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Vincent MARTIN

Abstract

This report aims at establishing, in an empirical way, the influence of the
acoustical characteristics of a sound environment on the musical performance of a
group of musicians. The environment acts as a transformer of the sound produced
by a musician, and the adjustments during a performance are realized intuitively by
the latter. Some musical treatises of the 18th and 19th centuries are dedicated to the
musical techniques that can be used in order to adapt to specific acoustical conditions.
For instance, it is generally assumed that high reverberation imply a slower tempo.

However, the specific relation between musical performance and room acoustics
was rarely the object of scientific research. The work accomplished during my intern-
ship is a continuation of the work carried out by my two tutors at the department
”AudioKommunikation” of the Technical University of Berlin : Pr. Stefan Weinzierl
and Dr. Zora Schaerer-Kalkandjiev. The first conducted studies to describe the
performance of musicians using descriptors taken from recordings of various musical
performances (solo, chamber music, grand orchestra) while the second worked during
her thesis on stage acoustics’ coefficients that are most influential during a musician’s
solo musical performance. Those works will be the basis of the state of the art in this
report.

A database of recordings was already available at the beginning of the in-
ternship: several quartets of musicians were recorded in different rooms. Initially,
a method of onset detection adapted to the database, exploiting in particular the
score of the played songs, is developed. The descriptors of the performance are then
extracted using the division of the recordings previously carried out. Then, based
on the acoustic characteristics of the different rooms a statistical model is developed
establishing a relation between these acoustic characteristics and those of the different
performances recorded.

Keywords : Musical performance, Sound environment, Onset detection, Per-
formance descriptors
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Resumé

Ce rapport de fin de stage vise à établir, de manière empirique, l’influence
des caractéristiques acoustiques d’un environnement sonore sur la performance mu-
sicale d’un ensemble de musiciens. L’environnement agit comme un transformateur
du son produit par un musicien, et les ajustements dans la performance sont réalisés
de manière intuitive par ce dernier. Ils existent certains ouvrages du 18ème et 19ème
siècle qui traitent des techniques de jeu recommandées pour s’adapter à certaines con-
ditions acoustiques. Par exemple il est souvent admis qu’une réverbération importante
implique de jouer avec un tempo plus lent.

Cependant la relation entre performance musicale et acoustique des salles fut
rarement l’objet de recherche scientifique. Le travail réalisé pendant mon stage
s’inscrit dans la continuité des travaux réalisés par mes deux tuteurs au département
”AudioKommunikation” de l’Université Technique de Berlin Pr. Stefan Weinzierl et
Dr. Zora Schaerer-Kalkandjiev. Le premier a conduit des études visant à décrire la
performance de musiciens à l’aide de descripteurs extrait d’enregistrements de per-
formances musicales diverses (solo, musique de chambre, grand orchestre) tandis que
la seconde a travaillé au cours de sa thèse sur les coefficients d’acoustique des scènes
qui sont les plus influents au cours de performance musicale solo de musicien. Cela
constituera la base de l’état de l’art de ce rapport.

Une base de donnée d’enregistrements était déjà disponible au début du stage
: plusieurs quartets de musiciens ont été enregistrés au sein de différentes salles.
Dans un premier temps une méthode de détection d’attaques adaptée à la base de
données, exploitant nottament la partition des morceaux joués, est développée. Les
descripteurs de performance sont ensuite extraits en fonction du découpage des enreg-
istrement précédemment réalisé. Ensuite à partir des caractéristiques acoustiques des
différentes salles un modèle statistique est développé pour établir une relation entre
ces caractéristiques acoustiques et celles des différentes performances enregistrées.

Mots-clés :Performance musicale, Environnement sonore, Détection d’attaque,
Descripteurs de performance
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Chapter 1

Introduction

1.1 The AudioKommunikation Group

This internship took place in the ”AudioKommunikation Group” of the Tech-
nical University of Berlin (TU-Berlin) which is one of the major scientific university
in Germany. The AudioKommunikation Group focuses on research and teaching in
communication of music and speech in acoustical or electro-acoustical systems. In
particular the projects conducted at the department relate to the reproduction of
sound environment with binaural synthesis or sound field synthesis, the study of the
musical content,and technologies for composition and realization of electro-acoustic
music. The department also organizes a master program in Audio Communication
and Technology.

The department, leaded by Pr.Weinzierl, runs two electronical studios with
a 12 resp. 8 channel loudspeaker setup, a wave field synthesis laboratory with 192
channels, a 3D media lab including 180◦ panorama projection and dynamic binaural
reproduction, and the world’s largest wave field synthesis installation.

My two supervisors Pr. Weinzierl and Dr. Schaerer Kalkandjiev run a project
funded by the German Research Foundation (DFG) ”Room acoustics and the per-
formance of music” which aims to investigate the influence of room acoustics on solo
and ensemble music performances. The work done during this internship represent
my contribution to this project.

1.2 Objectives

As mentioned, the work I have done during my internship is part of a larger
project which aims to identify the influence of room acoustics on music performances.
This project will only focus on small ensembles of musicians (string quartet and brass
quartet) playing classical pieces. As the use of empirical method is what was chosen
at the beginning , this results to divide the problem in three different research focuses
:
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In one hand it was needed to investigate on how to characterize the performance
of an ensemble with a set of coefficients, following a method that does not need a
human intervention.

In the other hand, it was important, before any statistical analysis, to choose
which acoustical properties were relevant to the point of view of a musician and extract
the corresponding coefficients.

In the end, based on the results of these two previous investigations, it will be
possible to test different regression models in order to enlighten the relation between
room acoustics and performance characteristics.

1.3 Organization of the report

Before the analysis of the recordings, it was important to study the early theory
about performance and room acoustics. Therefore, Chapter 2 will focus on the state
of the art and some prerequisites for the comprehension of stage acoustics and the
software associated that was used

Chapter 3 will describe how the recordings of the ensembles were made, and
the nature of them.

Chapter 4 will focus on the method used for the analysis of these recordings,
the goal during this part of the work was to be able to characterize the performance
of each recording

Chapter 5 will develop the statistical method used to link the characteristics
obtained in the previous chapter and the acoustical coefficients of the concert venues
corresponding to the recordings and how those where selected.

Finally, Chapter 6 will present the results obtained through this empirical
investigation and will be evaluated, the conclusion and the possible further research
and improvements will be in Chapter 7
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Chapter 2

State of the art

2.1 Performance and room acoustics

In this section, the concept of performance will be defined as it is considered
in this report. Moreover, the litterature as the point of view of musical scholars and,
more recently, room acoustic research will be listed below.

2.1.1 The concept of performance

A musical performance can be defined as a unique physical rendition of a score
into a listener’s experience. This concept implies that a performance is not only
defined by the score, but also by the interpretation of the performer himself, According
to Clarke [4] : ”animate the music, to go beyond what is explicitly provided by the
notation or aurally transmitted standard - to be ’expressive’”. However a performance
is supposed to represent the musical ideas of the composer, for a better understanding
Figure 1 propose a representation of the performance process.

In this chain of communication the room acoustics play the role of a transformer
of the sound event which will influence the listener’s and performer’s experience. That
will lead the performer to correct his way of playing in order to adapt specifically to
his acoustic environment.

Figure 2.1: Chain of communication for a music performance (from [1])
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2.1.2 Musical scholars’ point of view

Scholars and musicians produced recommendations on the way to adjust de-
pending of the room acoustics, several musical treatises of the 18th and 19th century
explained precisely how a musician should react to specific acoustical conditions.

For instance, it was admitted that a larger room implies that a musician should
play on a slightly slower tempo [11] ”If one plays in a big place that resounds strongly
a slightly slow trill will have a better effect than a fast one. Because an all too
quick movement of the tones is confused by the reverberation and hence the fast
trill is blurred.” This relation between room volume, reverberation time and certain
temporal aspects in a musical performance is still up to date today. The violonists
Borciani and Galamian [9] also theorized other aspects of the musical performance,
for solo and quartet performances, such as dynamics and articulation.

To sum up with Flesch’s and Blum’s work : [6] [2]

• Slower tempo in case of large reverberation.

• Weaker loudness in large halls, wider vibrato, separated ligatures. In dry halls,
on the contrary, a prolongation of tones is recommended.

• Weaker attack in case of a large hall.

• In large halls but with small reverberation larger loudness.

2.1.3 Room acoustic research

Most of the literature focuses on the influence of room acoustics on the tempo
and dynamic strength (loudness).

Naylor [18] studied the perception of tempo by musicians in different rooms,
in his experiment different musicians had to tap synchronised with the tempo of
different pieces. The decay of the notes were artificially intensified in some cases
to simulate reverberant and dry rooms. Naylor brought to light that the error of
synchronisation were increasing with a higher decay as the attack of the tones were less
defined when musicians hear it. Moreover, in real performing conditions he observed
that sharpening the attack was a way for musicians to ”adapt” to high reverberant
rooms.

Kawai et al. in 2015 and Bolzinger S. in 1994 [13][3] measured different mu-
sicians playing a grand MIDI piano for different pieces in different simulated sound
fields producted with loudspeakers. The tempo, loudness and use of the pedal were
measured. And if the results for tempo were unsystematic, loudness appeared to
be negatively correlated to the quantity of early sound reflections (section 2.2), and
a very strong negative correlation was brought to light between the reverberation
time (section 2.2) and the use of the pedal which was intuitively described in musical
treatises.

Kato et al. (2007) [12] and Schaerer (2015) [22] pointed similar correlations,
and through interviews of musicians have shown that most performers are conscious
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of these effects and that tempo was not taken into account in their way of adapting
to different room acoustics.

The different studies agrees on these different aspects of the influence of room
acoustics on musical performances (solo and ensemble) :

• Loudness is increased in rooms with small reverberation time

• Higher reverberation time led to the use of sharpened attacks (stronger agogic)

• No clear relation on tempo, the influence of the type of instrument seems to be
high and the technique of adapting may differs from a musician to another

These results incite to explore other performance and room acoustical param-
eters, and not only those quantifying reverberation of a room as they do not seem
to give enough visibility to establish relations. That is why other room acoustical
parameters will be taken into account in this report. (Section 2.2)

2.2 Stage acoustics theory

2.2.1 Stage acoustics coefficients

Considering the previous studies, it seems important to cover more aspects of
room acoustics than just reverberation, as musicians are able to differentiate more
aspects. And being able to differentiate these different aspects mean that there is a
possibility that these aspects influence their way of playing.

Gade (1986) [8] ran a series of interview to list all the aspects of room acoustics
perceived by musicians, which was completed by Sanders (2003) [20] : ’reverberance’,
’support’, ’timbre’, ’dynamics’, ’clarity’, ’balance’ and ’warmth’. These research con-
tributed to establish the ISO 3382-1 (2009) which standardizes the measurement pa-
rameters of room acoustics. The following paragraphs contain the different coefficients
used in the further analysis of acoustic environments.

Furthermore, most of these coefficients will be calculated for third octave bands.
To reduce the number of value per coefficients, an average will be done over certain
third-octave band as it is recommended for the measurement of room acoustics in ISO
3382-1. (Annex A for the details)

Reverberance

Reverberation time RT is the time for a sound to decay, between a source and
a receiver, of a certain amount of decibels, after the perception by the receiver of the
direct sound of the source is not received. In this internship we will use the value of
30 decibels.

Early decay time EDT is the decay time for 10 decibels. This parameter cor-
respond to the perception of the strength of the reverberance, while RT is considered
to be for the perception of the duration of the reverberation.
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Support

According to performers, the important factors during a performance for a mu-
sician in an orchestra is the capacity to hear his own instrument, the others musicians’
instruments, and finally the acoustic response of the hall. [7] These different sounds
can be considered in three categories : the early reflections, the direct sound, and the
late reflections.

The most recognized parameters to quantify these reflections in stage acoustics
are those proposed by Gade. [8] These two parameters have been integrated in the
standard ISO-3382-1.

For describing the assistance of early reflections the parameter used is STearly:

STearly = 10log(

∫ 100ms

20ms
p21m(t) dt∫ 10ms

0ms
p21m(t) dt

)[dB]

p1m : the pressure measured at 1m distance from the source

It quantifies the proportion of energy of the early reflections compared to the
direct sound.

To describe the perception of the reverberation of the hall the parameter used
is STlate :

STlate = 10log(

∫ 1000ms

100ms
p21m(t) dt∫ 10ms

0ms
p21m(t) dt

)[dB]

The upper limit of 1s was chosen to save calculation time considering the influ-
ence of later response as neglictable in the perception of the acoustic of most halls.[27]
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Figure 2.2: Example of an impulse response

In figure 1 : the part between the red line (delay of the sound between the
source and the receiver) and white line (10ms after delay) is the part considered as
the direct sound, between the red and yellow line (103 ms after delay) is the part
corresponding to the early reflections, the rest after the yellow line corresponds to the
late reflections.

These parameters have been extended by R.Wenmaekers et al.[28] in order to
be used in different source-receivers distance d configurations by integrating the delay
time :

STearly,d = 10log(

∫ 103ms−delay

10ms
p2d(t) dt∫ 10ms

0ms
p21m(t) dt

)[dB]

STlate,d = 10log(

∫ infinity

103ms−delay
p2d(t) dt∫ 10ms

0ms
p21m(t) dt

)[dB]

These two lasts coefficients will be used to evaluate the ’support’ of a room for
a musician over the previous ones.

Clarity

The clarity of sound is defined by the logarithmic ratio of the energy of the early
sound by the late sound :

Cte = 10log(

∫ te
0ms

p2(t) dt∫ infinity

te
p2(t) dt

)[dB]
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ISO 3882-1 advises a value of te = 80ms, which will be used in the following,
the clarity coefficient will be noted C80.

Dynamics

The loudness of the sound is measured by the sound strength coefficient G
which is the logarithmic ratio of the sound energy (square and integration of the
sound pressure) of an impulse response measured in the room to that of the response
measured in a free field at a 10 meters distance.

G = 10log(

∫ infinity

0
p2(t) dt∫ infinity

0ms
p210m(t) dt

)[dB]

Moreover, the coefficient G125 representing the sound strength for the octave
band 125 Hz will be used.

Two alternatives to the support parameters have also been proposed by Dammerud
[5] considering that the 1 meter distance between source and receiver used in them
could cause errors because of the directivity of the source.

He introduced the early strength coefficient Ge

Ge = 10log(

∫ 80ms

0
p2(t) dt∫ infinity

0ms
p210m(t) dt

) = 10log(
10C80/10 ∗ 10G/10

1 + 10C80/10
)[dB]

And the late strength coefficient :

Gl = 10log(

∫ infinity

80ms
p2(t) dt∫ infinity

0ms
p210m(t) dt

) = 10log(
10G/10

1 + 10C80/10
)[dB]

Warmth

The coefficient used for defining the ’warmth’ of a hall is the bass ratio BR,
according to ISO 3382-1 :

BR =
RT125Hz +RT250Hz

RT250Hz +RT1000Hz

2.2.2 Ray-tracing and image sources simulation

The acoustics of a room can be modeled with different methods and for different
purposes. There are two main approaches : one is based on the numerical solving of
the wave equation by a finite element method for example. The other method is based
on the assumption of geometrical acoustics. Raven [19] [1] [25] is based on this second
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approach. An architectural model, with surfaces in which scattering and absorbing
coefficients have been assigned, acts as an input. Geometrical acoustics considers the
propagation of sound as rays, in such a model an omnidirectional source emits rays in
random directions. Each ray possess a fixed energy which is lost through the air and
when it bounces on absorbent surfaces. The receiver is modeled as a small volume
that build an impulse response from the rays it received.

In fact this ray-tracing techniques is only used for late reflections, for early re-
flections Raven uses the image sources technique. For a certain number of the nearest
surfaces of a chosen receiver, image sources are placed symmetrically in relation to
the surface (figure 2) and integrated to the model. Only first order image source are
used. The early part of the impulse response is then calculated with the receiver and
the several sources.

Figure 2.3: First order image source

It is a software used for complex room modeling, considering the computational
time, geometrical acoustics is a lot more shorter than with a numerical solving. The
assumption of ray-tracing is valid in high frequencies in which the wave length of sound
is short considering the size of surfaces usually present in room acoustics modeling.
However at low frequencies the approximation error increases as wave phenomena are
not neglictable, especially if there is obstacles on the path of the direct sound [21],
which should not be the case in this study.

The support parameters were not integrated in the default code of Raven an
additional function was added to the software before the extraction of the rooms’
acoustic parameters. (Appendix C)

15



Chapter 3

Recordings

The recordings were already available at the beginning of the internship. They
were recorded in the studio of the AudioKommunikation group using headphones
and a binaural reproduction technique to reproduce the acoustical environment. For
each room, the impulse response between each source and receiver (instrument and
musician) was previously calculated with Raven and the signals from microphones
put on the instruments convoluted in real time, so each musician could hear himself
and the others as he was in the real room. [17]

2 different quartets (1 brass quartet, 1 string quartet (Figure 3.1)) were playing
3 different pieces in 14 virtual acoustic environments, each instrument were recorded
separately in a 4-track .WAV file. This will constitute the database of the project.

Figure 3.1: Quartet configurations

16



Vincent MARTIN

3.1 Concert venues

Among the 14 different rooms the goal was to provide the largest spectre of
configurations possible and still being likely used for a chamber music concert.

To illustrate the diversity figure 3.2 shows the evolutions of different coefficients
representing various aspects of the rooms simulated.

Figure 3.2: Average of the acoustic coefficient over every source-receiver (musician-
instrument) values calculated via Raven
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3.2 Pieces

The pieces played were :

• For the brass quartet : ”Fantasia & Fugue in G Minor for Woodwind Quartet”
by Bach, arrangement by Magatagan M.

• For the string quartet : ”String Quartet in D major, Op. 76 No. 5, Hob. III:79”
by Haydn

The advantages of these pieces is that they can be both considered as romantic
chamber music, so the results of the study by Weinzierl & Maempel which explains
how to extract performance characteristics from audio features (for romantic-classical
music only). These performance characteristics will be needed afterwards.

18



Chapter 4

Performance analysis

In this Chapter, the method used to analyse a performance, by mesuring differ-
ent physical parameters, in the recordings will be explained. This work will be mainly
based on an investigation by Weinzierl & Maempel (2011) , and by using a feature
extraction method developed by Lerch (2009). [15]

In a first time, a detection of the onsets (3.1) will produce a grid for each
recordings, then a repertoire of audio features will be extracted following this grid
(3.2). Finally, these features will be used to calculate the different performances
characteristics. (3.3)

4.1 Onset Detection

Processing an onset detection on the recordings was crucial in order to define,
not only, a grid dividing the recordings in intervals for extraction of audio features, but
also to extract informations about the tempo which are among the most important
parameters.

There are several method described in the literature for automatic tempo ex-
traction/onset detection :

Blind method

The majority of the published algorithms can be defined as ”blind” methods,
as it doesn’t need any information on the digital audio content, it only need the audio
data as input. For instance Scheirer [23] proposed a tempo extraction system based
on a bank of resonance filters. By using the derivative of the audio signal’s envelope as
input of these filters, the comb filter corresponding to the tempo will have the biggest
output, and define a single tempo for the audio data. Klapuri established a similar
approach. [14]

These methods are usually not adapted to sudden tempo changes and score
containing several silences, which is the case in this project.
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Performance-to-score matching

In this project there was the opportunity to know which score was played for
each recordings, so additional informations in form of MIDI scores could be used to im-
prove the accuracy of the onset detection. That is why approaches called performance-
to-score matching were used. More specifically the method proposed by Lerch (2009)
[15] was used, and his software coded on Matlab was improved by the use of Ableton
Live.

4.1.1 Used algorithm (Lerch)

The figure 4.1 show the different steps of the software developed by Lerch on
Matlab, with an audio file and a midi file as inputs and the list of onsets for the
corresponding recording as output:

Figure 4.1: Flow chart of the processing steps for the tempo extracton stage (from
[15])
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The algorithm is divide between 3 main blocks per file :

Pre-Processing and Processing

The ”¨Pre-Processing” and ”Processing” blocks convert the midi file into an
audio file, and reciprocally for the audio file.These blocks have been replaced by using
Ableton Live which proposes intuitive conversion functions. It has indeed provided
better results.

In Lerch’s software in the conversion from audio to MIDI, the tonal content is
extracted from the audio file, by calculating a Short Time Fourier Transform (STFT),
and identifying 8 harmonics specific to the played instrument. An audio file is then
synthesized on this assumption of the harmonic distribution. This model is too simple
to fit the reality in this case, Lerch precises that his processing model is the best in case
of a recording with several instruments because of the combination and variation of
mixtures. So a more sophisticated model will not be of any help. However in this case
every instrument are recorded separately so the use of the Ableton Live instrument’s
templates provide a better match with the real harmonic distribution.

Likewise, the audio to MIDI conversion was also performed by Ableton Live
that have shown to be more accurate.

Similarity Measure

Two different similarity measures are used in Lerch’s software :

• one from the midi converted to audio compared with the audio file (left part in
figure 4.1) : Spectral Similarity.

• one from the audio file converted to a midi file (right part in figure 4.1) : Note
Similarity

These measures are done by defining a distance between every observation of
a file to every observation of the other in both similarity process.

This results in two similarity matrix, a weighted sum of both this similarity
matrix is done, resulting in a matrix illustrating when the score and the audio file are
similar. A path of high similarity from the upper left corner to the lower right corner
of the matrix is calculated via a dynamic time warping algorithm, resulting in onset
times for all the notes in the score.

4.1.2 Results

The detected onsets were checked by playing all the recordings with click
sounds, more than 90% of it were correct, the rest was corrected with Sonic Vi-
sualizer a software that allow to visually check the onsets that need to be suppressed
or added (Figure 4.2) with the help of the score.

The use of Ableton Live for the conversion gave a substantial increase of the
rate of correct onsets from < 70% to > 90%.
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Figure 4.2: User interface of Sonic Visualizer (here the beginning of the first recording
of one of the trumpet in the brass quartet)

4.2 Extraction of audio features

Once that all recordings were able to be separated following a grid of onsets
the goal was to evaluate the performance of the musicians, with the help of audio
features. So that these performance characteristics could be confronted to the acoustic
parameters afterward. This part of the project will rely on the result of a study
conducted by Weinzierl & Maempel at the AudioKommunikation Group in 2015. [24]

In this study a vocabulary was established by a group of different experts (mu-
sicologists, musicians, composers ...) suitable to characterize musician performances
of a classic/romantic repertoire. (The vocabulary is in Appendix B)

Every characteristics in this vocabulary was evaluated by these experts for
several performances, from these ratings a relation was established with a set of au-
dio features presented below. The relation between these features and performance
characteristics will be explained in section 4.3.

4.2.1 Audio features

In the following, will be presented the different audio features implanted in
order to evaluate the performance characteristics of the recordings. Spectral and
Loudness features algorithms were already coded. A more detailed description of
these associated algorithms are present in Lerch’s book. [16]
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4.2.2 Time features

• inter-onset time, inter-bar time (time between two onsets or two bars)

IOI(i) = t(i+ 1)− t(i)[s]

IBI(k) = t(k + 1)− t(k)[s]

t(i) : Onset time of note i

tb(k) : Onset time of bar k

• With the use of the score, a normalization of the inter-onset time

IOI(i) =
t(i+ 1)− t(i)

∆τi,i+1

∆τi,i+1 : Number of beats between two score events (one beat equal a quarter
note)

• With the use of the score, the micro-tempo is calculated

TMPtnote(i) =
60s

t(i+ 1)− t(i)
.∆τi,i+1[BeatsPerMinute]

TMPbar(k) =
60s

tb(k + 1)− tb(k)
.δτi,i+1[BeatsPerMinute]

4.2.3 Loudness features

Several loudness measures can be used to extract dynamic features from an
audio content. In the library proposed by Lerch. [16] A variety of algorithm have
been implanted to predict the loudness of musical events on a local time scale, in the
following are those used in Weinzierl & Maempel study and in this project :

• VU : The VU meter or volume indicator, it averages out fast level variations in
order to better approximate perceived loudness. VU is calculated by smoothing
the absolute value of the input sample with a second order low pass filter.

• dBA : A weighting function is applied before the measure of the instensity of
the signal. This frequency-dependant function is supposed to reproduce human
ear sensitivity to certain frequencies. (figure 4.3)

• ITU-R BS.1770 : An intensity-based loudness measurement that has been stan-
dardized in ITU (international telecommunication union) recommendation ITU-
R BS.1770. Another weight function is used. (Figure 4.3)
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Figure 4.3: Frequency Weighting Transfer Functions (from Lerch (2012))

Based on the results of psycho-acoustic experiments, Zwicker [29] proposed a
model for the measurement of loudness where masking phenomena are taken into
account. Two approaches from the literature to represent Zwicker’s loudness have
been implanted :

• ZWDIN: An implementation of the Zwicker-Loudness according to DIN 45631:1991.
(German Institute for Standardization)

• ZW1387: An implementation of the Zwicker-Loudness based on the psycho-
acoustic model described in ITU-R BS.1387:2006.

4.2.4 Spectral features

The timbre of a sound, often also described as sound color, quality or texture, is
considered as a third attribute of the perceptual experience of musical tones, besides
pitch and loudness. Various attempts towards a definition of ‘timbre’ have been made.
In contrast to loudness and pitch as unidimensional properties, timbre has been shown
to be a multidimensional property, taking into account both spectral and temporal
patterns. In the following are listed the spectral features necessary to complete the
analysis of the timbre according to Weinzier & Maempel. All are based on the Short
Time Fourier Transform (STFT) of the sample.

• SR: The Spectral Rolloff is a measure of the bandwidth of the spectrum. It
computes the frequency below which 85% of the accumulated spectral power is
concentrated.

• SF: The Spectral Flux measures the rate of change of the spectral shape

• SC: The Spectral Centroid is defined as the center of gravity of the power spec-
trum. The implementation follows the definition in ISO/IEC 15938:2002.

• SS: The Spectral Spread, sometimes also referred to as instantaneous bandwidth,
describes how far the spectral power is spread around the SC. The implemen-
tation follows the definition in ISO/IEC 15938:2002.
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• MFCC0-4: The implementation of the Mel Frequency Cepstral Coefficients
(MFCCs) is based on the implementation in Slaney’s Auditory Toolbox (Slaney,
1998).

4.3 Use of statistical descriptors

These different algorithms furnished a series of value for each audio feature.
Based on the results of the regression models performed in the study of Weinzierl
& Maempel, for each audio feature different statistical descriptors were calculated, a
specific linear combination allowed to predict performance characteristic. (Results in
Appendix B)

• Mean

• Geometrical Mean

• Median

• Mode (Element that occurs most often in the serie)

• Standard deviation (Square root of variance)

• Quantiles 10,90 (Value that seperate 10% / 90% of the lowest value to the rest)

• Interquantile distance 10-90

At this point of the project, the acoustical coefficients for each room are ex-
tracted, and the performance characteristics are evaluated for each recordings. (Illus-
trated in the graph figure 4.3)
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Figure 4.4: Performance characteristics, in blue the first piece for the brass quartet,
yellow for the second piece, orange for the string quartet. Some recordings were not
calculated part the recording was corrupted (Room 4 for the first piece of the brass
quartet, Room 9 for the string quartet)
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Chapter 5

Statistical analysis

The goal of this chapter is to explain how the relation between the perfor-
mance characteristics and acoustical coefficients was established in this project, and
which statistical models were used for this purpose. In the following, the performance
characteristics will be considered as the response variables (output) and the acoustic
parameters as explanatory variables (input).

5.1 Hypothesis on the data structure

First of all, classical regression models where put aside for several reasons.
Firstly, the problem is clearly a multivariate one and a common regression analysis is
not designed for this type of problem. [10] [26]. Moreover, in a common regression
model it is considered that every observation is independent to another, which is
clearly not the case here. It was desirable that the model reflect the nested aspect of
the data structure. Several hypothesis on the recordings were indeed made :

• A musician tends to have the same strategy of adaptation whatever the pieces

• Musicians tends to influence each other in the same quartet

• In the same room every musician tends to have a similar strategy of adaptation

This results in a nested structure of this form :

Table 5.1: Structure of the recordings
Level 4 Level 3 Level 2 Level 1
Rooms Quartet 1 Musicians 1 Piece 1

Piece 2
Musicians 2 Piece 1

Piece 2
. . . .
. . . .
. . . .
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In the following, to reflect this structure the different recordings will be consid-
ered in levels :

• The first group level will be for the recordings from the same room, quar-
tet,musician and piece. Constituting the ”piece” level.

• The second group level will be for the recordings from the same room, quartet
and musician. The ”musician” level.

• The third group level will be for the recordings from the same room and quartet.
The ”quartet” level.

• The fourth group level will be for the recordings from the same room. The
”room” level.

The fact that the smaller groups are contained in one bigger is why we called
the data structure a nested structure.

5.2 Hierarchical Linear Models

5.2.1 Theory

Hierarchical Linear Models (HLM) is a multivariate regression model assuming
that the data set is hierarchical or more specifically nested, as it is the case here.

It is considered that there is :

• i ∈ (1..ni) first-level items (”piece” level)

• in each j ∈ (1..nj) second-level groups (”musician” level)

• which are contained in each k ∈ (i..nk) third-level groups (”quartet level”)

• which are contained in each l ∈ (i..nl) fourth-level groups (”room level”)

Between the first and second level of the HLM we consider the following re-
gression equation reflecting the grouping effect:

Yijkl = β0jkl +

N1∑
n=1

βnjklXn + eijkl

Y : the outcome variable here the performance parameter X : the N1 explana-
tory variables associated to the level

For each item in the first level group there is :

• The constant term (named ”intercept”) β0jkl

• The regression coefficients (named ”slopes”) βnjkl

• The residual error term eijkl
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The intercept and slopes vary across the groups of the second level, we consider
the following regression equations :

β0jkl = γ00kl +

N2∑
n=1

γ0nklZn + u0jkl

β1jkl = γ10kl +

N2∑
n=1

γ1nklZn + u1jkl

.

.

.

βN1jkl = γN10kl +

N2∑
n=1

γN1nklZn + uN1jkl

• The interceptγ0jkl

• The slopes γnjkl

• uijkl the second-level residual error term

Same regression equations apply between second and third level and the third
and fourth level. The different slopes and intercepts are calculated with the maximum
likelihood method. To estimate the explanatory power of the HLM the maximum
likelihood produce a ”deviance” coefficient which reflects the misfit of the model to
the data. The lower it is the better the HLM fit the data. Firstly a model with no
explanatory variables at each level called ”intecept-only” HLM is calculated in order
to give a benchmark value to the deviance coefficient.

In our case we consider that the only levels with explanatory variables is the
second level (musician) and fourth level (rooms) as the acoustic parameters do not
vary only across the rooms but also across the musicians’ position. The other regres-
sion equations will be considered as ”intercept-only” without explanatory variables,
however these equations still translate the grouping effect of the data.

The software that was used is IBM SPSS 24 containing tools for the calculation
of this HLM model.

5.2.2 Principal Component Analysis

For a first approach, it was decided to limit the number of explanatory variables
in order to produce a first perspective on the relation between performance character-
istics and acoustical parameters. For this purpose, a Principal Component Analysis
(PCA) was ran with the software IBM SPSS 24 on the acoustical parameters. The
principle of a PCA, is to diminish the number of components of a data set by identify-
ing new components not correlated between each other and with the highest variance.
The capacity of the new data set to represent the old one is evaluated with the ex-
plained variance. Here, we consider the new data set satisfying when the explained
variance reach 95 %.
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In our case this value is reached for 4 components for each musician.

Figure 5.1: Evolution of the explained variance per components of the PCA
(variance = value ∗ 10) for the acoustic parameters associated to the first trum-
pet player from SPSS the other PCA performed on the quartet produced similar
results

Figure 5.2: Evolution of the explained variance per components of the PCA
(variance = value ∗ 10) for the acoustic parameters associated to the first violin
player from SPSS the other PCA performed on the quartet produced similar results

The loadings of the different acoustical parameters is then identified in the
different components of the PCA. The parameter with the highest loading is identified
in each of the component, these 4 parameters will then be the one used as explanatory
variables in the HLM model.
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Figure 5.3: Loadings for each of the 4 components of the PCA for the first violin
player and first trumpet player

For the different musicians the parameters who were the most often the highest
or second highest loadings per components : STlate, Gearly, RT30, BassRatio. Those
will be used as explanatory variables in the HLM model.

5.3 Use of predictors

Several studies mentioned the possibility of a quadratic relation between rever-
beration time and tempo. (Kato et al. (2007) : Musicians’ adjustments of performance
to room acoustics. In : Proc. of the 19th ICA, Madrid). That is why different HLM
models with the acoustical parameters used as linear variables or quadratic variables
were made. Every 24 possible configuration were calculated for each of the 8 per-
formance characteristics, out of the 128 models the configuration with the highest
explanatory power was kept.

Table 5.2: Configuration with the highest explanatory power, HLM used for the results
RT ST late G early Bass Ratio

Tempo Quadratic Quadratic Linear Linear
Agogic Quadratic Quadratic Linear Linear
Dynamic strength Quadratic Linear Linear Linear
Dynamic bandwidth Linear Linear Linear Linear
Timbre (soft - hard) Linear Linear Quadratic Quadratic
Timbre (dark - bright) Quadratic Linear Quadratic Linear
Timbre (lean - full) Linear Quadratic Linear Linear
Timbral bandwidth Linear Linear Quadratic Linear
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5.4 Intraclass correlation

While calculating the ”intercept-only” model, it is possible to evaluate the
proportion of variance explained by the structure, and to check if the presence of some
level in the structure is relevant. To do so, for each level the Intraclass Correlation
Coefficient (ICC) is calculated if ICC < 0.3 then the level can be suppressed without
influencing the explanatory power of the HLM.

ICC =
V ariance of the residual error of the level

Sum of the variances of the residual error of each level

All these variances are calculated via IBM SPSS 24.

In our case for each level ICC was over 0.3 confirming that every level had its
importance for the explanatory power of the model.
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Chapter 6

Results

The results provided with IBM SPSS enlighten relevant relations on 3 charac-
teristics. The worthiness of a relation is measured in IBM SPSS with the p-value a
value below 0.05 on a relation is considered relevant.

Agogic

Confirming previous studies [13] [3] [22], musicians tend to use less agogic in
rooms with higher reverberation time. Moreover the presence of early support seems
to increase the use of Agogic, as the musicians are more able to hear themselves.

Figure 6.1: Regression curve from SPSS of Agogic in function of RT, Regression
coefficient with RT 2 : β = −0.28

Loudness, Dynamic Strength

Surprisingly no relation was enlighten between support and dynamic strength,
the fact of hearing its own instrument ”louder” has not influenced the musician in
there way of playing. However loudness was lower in rooms with high reverberation
time, studies conducted by Kato [13] shown it is a common strategy in order to ”hold
back” the sound in order to not blurring the different notes.
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Figure 6.2: Regression curve from SPSS of Loudness in function of RT, Regression
coefficient with RT 2 : β = −0.40

Timbre Fullness

Rooms with strong bass ratio lead to performances with a more fuller timbre,
the reason of such a result is still unclear.
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Chapter 7

Conclusion, Perspectives

7.1 Summary of the work accomplished

During this internship the main problem was the data set available. It clearly
appeared that the number of recordings available was not enough in order to estab-
lish relations on how musicians interact between each other in different acoustical
configurations. The goal of the project shifted and the focus was put on the method
and how it is possible to relate performance characteristics and acoustic parameters.
Therefore, the data set was used in order to validate the method more than establish
relations.

First of all, it was important to study the stage acoustics theory in order to
identify acoustic parameters who are relevant to a musician’s point of view, such as
support parameters which was rarely used in previous research. Support parameters
revised by Wenmaekers [28] had to be integrated to Raven as it was not considered
as standard parameters (Appendix C).

Once the acoustic parameters were extracted, a method based on the results of
the study realised by Weinzierl & Maempel [24] was developed so that the performance
of each recordings was evaluated as fully as possible. The first step was to make an
automatic onset detection procedure. To do so, a software developed by Lerch [15],
in addition to the algorithms converting MIDI to Audio file of Ableton Live were
employed. It was crucial that the output of the detection required a minimum human
intervention for the correction, thereby the method could be applied to a large data
set. Once the onset grid of each recordings was calculated the audio features could be
extracted and the performance characteristics calculated following the results of the
study realised by Weinzierl & Maempel [24].

In the end, it was essential to develop a statistical model that can reflect the
structure of the data set as from one recording to the other certain similar conditions
could influence the analysis. That is why hierarchical linear models were studied then
tested on the recordings available. The few relations that was enlighten by the model
correlate to previous studies which seems to show that the method is meaningful and
could be applied to larger data set for further research.
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7.2 Further research

As it was mentioned, a larger data set could led to interesting results. Apart
from establishing general results about the performance of the ensemble as a whole,
it could be possible to study the influence of the type of instrument and the influence
on the interaction between the musicians inside an ensemble.

Furthermore, conducting interviews on the musicians in order to confront their
own feelings on the acoustical conditions could also give additional information on
the recordings and their integration in the model could enhance the accuracy of the
results.
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Appendix A : ISO 3382-1
Recommendations

There are five groups or types of quantities within each group there is often more than
one measure, but values of the different quantities in each group are usually found
to be strongly correlated with each other. Thus, each group contains a number of
approximately equivalent measures and it is not necessary to calculate values of all
of them; nevertheless, at least one quantity should be included from each of the five
groups.

That is why, in this project the value used for the parameters will be the average
between third octave 500Hz and 1000Hz. Excepting the support parameters averaged
between 250Hz and 2000Hz
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Appendix B : Performance
attributes, Relation with
statistical predictors of audio
features

Table 7.1: Vocabulary established by Weinzierl & Maempel
Attributes
(German)

Pole labels
Attributes
(English)

Pole labels

Klangfarbe weich-hart Tone colour soft-hard
Klangfarbe dunkel-hell Tone colour dark-bright
Klangfarbe schlank-voll Tone colour lean-full
Klangfarbliche Bandbreite groß-klein Timbral bandwidth small-large
Phrasierung kleinteilig-weiträumig Phrasing: width narrow-wide
Phrasierung schwach-stark Phrasing: strength weak-strong
Lautstärke leise-laut Loudness gentle-loud
Dynamik gering-hoch Long-term dynamics weak-strong
Binnendynamik gering-hoch Short-term dynamics weak-strong
Tempo langsam-schnell Tempo slow-fast
Agogik wenig-viel Agogic weak-strong
Rhythmisierung unprägnant-prägnant Rhythmisation weak -concise
Artikulation gebunden-abgesetzt Articulation legato-staccato
Artikulatorische
Bandbreite

klein-groß Bandwidth of articulation small-large

Musikalischer Ausdruck schwach-stark Musical expression weak-strong
Gesamteindruck gefällt nicht-gefällt Overall impression dislike-like

38



Vincent MARTIN

Table 7.2: Performance characteristics in function of audio features predictors (Results
from Weinzier & Maempel) Some of the characteristics are not present because the
explained variance of the relation was considered to low to be relevant

Performance
characteristics

Predictors Coefficients

Intercept (Constant value) 4.833
IOI log mn -0.651Tempo
IBI log qu10 -0.309
Intercept -2.005
IOI {norm} log qu {10-90} 0.441
TMP {bar} 0.305

Agogic

SF qdr mdn 0.215
Intercept -1.048
dBA qdr mde -0.451
SF lin qu10 -0.45
ZwiDIN log mn 0.412

Dynamic strength

VUM qdr gmn 0.199
Intercept 2.403
ZwiITU lin qu10-90 0.612
ITU1770 log qu10 -0.67
dBA lin qu10-90 -0.446

Dynamic bandwidth

MFCC0 qdr qu90 0.26
Intercept 1.455
SR lin gmn 1.066
ZwiITU lin mn 0.629
SR log qu10 -0.458

Timbre (soft - hard)

ZwiITU lin qu90 -0.508
Intercept 0.955
SR lin qu90 0.515
MFCC1 log mde -0.23

Timbre (dark - bright)

MFCC2 qdr mdn 0.299
Intercept -0.045
SR lin qu90 -0.321
MFCC1 qdr mdn 0.369
MFCC3 log mde 0.36

Timbre (lean - full)

TMP {note} log mde -0.289
Intercept -0.238
ITU1770 log qu10 -0.364
IBI log std 0.316
ITU1770 qdr qu10 -0.284

Timbral bandwidth

ZwiDIN qdr mn 0.391

39



Appendix C : Add-on to
Raven : function for the
extraction of support
parameters

1 f unc t i on [ ST e , ST l ] = getSupport ( obj , averageOverReceivers ,
averageOverFrequencies , afterDIN , sourceID )

2 i f narg in < 2
3 averageOverRece ivers = 0 ;
4 end
5 i f narg in < 3
6 averageOverFrequenc ies = 0 ;
7 end
8 i f narg in < 4
9 afterDIN = 0 ;

10 end
11 i f narg in < 5
12 sourceID = 0 ;
13 end
14

15 % c a l c u l a t e schroeder curve
16 edc = obj . getSchroederCurve ( ’nodB ’ , ’ nonorm ’ , ’

not imecor rec t ’ ) ;
17 i f ˜ i s c e l l ( edc )
18 edc = { edc } ;
19 end
20

21 % c a l c u l a t e sound speed
22 c = calcu lateSoundSpeed ( obj . getTemperature ( ) , obj

. getHumidity ( ) , obj . g e tPre s sure ( ) ) ;
23

24

25

26 f o r iRec = 1 : numel ( edc ( sourceID +1 , :) )
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27 i f ˜ isempty ( edc{ sourceID +1, iRec })
28 f o r iFreq = 1 : s i z e ( edc{ sourceID +1, iRec

} , 2)
29 % c a l c u l a t e source to r e c e i v e r

d i s t anc e and a r r i v a l time o f
d i r e c t sound

30 srcPos = obj . g e tSourcePos i t i on (
sourceID ) ;

31 recPos = obj . g e t R e c e i v e r P o s i t i o n ( iRec
−1) ;

32 s o u r c e r e c e i v e r d i s t a n c e = norm(
recPos − srcPos ) ;

33 directSoundTime =
s o u r c e r e c e i v e r d i s t a n c e / c ;

34

35 % f i n d the exact i n t e g r a t i o n l i m i t in
the histogram

36

37 i n t e g r a l e n d t i m e 1 0 = (
directSoundTime + 0 .010 ) ;

38 % i n t e g r a l t ime 20 can be changed to
10ms because l e s s l o s s

39 % when r e f l e c t i v e s u r f a c e s are c l o s e r
than 4m

40 i n t e g r a l e n d t i m e 2 0 = (
directSoundTime + 0 .020 ) ;

41 i n t e g r a l e n d t i m e 1 0 0 = (
directSoundTime + 0 .100 ) ;

42 i n t e g r a l e n d t i m e 1 0 0 0 = (
directSoundTime + 1 .000 ) ;

43 l a s t t i m e s l o t 1 0 = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >= i n t e g r a l e n d t i m e 1 0
, 1) − 1 ;

44 l a s t t i m e s l o t 2 0 = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >= i n t e g r a l e n d t i m e 2 0
, 1) − 1 ;

45 l a s t t i m e s l o t 1 0 0 = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >=
in t e g r a l e nd t i me 10 0 , 1) − 1 ;

46 l a s t t i m e s l o t 1 0 0 0 = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >=
integ ra l end t ime 1000 , 1) − 1 ;

47

48

49 % r e l a t i v e por t i on i s same at every
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border
50 % IR r e s o l u t i o n o f 10ms
51 r e l a t ivePor t i onOfLas tT imeS lo t 10 =

rem ( i n t e g r a l e n d t i m e 1 0 , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

52 r e l a t ivePor t i onOfLas tT imeS lo t 20 =
rem ( i n t e g r a l e n d t i m e 2 0 , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

53 r e l a t ivePor t i onOfLas tT imeS lo t 100 =
rem ( in t eg ra l en d t i me 10 0 , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

54 r e l a t ivePor t i onOfLas tT imeS lo t 1000 =
rem ( in t eg ra l end t ime 1000 , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

55

56 % detec t energy in l a s t time s l o t
57 energyInLastTimeSlot 10 = edc{

sourceID +1, iRec }( l a s t t i m e s l o t 1 0
, iFreq ) − edc{ sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 + 1 , iFreq ) ;

58 energyInLastTimeSlot 20 = edc{
sourceID +1, iRec }( l a s t t i m e s l o t 2 0
, iFreq ) − edc{ sourceID +1, iRec }(
l a s t t i m e s l o t 2 0 + 1 , iFreq ) ;

59 energyInLastTimeSlot 100 = edc{
sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 , iFreq ) − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 + 1 , iFreq ) ;

60 energyInLastTimeSlot 1000 = edc{
sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 0 , iFreq ) − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 0 + 1 , iFreq ) ;

61

62 % t o t a l energy in the impulse
re sponse

63 tota lEnergy = edc{ sourceID +1, iRec } (1 ,
iFreq ) ;

64

65 % energy in the f i r s t 50ms/80ms a f t e r
the d i r e c t sound

66 energy10ms = tota lEnergy − edc{
sourceID +1, iRec }( l a s t t i m e s l o t 1 0
, iFreq ) +
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re la t ivePor t i onOfLas tT imeS lo t 10 ∗
energyInLastTimeSlot 10 ;

67 energy20ms = tota lEnergy − edc{
sourceID +1, iRec }( l a s t t i m e s l o t 2 0
, iFreq ) +
re la t ivePor t i onOfLas tT imeS lo t 20 ∗

energyInLastTimeSlot 20 ;
68 energy100ms = tota lEnergy − edc{

sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 , iFreq ) +
re la t ivePor t i onOfLas tT imeS lo t 100
∗ energyInLastTimeSlot 100 ;

69 energy1000ms = tota lEnergy − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t 1 0 0 0 , iFreq ) +
re la t ivePor t i onOfLas tT imeS lo t 1000
∗ energyInLastTimeSlot 1000 ;

70

71 % c a l c u l a t e ST
72 ST e{ iRec }( iFreq ) = 10∗ l og10 (

energy100ms − energy20ms ) ;
73

74 i f nargout > 1
75

76 ST l{ iRec }( iFreq ) = 10∗ l og10 (
energy1000ms − energy100ms ) ;

77

78

79 end
80 end
81 e l s e
82 ST e{ iRec} = [ ] ;
83 i f nargout > 1
84 ST l{ iRec} = [ ] ;
85 end
86 end
87 end
88

89

90 i f averageOverRece ivers
91 ST e = obj . averageOverRece ivers ( ST e ) ;
92 i f nargout > 1
93 ST l = obj . averageOverRece ivers ( ST l ) ;
94 end
95 end
96

97 i f averageOverFrequenc ies
98 i f narg in < 4
99 afterDIN = 0 ;
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100 end
101 ST e = obj . averageAfterDIN ( ST e , afterDIN ) ;
102 i f nargout > 1
103 ST l = obj . averageAfterDIN ( ST l , afterDIN

) ;
104 end
105 end
106

107 i f ( numel ( ST e ) == 1) && i s c e l l ( ST e )
108 ST e = ST e {1} ;
109 i f nargout > 1
110 ST l = ST l {1} ;
111 end
112 end
113 end
114

115 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

116

117

118 f unc t i on [ ST ed , ST ld ] = getSupport d ( obj ,
averageOverReceivers , averageOverFrequencies , afterDIN ,
sourceID )

119 i f narg in < 2
120 averageOverRece ivers = 0 ;
121 end
122 i f narg in < 3
123 averageOverFrequenc ies = 0 ;
124 end
125 i f narg in < 4
126 afterDIN = 0 ;
127 end%
128 i f narg in < 5
129 sourceID = 0 ;
130 end
131

132 % c a l c u l a t e schroeder curve
133 edc = obj . getSchroederCurve ( ’nodB ’ , ’ nonorm ’ , ’

not imecor rec t ’ ) ;
134 i f ˜ i s c e l l ( edc )
135 edc = { edc } ;
136 end
137

138 % c a l c u l a t e sound speed
139 c = calcu lateSoundSpeed ( obj . getTemperature ( ) , obj

. getHumidity ( ) , obj . g e tPre s sure ( ) ) ;
140

141 f o r iRec = 1 : numel ( edc ( sourceID +1 , :) )

44



Vincent MARTIN

142 i f ˜ isempty ( edc{ sourceID +1, iRec })
143 f o r iFreq = 1 : s i z e ( edc{ sourceID +1, iRec

} , 2)
144 % c a l c u l a t e source to r e c e i v e r

d i s t anc e and a r r i v a l time o f
d i r e c t sound

145 srcPos = obj . g e tSourcePos i t i on (
sourceID ) ;

146 recPos = obj . g e t R e c e i v e r P o s i t i o n ( iRec
−1) ;

147 s o u r c e r e c e i v e r d i s t a n c e = norm(
recPos − srcPos ) ;

148 directSoundTime =
s o u r c e r e c e i v e r d i s t a n c e / c ;

149

150 % f i n d the exact i n t e g r a t i o n l i m i t in
the histogram

151 % %obacht ! i n t e g r a l z e i t e n
152 i n t e g r a l s t a r t t i m e e = (0 .010 +

directSoundTime ) ;
153 i n t e g r a l e n d t i m e e = (0 . 103 −

directSoundTime ) ;
154 i n t e g r a l s t a r t t i m e l = (0 . 103 −

directSoundTime ) ;
155 l a s t t i m e s l o t s t a r t e = f i n d ( obj .

histogram { sourceID +1, iRec } .
t imevector >=
i n t e g r a l s t a r t t i m e e , 1) − 1 ;

156 l a s t t i m e s l o t e n d e = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >= i n t e g r a l e n d t i m e e ,

1) − 1 ;
157 l a s t t i m e s l o t s t a r t l = f i n d ( obj .

histogram { sourceID +1, iRec } .
t imevector >=
i n t e g r a l s t a r t t i m e l , 1) − 1 ;

158 %l a s t t i m e s l o t e n d l = f i n d ( obj .
histogram { sourceID +1, iRec } .
t imevector >= i n t e g r a l e n d t i m e l ,

1) − 1 ;
159 r e l a t i v e P o r t i o n O f L a s t T i m e S l o t s t a r t e

= rem( i n t e g r a l s t a r t t i m e e , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

160 r e l a t i v ePor t i onOfLas tT imeS lo t end e =
rem ( i n t e g r a l e n d t i m e e , obj .

t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

161 r e l a t i v e P o r t i o n O f L a s t T i m e S l o t s t a r t l
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= rem( i n t e g r a l s t a r t t i m e l , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

162 %re l a t i v ePor t i onOfLas tT imeS l o t end l
= rem( i n t e g r a l e n d t i m e l , obj .
t imeSlotLength /1000) / ( obj .
t imeSlotLength /1000) ;

163

164 % detec t energy in l a s t time s l o t
165 ene rgy InLas tT imeS lo t s ta r t e = edc{

sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t e , iFreq ) −
edc{ sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t e + 1 , iFreq )
;

166 energyInLastTimeSlot end e = edc{
sourceID +1, iRec }(
l a s t t i m e s l o t e n d e , iFreq ) − edc
{ sourceID +1, iRec }(
l a s t t i m e s l o t e n d e + 1 , iFreq ) ;

167 e n e r g y I n L a s t T i m e S l o t s t a r t l = edc{
sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t l , iFreq ) −
edc{ sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t l + 1 , iFreq )
;

168 %energyInLastTimeS lot end l = edc{
sourceID +1, iRec }(
l a s t t i m e s l o t e n d l , iFreq ) − edc
{ sourceID +1, iRec }(
l a s t t i m e s l o t e n d l + 1 , iFreq ) ;

169

170 % t o t a l energy in the impulse
re sponse

171 tota lEnergy = edc{ sourceID +1, iRec } (1 ,
iFreq ) ;

172

173 % energy in the f i r s t 50ms/80ms a f t e r
the d i r e c t sound

174 e n e r g y s t a r t e = tota lEnergy − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t e , iFreq ) +
r e l a t i v e P o r t i o n O f L a s t T i m e S l o t s t a r t e
∗ ene rgy InLas tT imeS lo t s ta r t e ;

175 energy end e = tota lEnergy − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t e n d e , iFreq ) +
re l a t i vePor t i onOfLas tT imeS lo t end e
∗ energyInLastTimeSlot end e ;
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176 e n e r g y s t a r t l = tota lEnergy − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t s t a r t l , iFreq ) +
r e l a t i v e P o r t i o n O f L a s t T i m e S l o t s t a r t l
∗ e n e r g y I n L a s t T i m e S l o t s t a r t l ;

177 %ene rgy end l = tota lEnergy − edc{
sourceID +1, iRec }(
l a s t t i m e s l o t e n d l , iFreq ) +
re l a t i v ePor t i onOfLas tT imeS lo t end l
∗ energyInLastTimeS lot end l ;

178

179 % c a l c u l a t e ST
180 ST ed{ iRec }( iFreq ) = 10∗ l og10 (

energy end e − e n e r g y s t a r t e ) ;
181

182 i f nargout > 1
183

184 ST ld{ iRec }( iFreq ) = 10∗ l og10 (
tota lEnergy − e n e r g y s t a r t l ) ;

185

186 end
187 end
188 e l s e
189 ST ed{ iRec} = [ ] ;
190 i f nargout > 1
191 ST ld{ iRec} = [ ] ;
192 end
193 end
194 end
195

196

197 i f averageOverRece ivers
198 ST ed = obj . averageOverRece ivers ( ST ed ) ;
199 i f nargout > 1
200 ST ld = obj . averageOverRece ivers ( ST ld ) ;
201 end
202 end
203

204 i f averageOverFrequenc ies
205 i f narg in < 4
206 afterDIN = 0 ;
207 end
208 ST ed = obj . averageAfterDIN ( ST ed , afterDIN ) ;
209 i f nargout > 1
210 ST ld = obj . averageAfterDIN ( ST ld ,

afterDIN ) ;
211 end
212 end
213
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214 i f ( numel ( ST ed ) == 1) && i s c e l l ( ST ed )
215 ST ed = ST ed {1} ;
216 i f nargout > 1
217 ST ld = ST ld {1} ;
218 end
219 end
220 end
221

222 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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