computer science, an example of a typical problem is to learn how to
classify elements by observing a set of labeled examples. Hence, the final
goal is to be able to find the class memberships of given objects (e.g. a sound
played either by a piano, an oboe or a violin). Mathematically we can define
the classification learning problem as follows.
Given a training dataset χ of N samples X = {x1, ..., xN} with xN ∈ RD, we
want assign to each sample a class inside the set Y = {y1, ...,yM} ofM classes
with yM ∈ {1, ...,M}.

6



2.1 principles of machine learning 7

To do so, we need to define a model Γθ that depends on the set of parameters
θ ∈ Θ. This model can be seen as a transform mapping an input to a class
value such that

ỹ = Γθ(xi) (1)

In order to define the success of the algorithm, but also to allow learning,
we further need to define a score function,

h = hθ : RD → RM (2)

and a loss function,

L = LX,Y : Θ→ R (3)

The role of the score function is to determine the membership of a given
sample xi to a class ym. In a statistical setting, we can interpret this function
as the probability of belonging to a given class.

hm(xi) = p(ỹ = ym | xi, θ) (4)

Considering the basic rules of probability distributions, we have

M∑
m=1

hm(x) = 1

hm(x) ∈ [0, 1], ∀x ∈ χ, ∀m = 1, ...,M

(5)

On the other hand, the loss function computes the difference between pre-
dictions of the model and groundtruths. In order to learn the most efficient
model, we need to update its parameters θ by minimizing the value of this
loss function

θ̂ = argminθ∈Θ(LX,Y) (6)

There is usually no analytical solution and sometimes not even a single min-
imum for this problem. Therefore, we rely on the gradient descent algorithm
[15] to find a potential solution (minimum) to this problem by updating the
parameters iteratively depending on the gradient of the error

θn+1 = θn − η∇θLX,Y(θn) (7)

Where η is the learning rate, which defines the magnitude of the parameters
update in the direction of the errors gradient as depicted in Figure 3.
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Gradient

Initial

 weight

Figure 3: Gradient descent on the loss function LX,Y(θn). The learning rate η corre-
sponds to the magintude of the update of the parameters θ.

Obviously, the convergence towards a global minimum depends on the
learning rate but also on the properties of the loss function. Indeed, L should
preferably be convex, which it is not always the case, and the existence of
several local minima can make the training really difficult.

2.1.2 Training

A single phase of training is referred to an epoch, which corresponds to one
iteration of the training loop defined as listed in Algorithm 1.

Input : LX,Y(θn), X, Y
Result : The parameters θ of the model Γθ minimize the value of the

loss function LX,Y(θn).
Random intialization of θ;
while θ̂ 6= argminθ∈Θ(LX,Y) do

Compute a prediction ỹ for inputs xi depending on the current parameters
θn
ỹ = Γθ(xi);
Evaluate the error by comparing the predictions groundtruth yi with an
arbitrary distance function F
LX,Y = F(ỹ,yi) ;
Update the parameters of the model in order to decrease the loss value, by
relying on the derivatives of the error
θn+1 = θn − η∇θLX,Y(θn) ;

end
Algorithmus 1 : Training algorithm of a model Γθ for a classification task.
X is the training set composed by a N samples X = {x1, ..., xN}, Y is the
set of M classes that correspond with the samples Y = {y1, ...,yN} with
yi ∈ {1, ...,M}
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At this point, the question arises to know whether the number of epochs
has to be the largest possible to have the most efficient model. Unfortunately,
this is generally not the case due to the phenomenon known as over-fitting.
Indeed, if the model learns "too precisely" the training dataset properties,
it will learn the samples themselves and will not be able to generalize its
learned concepts to unseen contexts anymore. This can be understood graph-
ically by looking at Figure 4.

Under-fitting Optimal Over-fitting

Figure 4: Classification task defined by the boundaries of the model in the case of
under-fitting, optimal training and over-fitting.

The first case on the right illustrate a model that has not been trained
enough. Its classification function is too simple to seperate efficiently the
sample. In the opposite we can see on the right a model that has made too
much training epoch. In this case, it will be very efficient for tasks on this
particular dataset but very bad on other example. Finally, the center of the
figure shows a model that has made the optimal number of epochs. To pre-
vent the over-fitting, we split the data into three datasets, training set, testing
set, and validation set.
We use the training dataset in order to update the parameters, and then we
compute the loss with the test one. When the training loss value tends to
zero (a model "knows" each sample, zero miss-predictions are made), the
test loss will re-increase because of over-fitting as depicted in Figure 5. We
stop the training at this point and assess our model on the validation dataset
to get the expected final accuracy of the model on unknown data.
Another solution to prevent over-fitting is to apply regularization to the model
or the learning process. Examples of regularization include adding noise to
the input or restrict the values of the parameters through weight decay. Reg-
ularization allows preventing the model to learn too precisely the training
samples.
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Test set

Training set

Optimal

ε

training cycle

Figure 5: Loss value with the training set and the test set. Optimal number of epoch
is reach when the red curve begin to grow up again.

2.2 deep learning

"When a function
can be compactly
represented by a
deep architecture, it
might need a very
large architecture to
be represented by an
insufficiently deep
one."
- Y. Bengio

Coming back to our original problem, we discussed in Chapter 1 that we
seek an algorithm able to link low-level abstractions with high-level ones.
However, if we depict the problem of trying to find the name of a piece
based on its musical score we can see that we need to pass through many
gradually abstraction levels as shown in figure 6.

Black 

points

D#

Notes

Rhythm

Chords

Melody Name

Abstraction level

Figure 6: Decompsiting the problem of retrieving the name of a song to multiple
abstraction level.

Some mammals can usually solved this type of complex problem with
abstractions hierarchy because their brain have a deep architecture where
each level correspond to different areas of the cortex. Inspired by these ob-
servations, the deep learning approach appeared in the machine learning
community.
However, the major issue with multi-layer models stems from the gradient dif-
fusion problem. As we saw it before, the parameters update is proportional to
the loss function gradient (Equation 7) which is in a range of [−1, 1]. There-
fore, with a given N layers depth architecture this has the effect of multiply-
ing N times this small numbers in order to update the output layer weights.
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that is why the gradient magnitude gradually vanishes and the training step
will decrease exponentially with the last layers training very slowly [26].
However, in 2006, Hinton et al. found a way to avoid this issue. Their algo-
rithm called greedy layer-wise learning allows each layer of the network to be
trained independently and in an unsupervised manner [24]. It is defined as
follow

1. Learn weights of the first layer assuming all the other weights are tied.
(We can see it as the higher layers do not exist but for an approximation
to work well, we assume that they have tied weights.)

2. Freeze this weights and use it to infer factorial approximate posterior
distributions over the states of the variables in the first hidden layer,
even if subsequent changes in higher level weights mean that this in-
ference method is no longer correct.

3. Learn a model of the higher level "data" untying all the higher weights
matrices from the first one.

By applying this approach repeatedly from the first layer to the last, we learn
a deep, densely-connected network one layer at a time.
We now present some very common and effective deep neural networks
which were useful for our work.

2.2.1 Neural Networks

Now that we have a global overview of learning algorithms, we will define
the model Γθ as a neural networks. A wide part of research in machine learn-
ing has focused on the concept of artificial neural networks. Indeed, the most
widely known basis of intelligent behavior as we know it, is the biological
neuron. Therefore, scientists tried to mimic its mechanisms, tracing back to
the original model of McCulloch and Pitts in 1943 [42]. An artificial neuron
is composed of multiple weights and a threshold, that together define its
parameters, as depicted in Figure 7. To decide if the neuron will activate its
output or not, it uses an affine transform and a non-linear activation func-
tion.
Mathematically, with N inputs a neuron output is defined as

y =

N∑
i=1

xiwi + T (8)

with wi the learned weights and T the threshold of activation. If we inter-
pret this equation geometrically, we can see that it corresponds to an N-
dimensional hyperplane. Therefore, a neuron can divide a space (akin to
binary classification), or approximate a function (as the sum will give an
output whatever X comes in). By organizing these neurons as layers where



2.2 deep learning 12
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Figure 7: A biological neuron (left) is approximated through affine transform and
activation function (right).

each neuron (also called units) transforms the input independently, we ob-
tain the perceptron. These layers are then stacked one after another, where the
input of a layer is the output of the previous one, to obtain the well-known
multi-layer perceptron. The number of layers is call the depth of the model.
Hence, the multi-layer neural network allows combining non-linear activa-
tions in order to process more complex tasks.
However, a problem arise from this representation. Indeed, to update the
parameters with gradient descent method (Equation 7) the output space has
to be continuous (e. g., the value of ymust be continuous to be differentiable,
y(x) is of class C1). To alleviate this problem we need to use different acti-
vation function denoted as τ(x), and we now consider T as a bias denoted
as b, leading to y = τ(

∑
wixi + b). Three examples of common activation

functions are showed in the following.

• Piecewise linear :

τ(x) =


0 ∀ x 6 xmin
mx+ b ∀ xmax > x > xmin
1 ∀ x > xmax

• Sigmoid :

τ(x) =
ex

1+ e−βx
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• Gaussian :

τ(x) =
1

σ
√
2π
e
−

(x−µ)2

2σ2

We illustrate one of the most common architecture in figure 8, the fully-
connected network whose units between two adjacent layers are fully pair-
wise connected. This type of architecture is called feed-forward as the infor-
mation moves in only one direction, forward, from the inputs to the outputs.
There is no loops, backward connections or connections among units in the
same layer. Moreover, the middle layers have no link with the external word,
and hence are called hidden layers [38].

inputs outputs

Figure 8: A fully-connected network with three layers. Units between two adjacent
layers are fully pairwise connected.

Other type of network based on different connections or operations have
been developed. We now present two of this different architectures that were
usefull for our work, Convolutional Neural Networks and Long Short Term
Memory network.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were inspired by the models of the
visual system’s structure proposed by Hubel and Wiesel in 1962 [28]. It is
a category of neural networks that have proven very effective in areas such
as image recognition and classification [35, 58, 59]. In audio, we can use
CNNs with inputs which outputs a 2-dimensional matrix such as the Short-
Term Fourier Transform [37]. There are four main operations in this kind of
network, each processed by a different layer (see Figure 9).
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Figure 9: Convolutional neural network with two convolutional layers each fol-
lowed by a pooling layer and two fully connected layers for classification.

convolution The first layer is the convolution operator. Its primary pur-
pose is to extract features from the input matrix. Indeed, each units k ∈
N in this layer can be seen as a small filter determined by the weights
Wk and the bias bk that we convolve across the width and height of
the input data x. Hence, this layer will produce a 2-dimensional activa-
tion map hk, that gives the activation of that filter across every spatial
position

hkij = (Wk ∗ x)ij + bk (9)

With the discrete convolution for a 2D signal defined as

f[m,n] ∗ g[m,n] =
∞∑

u=−∞
∞∑

v=−∞ f[u, v]g[m− u,n− v] (10)

The responses across different regions of space are called the receptive
fields. During the training process, the network will need to learn filters
that can activate when they see some recurring features such as edges
or other simple shapes. By stacking convolutional layers, the features
in the upper layers can be considered as higher-level abstraction such
as composed shapes.

non-linearity As discussed in the previous section, we have to intro-
duce non-linearities (NL) in the network in order to model complex
relationships. Hence, before stacking every feature maps in order to
obtain the output activations we apply a non-linear function like those
introduced previously or the recently proposed ReLU (Rectified Linear
Unit) defined by output = max(0, input) [18].

pooling or subsampling Spatial pooling (also called subsampling or
downsampling) allows to reduce the dimensionality of each feature
map. The principle behind the pooling operation is to define a spatial
neighborhood (such as a 3× 3 window) and take the largest elements
(max-pooling) or the average (average-pooling) of all elements in that win-
dow. In that way, we progressively reduce the spatial size of the input
representation and make it more manageable.
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classification Based on the highest level features in the network, we
can use these to classify the input into various categories. One of the
simplest way to do that is to add several fully-connected layers (Fig-
ure 8). By relying on this architecture, the CNN will take into account
the combinations of features similarly to the multi-layer perceptron.

2.2.3 Long Short Term Memory (LSTM)

Traditional neural networks do not allow information to persist in time. In
other words, it could not use its reasoning about previous events to inform
later ones. To address this issue, specific networks with loop connections
have been developed, called Recurrent Neural Networks (RNN) [19]. The idea
is that a neuron now contains a loop to itself, allowing to carry information
from one time step to the next. Hence, its activation can be defined as

ht = σ
(∑

wtxt + ht−1

)
(11)

With σ a non-linear function, xt the input, Wt the weights of the neuron and
ht−1 the activation of the previous time step. However this is a non-causal
function that disallows this formalization to be implemented. This issue can
be solved by "unfolding" the networks. In other words, these networks can
be thought of as multiple copies of the same feedforward network, each
passing a message to its successor (see figure 10).

Figure 10: Recurrent Neural Networks can be "unfolded" and then thought of as
multiple copies of the same network, each passing a message to its suc-
cessor (Image from [16]

This chain-like nature underlines the intimate connection that RNN share
to sequential events. Unfortunately, this kind of network is usually not able
to learn long-term dependencies and are usually bound to succeed in tasks
with very short contexts. This problem was explored in depth by Bengio et
al. [7], exhibiting the theoretical reasons behind these difficulties, such as the
vanishing or exploding gradient.
To alleviate these issues, Hochreiter and Schmidhuber introduced the Long
Short-Term Memory network (LSTM) [25]. These cells also have this chain-
like structure, but the repeating module has a different structure. Indeed,
the key element of a LSTM network is a signal called the cell state which
runs straight down the entire structure. This signal can be seen as the main
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information that is passed from an "unrolled units’ to another at each time
steps. In the following, we denote the cell state at the time step t as Ct.
During its crossing, this information can be modified or not or even totally
forgotted depending of the input of the network xt and the output of the
previous units ht−1. This is the role of four other elements in the structure
called gate defined with weigthsW and bias b that we now present in details.

1. The forget gate is a simple sigmoid layer which is here to decide if
we keep the previous information in the cell state or not. It takes into
account ht−1 and xt, and outputs a number ft between 0 and 1 where 0

represents “completely forget this” and 1 represents “completely keep
this”.

(Image from [16]).

2. The input gate allows to decide what new information we are going
to store in the cell state. This as two parts, a sigmoid layer dedicated
to decide which values will be updated or not depending on it and a
tanh layer which creates a vector of new candidate values C̃t for the
update.

(Image from [16]).

3. The update gate that its goal is to actually do what we decided before.
Therefore we multiply the old state by ft and add it× C̃t. The resulting
cell state Ct is passed to the next time step unit.
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(Image from [16]).

4. The output gate finally decide what the network is going to output
depending of the input xt and of the cell state Ct. The combination of
a sigmoid layer and a tanh layer are applied to achieve this.

(Image from [16]).



3
R E L AT E D W O R K

In this chapter, we develop the previous related work, notably regarding
the learning of embedding spaces. An embedding space is considered in our
context as a space of lower dimensionality which can be found from the
high-dimensionality space of the input. Then, inside this space, the embed-
ding of an object will be a representation of this object inside the lower-
dimensionality space in such a way that some targeted algebraic properties
are preserved. From a topological point of view, one space X is said to be
embedded in another space Y when the properties of Y restricted to X are the
same as the properties of X. However, in our case, we want to target certain
properties of similarities between the different object inputs, such that the
distances inside the embedded space mimics the targeted relationships. For
our problem, this amounts to find a meaningful representation for musical
elements inside a space, in which the distance between the musical entities
would faithfully represent their musical similarity. It means that we seek a
transform that could map every notes and chords to these low-dimensional
vectors, for which the distance between vectors would carry semantic rela-
tions. An example of embedding space is depicted in Figure11. For example,
in this space, the distance between the word embedding vector for “strong”
and the one for “stronger” is the same than between “clear” and “clearer”.
We can see that even though the dimensions of this space do not have a par-
ticular meaning, the metric relationships inside this space do mirror some
semantic meaning.

During the last decades, most of the work devoted to embedding spaces
has been centered on Natural Language Processing (NLP) trough word em-
bedding space models. Indeed, in 2003 Bengio et al. used for the first time a
word embedding inside a neural language model [8]. Following this seminal
work, many word embedding algorithms were developed including the well-
known Latent Semantic Analysis (LSA) [36], the Latent Dirichlet Allocation
(LDA) [12] and the Collobert and Weston model [17] which altogether form the
foundation for most of the current approaches. Since then, several NLP tasks
such as automatic caption generation [55, 56, 69], text classification based on
sentiments [33] or speech recognition [48, 49], include the computation of an

18
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(a) man - woman (b) city - zip code (c) comparative - superla-
tive

Figure 11: Set of visualizations that show interesting patterns relying to the vectors
differences between related words in an embedding space learned with
GloVe. Image from [30]

embedding space for words as their first step to implement more complex
behaviors.
Inspired by these techniques, our first approach was to consider the equiva-
lence that could exist between a musical scores and textual sentences where
each event (note, chord, silence) could be equivalent to a word with temporal
and contextual relations. Hence, in this section, we will present the currently
best-performing models (Word2vec [46, 47], and GloVe [52]) that provides
state-of-the-art results for word embeddings. We will detail in the next chap-
ter how we adapted and then extended these models for processing musical
scores. Moreover, we will present the work of Boulanger-Lewandowski that
reached the best performance on symbolic musical prediction, the task that
we use at proxy to evaluate our approaches.

3.1 embedding spaces

Embedding spaces can be learned through machine learning techniques. In-
deed, we saw in the previous chapter that neural network transform an input
in order to minimize the value of the loss function. Hence, we can manage
to learn a transform that provide a mapping of each samples in a continu-
ous N-dimensional space, that carry information on relationships between
elements.
In the following, we will consider that the learning algorithm is fed with
sentences composed of words such that s = {x1...xn}. In that case, a word
wt is said to be in a context c = {wt−p, ...wt−1,wt+1, ...wt+p}. We will
talk about the past context of wt as {w1, ...,wt−1} and the future context
as {wt+1, ...,wt+n}.
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3.1.1 Word2vec

There are two critical aspects of learning embedding spaces that allows to
produce interesting embeddings and also evaluate their quality. First, the
training objective of the corresponding learning algorithms should make it
effective for encoding general semantic relationships. Second, the compu-
tational complexity of such an objective should be low for this task, while
providing an efficient coding scheme. Hence, the idea is to learn a model
f(wt, ...,wt−n+1) = P̂(wt | wt−11 ) that is decomposed in two parts. First, a
mapping C from any words to a real vector C(i) ∈ Rm that represent the dis-
tributed feature vectors. Then, the probability function over words expressed
with C through a function g which maps an input sequence of feature vec-
tors {C(wt−n+1), ...,C(wt−1)} to a conditional probability distribution over
words for the next word wt. The i-th element of the output of g determines
the probability P̂(wt | wt−11 ) [8]. This architecture is depicted Figure 12.

Figure 12: A classic neural architecture for word embedding. The function is de-
fined as f(wt, ...,wt−n+1) = g(i,C(wt−n+1), ...,C(wt−1)) where g is the
neural network and C(i) is the i-th word feature vector. Image from [8]

Starting from this basic neural model, Mikolov et al. recently proposed the
Word2Vec algorithm, which is tailored around two different architectures,
namely Continuous bag-of-words (CBOW) and skip-gram.
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Figure 13: Continuous bag-of-words and Skip-gram architectures for Word2vec
(Mikolov et al., 2013). The model tent to predict a given word wt from
a context composed by n words before and after the target.

Continuous bag-of-words

The training objective of this architecture is to predict a given word wt from
a context. The main idea behind the model is to use information from the
past and future contexts of given word. Thus, the network take as input both
the nwords before and after the target word wt and fine-tune its parameters
θ in order to output the right prediction (see Figure 13).

Therefore the objective function that the network maximizes is defined as
follows

Jθ =
1

T

T∑
t=1

logp(wt | wt−n, · · · ,wt−1,wt+1, · · · ,wt+n) (12)

We can see that this equation simply means that we try to maximize the
log-likelihood over the whole dataset of words inside their respective con-
text, both in the past and the future.

One of the most interesting properties obtained from these concerns the
distance relationships obtained in the embedding space. Hence, to show the
quality of their results, the authors perform simple algebraic operations di-
rectly on the vector representation of words. For example, they compute vec-
tor X = vector( ′biggest")− vector("big")+ vector("small") and they search
in the vector space for the word closest to X measured by cosine distance. If
this word is the correct answer (here, the word "smallest") the operation is
counted as a correct match. By doing so on several examples, they obtain a
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score that reflects the efficiency of the embedding.
This model is trained on a dataset of 783 million words, in order to obtain
an embedding space representation of 300 dimensions, with a context size
of 10 words. Based on the superlative task defined on a set of 10, 000 triplets,
the accuracy reached by this model is 36.1%.

Skip-gram

While the CBOW model uses the whole context around a given word to pre-
dict it, the skip-gram model task the opposite task. Hence, the model relies
on a single given word input, and tries to predict its whole context words,
both in the past and future (see figure 13).
Therefore, the objective of the skip-gram is to maximize the probability of
a complete context (represented by the n surrounding words to the left
and to the right), given that we observe a particular target word wt. Con-
sequently, the objective to maximize is given by the log-likelihood over the
entire dataset of T words

Jθ =
1

T

T∑
t=1

∑
−n6j6n, 6=0

logp(wt+j | wt) (13)

In order to compute a given context word probability p(wt+j | wt), the skip-
gram architecture use the softmax function. In the previous (CBOW) model,
this is defined for a word given its past context

p(wt | wt−1, · · · ,wt−n+1) =
exp(h>v ′wt)∑

wi∈V exp(h
>v ′wi)

(14)

Where v ′wt is the output embedding of word w and h is the output vector
of the penultimate layer in the neural language network. In the skip-gram
model, instead of calculating the probability of the target word wt given its
previous words, the model computes the probability of a context word wt+j
given wt. Moreover, as the skip-gram model does not use an intermediate
layer, in this case, h simply becomes the word embedding vwt of the input
word wt, which lead to the following equation

p(wt+j | wt) =
exp(v>wtv

′
wt+j

)∑
wi∈V exp(v

>
wt
v ′wi)

(15)

Even though the task might seem extremely hard to learn, this model was
shown to strongly outperform CBOW. Indeed, on the same dataset and same
parameters, the accuracy for the superlative task reaches 53.3%.

3.1.2 GloVe

The main idea behind Global Vectors for word representation (GloVe) is
that the ratio between the co-occurrence probabilities of a word given two
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Probability and Ratio k = solid k = gas k = water k = fashion

P(k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P(k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P(k|ice)/P(k|steam) 8.9 8.5× 10−2 1.36 0.96

Table 1: Co-occurrence probabilities for target words ice and steam with selected
context words from a 6 billion token corpus. Only in the ratio does noise
from non-discriminative words like water and fashion cancel out, so that
large values (much greater than 1) correlate well with properties specific
to ice, and small values (much less than 1) correlate well with properties
specific of steam. (Table and text from GloVe: Global Vectors for Word Repre-
sentation [52])

other words might contain significantly more information than the single co-
occurrence probabilities separately (this concept is better detailed in Table 1).
Hence, it is this ratio that the network will try to encode as a vector represen-
tation. Therefore, the input is no longer a stream of words defined by a slid-
ing window but rather a complete word-context matrix of co-occurrences.
To train the model, the authors propose a weighted least square objective J
that directly aims to minimize the difference between the dot product of the
embedding representation of two words and the logarithm of their number
of co-occurrences

J =

V∑
i,j=1

f(Xij)(w
>
i ŵj + bi + b̂j − logXij)2 (16)

where wi and ŵi are the embedding vectors of word i and j respectively,
bi and b̂j are the biases of word i and j respectively, Xij is the number of
times word i occurs in the context of word j, and f is a weighting function
that allows to assign a relative importance to the co-occurrences given their
frequency.
An exact quantitative comparison of GloVe and word2vec is difficult to pro-
duce because of the existence of many parameters that have a strong effect
on performance (vector length, context window size, corpus, vocabulary size,
word frequency cut-off). This question stirred up heated debate in the ma-
chine learning community. Despite this, GloVe consistently outperformed
Word2vec by achieving better results with even faster training.

3.2 musical symbolic prediction

In order to evaluate the quality of an embedding, we have to find a task that
can reflect (even partially) the efficiency of these representation spaces. In
our context, we decide to test our models on musical symbolic prediction
because we can easily compare our results with the previous works that pro-
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vide the best published results. Indeed, we have access to the same datasets
and the accuracy measure is precisely defined. Moreover, the predictive ap-
proach also showed interesting results in the field of word embeddings [8]
In this section, we will present the current state-of-the-art methods in sym-
bolic music prediction [14] (even though they do not rely on embeddings),
and explain the evaluation methods in details.

3.2.1 Different models

Recent works [14] investigated the problem of modeling symbolic sequences
of polyphonic music represented by the timing, pitch and instrumentation
contained in a MIDI file but ignoring dynamics and other score annotations.
In this context, they exploited the ability of the well-known Restricted Boltz-
mann Machines (RBM) [57] to represent a complicated distribution for each
time step, with parameters that depend on the previous ones [62, 64]. To that
aim, Boulanger-Lewandoswki et al. [14] propose three models and evaluate
them on musical symbolic prediction task, the RBM, the Recurrent temporal
RBM (RTRBM) and its generalization, the RNN-RBM.

RBMs are special kind of neural network that can learn a probability dis-
tribution over the whole set of inputs. There are composed of two layers of
units referred to as the "visible" and "hidden" units v and h that have sym-
metric connection between them and no connection between units within a
layer. The joint probability of a given v depending of the inputs and h is

P(v,h) =
exp(−bTvv− b

T
hh− hTWv)

Z
(17)

where bv, bh and W are the model parameters and Z is a normalizing func-
tion that ensure the probability distribution sums to 1.
Inference in RBMs consists of sampling the hi given v (or the vj given h)
according to their conditional Bernoulli distribution defined as

P(hi = 1 | v) = σ(bh +Wv)i

P(vj = 1 | h) = σ(bv +W
Th)j

(18)

where σ(x) ≡ (1+ e−x)−1 is the sigmoid function.

The Recurrent Temporal Restricted Boltzmann Machines, developed by
Sutskever et al. in 2008 [61], is a sequence of RBMs with one at each time
step. Hence, its parameters become time-dependent and denoted b(t)v , b(t)h ,
W(t). There depend on the sequence history at time t. Finally the RNN-RBM
is a generalization of the RTRBM.
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3.2.2 Evaluation method

To compare the models introduced previously, the authors rely on a predic-
tion task that consists of predicting a given MIDI frame knowing its past
context. Throughout the literature, this task is evaluated with four reference
datasets of varying complexity. All datasets are MIDI collections split be-
tween train, test and validations sets. In order to perform an objective eval-
uation, we used exactly the evaluation method, sets and splits as described
by [14].

piano-midi .de is a classical piano MIDI archive introduced by Poliner &
Ellis [54].

nottingham is a collection of 1200 folk tunes1 with chords instantiated
from the ABC format.

musedata is an electronic library of orchestral and piano classical music
from CCARH2.

jsb chorales is the entire 382 four-part harmonized chorales by J.S Bach
introduced by Allan & Williams [1]

In order to evaluate the success of various models, the frame-level accuracy
[6] of the prediction is computed for each MIDI frame in the test set. This
measure was specifically designed for evaluating the prediction of a sparse
binary vector. Indeed, a purely binary measure corresponding to either a per-
fect match between the prediction and the groundtruth, or an error in any
other case, might not reflect the true success of the underlying algorithm.
For that reason, the frame-level accuracy measure is usually used to allevi-
ate the problem.
To obtain this measure, we first compute three variables depending on the
prediction vector and the groundtruth one. The true positives TP is the num-
ber of 1 (active notes) that the model predicts correctly, the false positives FP
is the number of 1 which should be 0, and the false negatives FN is the op-
posite (0 that should be 1). Note that the authors do not take into account
the true negatives value due to the sparsity of a pitch class vector. Indeed,
this property of sparsity leads to a very high number of true negatives (a
wide percentage of 0 in both vectors), which might skew the measure by
artificially inflating the success of these algorithms. Hence, from these three
variables, we can calculate an overall accuracy score for a given predicted
vector as follows

Acc =
TP

TP+ FP+ FN
(19)

However, we can see that this measure fails to account for rightfully pre-
dicted rests (vectors filled with only 0), as even with a perfect prediction, we

1 ifdo.ca/~seymour/nottingham/nottingham.html

2 www.musedata.org

ifdo.ca/~seymour/nottingham/nottingham.html
www.musedata.org
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obtain TP = 0. To account for this case, we introduce in this work a new
measure of accuracy where a term is defined specifically for the rests and
the global accuracy score forN predicted vectors with at least one active unit
and M vectors of rest becomes

Accuracy =
1

M+N

(
N∑
n=1

TPn

TPn + FPn + FNn
+

M∑
m=1

1

1+ FPm

)
(20)

This proposed measure of overall performance is now bounded between
0 and 1 where 1 corresponds to perfect prediction. We will rely on this
measure to evaluate the performance of different models in the subsequent
chapter. The results reported by Boulanger-Lewandoswki are presented in
Table 3.



4
S Y M B O L I C M U S I C A L E M B E D D I N G S PA C E

We now introduce our approaches to obtain a symbolic musical embedding
space automatically through learning algorithms. As discussed in Chapter 2,
the results of learning algorithms highly depend on the dataset and the tasks
that we use to train them. Hence, in the first section, we will present all the
datasets we used along our work. Then, we introduce our main contribution,
by proposing two main approaches. The first one is based on previous works
in the NLP field that yielded very efficient word embeddings, as introduced
previously (see Section 3.1). Starting from the analogy that musical scores
could be considered as textual sentences with temporal and contextual re-
lationships alike, we tried to adapt the major word embedding models to
musical data.
Nevertheless, some critical differences still exist between music and text. In-
deed, a text is composed of a very large corpus of words with very rare
occurrences (except certain words like "the" or "a"). Oppositely, a musical
score is composed of a little number of elements (notes and chords) that oc-
cur relatively often. Moreover, even though the contextual content of a text
could be akin to its temporal component, there is a crucial temporal aspect
in music that is defined by its rhythm (adding the duration dimension to
an otherwise set of ordered elements). Indeed, the perception of a musical
phrase highly depends on the duration of each event and not only on their
sequential position. For these reasons, we developed a new model based on
a CNN (see Section 2.2.2) in order to capture relative harmonic relationships
independently of the global pitch of the notes. Furthermore, we augment
this approach with a LSTM (see Section 2.2.3) to account for more complex
temporal dependencies.

4.1 materials and method

4.1.1 Datasets

In order to train any neural network, we need a large amount of data that
represents the information we want to learn (see Chapter 2). Therefore, in
our context, we would require as much machine-readable musical scores as

27
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possible. Hence, the first step of our research was to collect as much rele-
vant MIDI files as possible. Overall, 93, 237 tracks have been gathered, MIDI
files taken from five different large databases. We collected 3, 187 files from
GreatArchive, 46, 918 files from IMSLP, 14, 415 files from Kunstderfuge, 675
files from Mutopia and finally 28, 042 files from in-house IRCAM collections.
Altogether, these tracks represent a total of 15, 184 different composers from
various eras. Unfortunately, the annotation and naming schemes for com-
posers and track names vary widely amongst the different databases, which
made the merging process difficult. To alleviate this issue, we first computed
the Levenshtein distance between all composer names and used a .2 thresh-
old of differences, under which the composers were considered equivalent.
These automatic assignments were then manually checked in order to cor-
rect or remove any inaccuracy. Finally, every MIDI channels were filtered
using the same name-matching procedure in order to ensure that they were
linked correctly to a pre-defined set of instruments.
We note here that the word embedding models presented earlier (see Chap-
ter 3), which we will adapt to musical data are trained with several billions
of token, which is several orders of magnitude above our current data col-
lection. Furthermore, collecting a large set of clean MIDI scores is more diffi-
cult than English text which is plentiful on large websites such as Wikipedia.
These issues renders impossible the possibility to attain a dataset as wide
as those used in NLP research. Hence, to fill this lack of information we
used the so-called data augmentation method. This technique consists in ap-
plying a set of mathematical transformations that preserve structural proper-
ties of the input data. Therefore, we also apply transpositions to the dataset,
ranging from six half tones higher to six lower. That way, we multiply the
cardinality of our dataset by twelve (which still remains largely under the
cardinality of NLP datasets).

The MIDI format encodes all the information about the scores that we
need but it is not ideally suited to be manipulated inside learning algorithms.
Hence, we imported all the MIDI files in a piano-roll representation matrix for
each channel. This means that, for each instrument and at every time step
(given a certain time quantification), we encode a 128-dimensional vector
where each value corresponds to the dynamic of a note ranging from C-2
to G8. Therefore, each dimension in this vector takes a value between 0 and
127.

4.2 word embedding algorithms adapted to musical scores

The two models introduced previously (see Section 3.1) perform very well
when applied to learning word embedding spaces. The basic assumption
of Word2vec [46, 47] is that the semantic meaning of a word depends on
the context where it occurs. Despite a different approach based on the co-
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occurrences of each word, GloVe [52] depends on the same overall assump-
tions. Therefore, our first objective was to evaluate this context-dependent
hypothesis to the application of musical scores. Hence, we adapted our data
in order to use it with these algorithms, while performing some adjustments
on the algorithms themselves. In this section, we introduce our methodology
and then the results obtained. Note that we separate these results in two dif-
ferent parts, one specifically for the embedding and the other including the
prediction.

4.2.1 Methodology

As we will be relying on existing models, we first need to process the input
data to obtain the same representation used in the original works. Word2vec
relies on a text file (where each line represent a separate sentence) and GloVe
uses the co-occurrence matrix (between all the words in the corpus) as input.
In order to provide a text input based on our MIDI scores, we decided to con-
sider each chord (pitch vectors) into a specific word. For instance, a vector
with non-zero values at the 37th, 41st and 44th positions (counting from 1 to
128) becomes the string of characters "C1E1G1". Hence, for each new event,
we produce a word representation for the corresponding chord and then
separate each word with a space, leading to a text-like representation which
transcribes the musical scores as sets of sentences. However, due to the time
quantification, MIDI events that last more than one time steps lead to succes-
sions of identical words. This contradicts with the fixed-context hypothesis
for textual analysis used by the algorithms that we try to adapt. Indeed,
numerous repetitions would lead to useless contexts that could hamper the
learning phase and skew the results. To alleviate this issue, we keep only
one occurrence per musical event in order to obtain our text-based musical
score. It is important to note that, in doing so, we discard every information
regarding rhythm and base our musical embedding solely on the sequen-
tial position of each chord. We rely on the same simplification in order to
construct the global co-occurrence matrix for GloVe.

4.2.2 Embedding

Once the training phase completed, we obtain a vector representing the po-
sition in the embedding space for each musical events encountered in the
training corpus. In order to evaluate if the model has successfully learn
some musical concepts, we firstly project the embedding through the t-SNE
algorithm to search interesting patterns that could reflect semantic relation-
ships. The projection of a large part of the objects can highlight the global
structure of the embedding when the representation of only few given sym-
bols can show some more specific features. We present this analysis for our
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embedding space obtained from the Skip-gram architecture of Word2vec in
Figure 14.
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Figure 14: Embedding space learned with Word2vec (with the skip-gram architec-
ture) and projected through the t-SNE algorithm. On the top, we can see
the global structure of our embedding. The red points represent the note
alone, the magenta points represent the chords containing a minor third,
the black points represent the chords containing a major third and the
green points represent the chords containing a fifth. On the bottom, we
can see a representation of few particular points that could exhibit geo-
metrical relations. Even if this embedding does not provide a represen-
tation as clean as we expected, we can notice that the distances between
the C4 major chord and the C4 minor chord and between the C3 major
chord and the C3 minor chord are equal.

We can see that we do not have the clean relations shown in text applica-
tions. Indeed, we expected the emergence of different clusters in the global
representation but the points are organized sparsely. However, in the re-
stricted projection, we can see that the distance between the C4 major and
minor chords is the same than the one between the C3 major and minor
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chords. this pattern might show a beginning of learning on musical con-
cepts, as during the training we did not provide any supervised information
about what major and minor mean.

4.2.3 Prediction

In order to properly compare the different models, we rely on the same
tasks, datasets, splits (train, test, valid see Section 2.1.2) and accuracy mea-
sure defined in the symbolic music prediction literature [14]. Hence, we use
the prediction task and the four datasets presented in Section 3.2.2. We im-
plemented these tasks and evaluated both of the state-of-the-art models at
different context window sizes. We report the results of our experiments on
the JSB Chorales dataset in table 2. Through this results, we can see that
GloVe did not perform well on the prediction task. Its score being close to
the random function, we can infer that the ability of this model to learn se-
mantic relationships is close to zero. Several reasons may be responsible for
this failure. First, this model was tailored for a very large amount of tokens
and, despite our data augmentation process, we used one hundred times less
of samples than in the original shape. Moreover, besides the lost of temporal
informations, some problem may have occurred during the co-occurrence
computation.
On the other hand, the prediction score of Word2vec are rather bad but two
times better than the random function, which might show a beginning of
learning as the embedding leaded us to believe.

Random Glove Word2vec

Context size ACC % ACC % ACC %

5 4.42 4.89 6.94

7 4.42 4.14 UC

9 4.42 4.41 UC

Table 2: Expected accuracy for both word embedding models adapted to musical
scores in the symbolic prediction task on the JSB Chorales dataset depend-
ing on the context windows size. The results noted UC are still under cal-
culation.

4.3 new model - cnn-lstm

Besides the efficiency of recently developed word embedding algorithms, we
have seen in our first experiment that the possible analogy between musical
scores and textual sentences might be insufficient to correctly learn on musi-
cal objects. Oppositely, we introduce in this section a new model, that takes
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its roots from the critical differences that exist between textual and musical
data. Indeed, a text is composed by a very wide variety of symbols (words)
that appear sparsely across the data, while musical scores are defined by
few symbols that re-occur frequently along the score. Moreover, the crucial
notion of octave in music does not exist in text, while we would expect any
musical embedding space to deal with it adequately. Another musical aspect
that the word embeddings algorithms are not able to handle correctly is the
rhythmic information. In these models, there are no components that aim
to capture information about time dependencies. Given these observations,
we tried to build a model that could fill all these lacks through two main
modules, a CNN (for handling transposition-invariance) and an LSTM (for
targeting temporal relationships). (Section 2.2).

4.3.1 Architecture

We have seen previously that a CNN is able to extract recurrent patterns in
a given matrix through the convolution of small kernels across this matrix.
The idea here is to use this property in order to learn different chord pat-
terns in an octave-invariant manner. In other words, we expect that a given
transformation layer will activate the same features from the input vectors
encoding "C1F1A1" as for the one encoding "C2F2A2". To do so, we rely on
a musically-motivated convolutional architecture with the kernel sizes set
to 12 in height (pitch dimension) and 1 in width (time dimension), while
having a step size in the pitch dimension set to 1. Finally, a zero-padding is
applied to this dimension in order to account for lowest and highest notes.
Through this architecture, we influence the model to learn recurrent features
that would be octave-invariant.

Here, we propose two different architectures for the convolutional net-
works. First, we build the simplest CNN possible by relying on a single
convolutional layer, followed by a Batch-Normalization (BN) and a non-linear
transform. We introduce succinctly here the batch normalization principle [29].
Most machine learning models rely on batches of data instead of single in-
puts in their learning phase (to improve computational efficiency and gradi-
ent stability). However, each batch might present different statistics (corre-
lated examples), which could skew the learning. By shifting these inputs to
zero-mean and unit variance transforms with respect to a given batch, this
problem is largely avoided. Furthermore, this improved method allows to
use a higher learning rate and potentially provide a faster learning.
The second architecture is a more complicated model called DenseNet that
have been developed very recently by Huang et al. [27]. Starting from the
observation shown by recent works, that convolutional networks can be
more efficient to train if they contain shorter connections between layers
(called residual connections), the authors introduce a network which connects
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each layer to every other following layers in a feed-forward fashion. Hence,
for a convolutional network with K layers, the DenseNet has K(K + 1)/2

direct connections instead of K. Besides significant improvements over the
state-of-the-art object recognition benchmark tasks, these networks "alleviate
the vanishing-gradient problem, strengthen feature propagation, encourage feature
reuse, and substantially reduce the number of parameters"1. This architecture is
depicted in Figure 15.

Figure 15: A 5-layer dense block with a growth rate of k = 4. Each layer takes all
preceding feature-maps as input. Image and caption from [27]

This architecture can be adapted depending on a wide set of hyper-parameters,
listed in [27]. These parameters include the number of dense blocks (succes-
sive fully-connected layers) D, the number of filters in the first block k0,
the growth rate k which regulates the number of kernels in the lth layer to
k× (l− 1) + k0 and finally the reduction factor r which reduces the number
of filters in transition layers. For our experiments, we set D = 1, k0 = 200,
k = 12 and r = 0.5.

The points in our embedding space will simply be defined as the activa-
tion outputs of this Dense CNN, by producing a different N-dimensional
vector for each input chord. However, the Dense CNN outputs very large
activation matrices (feature maps), whereas we would like to obtain a space
with a reasonable dimensionality. Therefore, the Dense CNN is followed by
a fully-connected MLP (see Section 2.2.1) which allows to constrain the tar-
get dimensionality of the embedding. Here, we use a MLP with a depth of
three layers and a number of units of 1500, 500, and 50 respectively.
As discussed previously, we also want to capture the information about the

1 Huang et al. in [27]
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time dependencies between different input frames. To that aim, we add an
LSTM network (Section 2.2.3) after the MLP to target specifically these rela-
tionships. Hence, the LSTM uses as input the compact embedding represen-
tation of each input frame outputted by the first part of the network. This
kind of representation might lead to an easier learning than with full MIDI
vectors, as the corresponding space has a lower dimensionality but most im-
portantly should exhibit relationships between musical objects. In our case,
we propose an LSTM network with two layers and 1500 hidden units for
each layer. The complete architecture of our model is depicted Figure 16.

Figure 16: CNN-LSTM architecture for learning a 50-dimensional musical embed-
ding space. The red numbers show the sizes of the data at each step of
the feed-forward pass.

To train our model, we propose two methods. The first one consists in
training all the modules of the model together and therefore optimize the
whole parameters during the same pass in order to minimize the loss of
the final prediction. However, this model being quite complex (composed
by a large number of parameters), it can make the training phase very long
and unstable. Hence, we propose a second approach which is to pre-train
the CNN before doing the complete training. To do so, we start by training
the CNN in an encoder/decoder manner (similar to the embedding task).
This means that we force the Dense CNN to encode the input frames as a
vector of the desired dimensions and then try to retrieve the original vector
by applying the inverse transform. Then, the loss is defined by the distance
between the inputs and the reconstructed vector. Thus, by minimizing this
loss, the CNN will tend to project the data in a lower dimensional space that
carry enough information to be able to retrieve the original representation.
Once this CNN is trained (when an arbitrary threshold on the loss value is
reached), we train the entire network on the previously defined prediction
task.
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4.3.2 Embedding

With this architecture, the CNN (inside the whole network) can be seen as
an embedding that will be adapted based on temporal relationships through
the LSTM layers. The projection of the embedding show similar results than
the one learned through adapted word embedding models (see Figure 14).
We intend to improve our visualization method in order to highlight more
interesting patterns in a future work.

4.3.3 Prediction

We implemented our model and evaluated it on the same task and datasets
as previously introduced. We report here the global results of expected accu-
racy, while comparing to the current state-of-the-art in Table 3.

Model Piano-midi.de Nottingham MuseData JSB Chorales

ACC % ACC % ACC % ACC %

Random 3.35 4.53 3.74 4.42

1-Gram (Gaussian) 6.04 21.31 7.87 17.41

GMM + HMM 7.91 59.27 13.93 19.24

RBM 5.63 5.81 8.19 4.47

GloVe-Music UC UC UC 4.89

Word2vec-Music UC UC UC 6.94

CNN-LSTM (Pre-train) UC UC UC 13.94

CNN-LSTM UC UC UC 22.76

RTRBM 22.99 75.01 30.85 30.17

RNN-RBM 28.92 75.40 34.02 33.12

Table 3: Expected accuracy for various musical models in the symbolic prediction
task on four different datasets [14]. The results noted UC are still under
calculation.

This results show that our proposed models perform a lot better than
GloVe and Word2vec on the prediction task. However, we do not reach the
higher scores of the state-of-the-art. Moreover, our pre-training method do
not improve the prediction results yet but a lot of works still remain to be
done in order to improve our encoder/decoder training phase such as fine-
tuning hyper-parameters or choosing the dataset and the loss function. How-
ever, in comparison with the RBM-based models that are very efficient on the
prediction task, our model is very simple in terms of number of parameters,
and also provide an embedding in the middle of the system.
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A P P L I C AT I O N S

Many applications could be developed based on an adequate embedding
space for symbolic music. Here, we introduce different proposals that we
implemented along this internship, that are split in two main types of ap-
plications. The first one concerns the visual applications that we can obtain
by applying the t-Stochastic Neighbors Embedding (t-SNE) algorithm [41].
Despite the fact that our embeddings are 50-dimensional vectors, this algo-
rithm allows to visualize the learned spaces in a two or three-dimensional
map keeping the main distance relationships between points in the original
space. That way, we can analyze the potential correlations between musical
symbols that emerge from the spaces, and obtain an efficient analysis tool.
Secondly, we introduce different propositions to produce musical applica-
tions such as scores transformation or even direct generation.

5.1 visual

5.1.1 t-SNE visualization of symbols

A possible approach to analyze musical concepts through an embedding
space is to visualize it and to evaluate the different geometric relationships
that could emerge between musical objects, and try to relate them to higher-
level abstractions. However, our embedding spaces being high-dimensional,
we have to rely on the t-SNE algorithm that produces a projection of such
spaces into two or three-dimensional maps while retaining the global struc-
ture of the original space. An example of t-SNE visualization is provided in
Figure14

In order to go further with these types of musical analysis, we developed
an interactive embedding system, allowing to dynamically exhibit different
types of relationships. Given some group of symbols (for instance notes
alone, chords containing a third or a fifth) this tool provides a quick and
clear view of the positions of each object with regards to its group member-
ship. Moreover, the system can outline specific harmonic relationships that
will be put forward when we parse across the different symbols. Besides
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analysis, this prototype interface could be used in a pedagogical manner,
showing in a very visual way some musical pieces or concepts.

5.1.2 Track paths

In order to analyze a particular musical piece, we can project every symbols
that composed it and produce a sequential path that link them in the embed-
ding space. In doing so, we obtain the complete temporal trace taken by the
given track in the embedding. By analyzing the geometric properties of this
path, we can infer some knowledge about the composition process or even
discover temporal and harmonic structures of this musical piece.

5.2 musical

5.2.1 Symbolic generation / transformation

In this section, we investigate the use of these spaces as a musical genera-
tion tool. Hence, we developed a program that can modify any given track
by processing a geometrical transformation of its path inside the embedding
space, rather than working on the raw data itself. The intuition behind this
system is that we could obtain different musical pieces following the same
higher-level structure by applying sets of linear operations (such as trans-
lation or rotation), on every symbols that composed the piece. Then, we
replace all the original MIDI events with the most similar (nearest neighbor)
of the transformed points as captured by the cosine distance in the embed-
ding space.



6
C O N C L U S I O N

6.1 discussion

The goal of this internship was to develop new representations of symbolic
music in an empirical manner through a machine learning framework.

Firstly, we focused on the adaptation of two efficient words embedding
models to musical symbols. We tested the performance of the resulting musi-
cal embeddings through two different approaches. First, we started by using
the t-SNE algorithm in order to project our high-dimensional embedding
space into a 2-dimensional map and, then, searching possible geometric re-
lationships between objects that could exhibit a learning of musical semantic
concepts. On the other hand, we evaluated the embeddings through a pre-
diction task which, once again, reflects the ability of the space to represent
musical data in a meaningful manner. For both of these tasks, the musical
embeddings that we directly adapted from the NLP field show limited to
poor results and also, did not appear to be efficient in our context. This can
be possibly explained by the fact that the first hypotheses made to shape
the word embedding models on textual symbols do not translate directly
to musical symbols. Indeed, there are some critical features in the musical
symbols that we do not retrieve in a text such as the notion of pitch class
(octave-invariance) and the important temporal dependencies defined by the
rhythm.

Starting out from these observations, we proposed a new model able to
fill these gaps. To that end, we used a Convolutional Neural network (CNN)
followed by a Long Short Term Memory (LSTM) network that we trained
on the same task. With the same evaluation method, we already showed the
widely improved results for these types of models on the prediction task.
However, it is a complex network that contain a large amount of parameters
that made this training very sensitive. Hence, we proposed an alternative for
the training phase which consists of alleviating the tuning of these parame-
ters altogether, by rather first pre-training the CNN in an encoder/decoder
framework. Unfortunately, this method did not improve the prediction re-
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sults yet, but the pre-training phase can still largely be improved.

In order to train the most efficient models as possible, we tried to build
a dataset with a large amount of MIDI files. But collecting proper musical
scores is not easy, and besides several cleaning and checking processes, we
believe that some errors could remain in a large part of the scores, which
could skew this learning phase.

In conclusion, we succeed to build a very promising approach that aims
to represent symbolic music objects in a space that carry semantic relation-
ships between the elements. With many possible improvements, our model
already shown very decent results on the hard task of predicting musical
events. Moreover, we proposed several applications based on such represen-
tations that could allow both to infer knowledge on musical concepts and to
increase musical creativity.

6.2 future work

After improvements on the proposed approach, we intend to combine the
symbolic embedding space with audio representations. By learning joint
multimodal embedding spaces, we could link together symbolic, acoustic
and perceptual sources of information to disentangle the correlations that
emerge from orchestral music. To that end, a possible method could be to
use zero-shot learning [51] that is based on the idea that multiple modalities
of a same object lead to widely different raw data, but still carry a common
semantic content. It has been shown that these spaces provide astonishing
regularities and metric relationships over semantic concepts [45] allowing
for analogies, knowledge inference and missing modality generation [60]
that can be exploited in our context to attain multiple musical and peda-
gogical goals. Furthermore, automatic inference through embedding spaces
can decipher the signal-symbol relationships to provide optimal features for
orchestration, by targeting correlations existing in the work of well-known
composers.
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