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Abstract

Over the last years, deep networks have obtained impressive results for image processing. In
particular, the Convolutional Neural Networks (CNN) [18] are currently the state-of-the-art
in multiple learning tasks. However, it is somewhat not logical to apply the same methods
straightforwardly to audio processing, as the nature of audio data is different from image
data. Nevertheless, most models used in the audio processing community are direct applica-
tions of the findings in image processing. Indeed, the main idea behind the success of CNN
is to rely on small convolutional kernels to achieve deeper compositionality in the network
transforms. This choice allows to harness the stationarity property of an image, and also the
fact that both dimensions of an image are equivalent.
However, most researches in Music Information Retrieval (MIR) rely on different types of
spectral transforms, where the time and frequency dimensions are not equivalent and the the
frequency axis provides less stationarity than the temporal one.
Hence, this internship aims to analyze these different spectral representations and to intro-
duce the use of the Spectro-Temporal Receptive Fields (STRF) as an input to deep neural
networks. The main obstacle towards this goal lies in the high-dimensionality of the STRF.
Therefore, to solve this problem, we evaluate different pre-processing and decimation meth-
ods to obtain an efficient and compact representation of the STRF. The second stage of this
research will be to apply these approaches to the task of style transfer. In the image process-
ing field, this task has been defined as the ability to retain the content of an image, while
applying the artistic style of another. Here, we discuss how this concept could be applied
in the music processing field, while underlying the fact that the notion of musical style is
largely more complex than the notion of texture used in image style transfer.

Résumé

Au cours de ces dernières années, les réseaux profonds ont obtenu des résultats impression-
nants sur le traitement d’image. En particulier, les réseaux neuronaux convolutionnels (CNN)
[18] constituent actuellement l’état de l’art des tâches d’apprentissages multiples. Cependant,
il n’est pas pertinent d’avoir une approche similaire pour le traitement audio, car la nature
des données audio est différente de celle des données visuelles. Néanmoins, la plupart des
modèles utilisés au sein la communauté de traitement audio sont des applications directes
des résultats obtenus pour le traitement de l’image. En effet, l’idée principale qui fait le
succès des CNN est de s’appuyer sur des petits grains convolutionnels afin d’obtenir une
composition plus fine pour les transformations du réseau. Ce choix permet d’exploiter la
propriété de stationnarité d’une image, et aussi le fait que les deux dimensions d’une image
sont équivalentes.
Cependant, la plupart des recherches sur la récupération des informations musicales (MIR)
dépendent des différents types de transformations spectrales, où les dimensions du temps et
de la fréquence ne sont pas équivalentes. L’axe de la fréquence fournit moins de stationnarité
que l’axe temporaire.
Par conséquent, ce stage a pour objectif d’analyser ces différentes représentations spectrales
et d’introduire l’utilisation des champs de récepteurs spectro-temporels (STRF) en tant que
données d’entrée pour les réseaux neuronaux profonds. Le principal obstacle à cet objectif
réside dans la grande dimensionnalité des STRF. Par conséquent, pour résoudre ce problème,
nous évaluons différentes méthodes de prétraitement et de décimation afin d’obtenir une
représentation efficace et compacte des STRF. L’étape suivante sera d’appliquer ces ap-
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proches à la tâche de transfert de style. Dans le domaine du traitement d’image, cette tâche
a été définie comme la capacité à conserver le contenu d’une image, tout en appliquant le
style artistique d’une autre. Ici, nous discutons de la manière dont ce concept pourrait être
appliqué dans le domaine du traitement de la musique, tout en sous-tendant que la notion
de style musical est en grande partie plus complexe que la notion de texture utilisée dans le
transfert de style d’image.
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Part I

State of the art

1 Introduction

1.1 Motivations

Improving deep learning in MIR

The field of Music Information Retrieval (MIR) aims to understand high-level features from
musical signals [4]. To that aim, multiple approaches have been proposed to perform tasks
such as genre classification [36] or style recommendation . Recently, deep learning has been
proposed as a way to efficiently learn such hierarchies of features directly from the data [2].
Since the first use of deep learning in audio processing, the MIR field has shown a con-
stantly growing interest towards these approaches [11]. However, despite its success in image
processing, the application of deep learning to the research in MIR seems to provide lesser
ground-breaking results. Here, we hypothesize that this might come from the nature of the
audio input data that is fed to the learning algorithms.
Indeed, the use of deep learning and most notably convolutional networks in image process-
ing exploits several properties of image data that are keys to their success. One important
property of the visual data is its stationarity. It means that the statistics (average, variance)
of the different subsets are the same. Another significant fact is an equivalence in the dimen-
sions. In the case of images, pixels are invariant by rotating and an the spinned image will
remain the same image.
In order to address these shortcomings, we focus in this work on the representations of sound
that we can use for deep learning with audio data. In particular, we study the Spectro-
Temporal Receptive Fields (STRF) [5, 33], which is a transform based on an analysis of the
representation of sound in the human brain. This representation possesses several advantages
on existing spectral transforms. Firstly, it is inspired by human perception and consequently
is closer to it. Secondly, it establishes a more stationary structure. Finally, this representa-
tion contains more informations about the sound than all other ones.

However, a significant disadvantage of this representation is its very high dimensional-
ity, as it computes multiple modulation types over a sound signal, leading to 4-dimensional
tensors. But the capacities of learning offered by the STRF (especially the possibility of
reconstructing the audio directly from this representation) encourages us to search for a
method of reducing their dimensionality to use them as a basis for learning. Therefore, we
will start by studying the properties of audio transforms, and try to find a way to handle
the dimensionality of the STRF. Our first approach to this problem will be to study Princi-
pal Component Analysis (PCA) of this data. The other way that we will introduce in this
internship is an investigation of the stationarity properties of the STRF.

Applying style transfer to music

In this internship, we will target methods able to perform musical style transfer.
The issue of style transfer in music which, in fact, can not be a transfer of the musical style in
its general definition. Indeed, we associate a notion of musical style with parameters of voice,
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instrument, intonation, structure, dynamic and etc. In the method set out in this section the
task of definition of style or, more accurately, texture, is entrusted to artificial intelligence.
By abuse of language we call it by analogy with an existing method in image processing [18]
and which we would expand on domain of sound signals. It is logical to assume that the
machine will need of parameters, expressed rather digitally and not intuitively. So, we should
indicate the unchangeable (semantic content) components, transferring (style) components
and combination process.
Some interesting attempts what can play a part of the components to recombine, have been
made to answer this question, based on cognitive processes and perception [25, 41]. A method
called Neural Style Transfer [37] based on recombining the content and style components
through convolutional neural networks has been proposed successfully for image style transfer.
Hence, we expect, by using deep neural networks, to be able to separate the components of
content and style in music. However, as argued previously, this approach could only be
successful if we find a transform fit to the peculiarities of convolutional networks.

1.2 Objectives and research problems

The objectives developed in this internship boil down to three main tasks

1. Analyzing different audio transforms for improving deep learning in MIR tasks;

2. Developing methods to allow the use of STRF in audio information retrieval with deep
CNN networks, specifically:

• Analyzing the harmonic stationarity of STR representation,

• Reducing their dimensionality through Multilinear-PCA.

3. Using the results of the previous tasks to try to perform musical style transfer based
on STRF and CNN.

Altogether, these tasks are aimed to use the STRF both for the typical tasks of recognition
in the MIR field, but also to perform music generation in the style transfer problem.
We will test the efficiency of these representations on a classic task of genre classification
realized by supervised machine learning using Convolutional Neural Networks.

Structure of this document

The remainder of this document is organized as follows. In the first part, we introduce the
basic notions of machine learning and the different types of neural networks (Section 2), while
showing their application in the MIR field. We focus on convolutional networks and give some
examples of application tasks. Then, we discuss the notion of style in music and possible
mathematical and algorithmic interpretation of style transfer (Section 3). In the next section,
we talk about the different types of sound representation, while focusing on STRF and its
advantages compared to Fourier transforms and others representations (Section 4). Finally,
we talk about the problems of high-dimensionality in the data and how we could alleviate
these issues (Section 5). In the second part of this report, we introduce the experimentations
realized during the internship and some obtained results. We present the different types of
preprocessing (Section 6), training models (Section 7) and neural texture transfer (Section 8)
that were used along this work. Then, we provide a summary of our results (Section 9) and
conclude this work by discussing the advantages, shortcoming and perspectives of the used
methods (Section 10).
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2 Deep Neural Networks

In this section, we give a brief introduction into machine learning and deep neural networks.
We delineate the differences between supervised and unsupervised learning, based on the
task at hand. We focus particularly on the convolutional type of neural networks as they are
currently the state-of-the-art models for classification tasks.

2.1 Principles of machine learning

The objective of machine learning is to find an appropriate solution to complex problems by
relying on statistical and computational methods. The choice of the method differs depend-
ing on the given task and the type of data. For machine learning problems, the task is defined
by the data and which solution should be approximated from this dataset [8]. Among the
common tasks in machine learning we can distinguish most notably classification, prediction
(of unknown or missing values), generation and density estimation.
For all these tasks the data is characterized by its domain and its dimensionality. For in-
stance, in the image classification field, the data sample is represented by a vector x ∈ RN ,
where its features are the intensity values of different pixels.

Classification task example
In this internship, the classification task is actively used. The goal of this task is to categorize
the given inputs X ∈ RD×N into C classes {1, ..., C}. Formally, the goal of learning is to
estimate a function f : RN → N that will assign a numeric label y ∈ {1, ..., C} to each input
vector x ∈ X so that y = f(x). A seminal example of classification is the object recognition
problem, which still represent one of the most studied problem in machine learning [12, 17].

Most machine learning algorithms require the definition and preprocessing of a dataset, the
determination of the criterion of optimization, an optimization procedure and a model. It is
interesting to note that we can perform various combinations of these components, thereby
obtaining a rich variety of different approaches. The learning model is usually defined by a
parametric function FΘ determined by type of task, and that should be closely related to the
function f that we try to estimate. In theory, the model is defined based on assumptions
about the dataset, such as its distribution and corresponding constraints. In the following,
we provide details on these different elements and explicit some types of procedures and
models.

Criterion: loss function and risk

The main stage of machine learning is optimization, which requires the definition of a cri-
terion that could inform us on how well the model behaves. This will allow us to define
a learning procedure which tries to optimize this criterion. Hence, the loss function (also
called error function), determines a measure of the errors produced by different algorithms.
In statistical analysis, the loss function is used for parameter estimation and quantifies the
difference between the answer estimated by the model and the real solution.

Formally, we define M(θ) as our analytical model that depend on a set of parameters
θ ∈ Θ, which will be applied to the input dataset X. Therefore, the relationship between
an input example x ∈ X and the output of the model ŷ ∈ Y is defined by the function fθ:
ŷ = fθ(x), which is supposed to approximate the function that we want to model f : y = f(x).
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In the end, the loss function L(f(x), fθ(x)) : RN → R is a loss function that measures the
error between the true output y and the predicted output ŷ. There are many different choices
regarding L depending on the task and chosen model. The most common loss functions are

· L(y, ŷ) = 1ŷ 6=y – Binary loss function (classification);

· L(y, ŷ) = (y − ŷ)2 – Quadratic loss function (classification, prediction);

· Lp(y, ŷ) = ‖y−ŷ‖p, where p ≥ 1 – p-norm loss function (regression, density estimation).

The optimization method will then depend on the chosen loss function. However, it is very
important to note that the over-arching goal of machine learning would be to minimize the
overall error across all possible unseen data, therefore minimizing the expected risk

Rθ(f) = Ex [L(f(x), fθ(x))] (1)

However, this would require to have access to the overall true distribution of the data.
Therefore, machine learning will try to minimize a simplified version of this problem by
using the empirical risk

R̂θ(f) =
1

‖X‖
∑
xi∈X

L(f(xi), fθ(xi)) (2)

Gradient descent

The most efficient method of optimization is the gradient descent [29] algorithm, which can
be applied to differentiable functions. Let fθ : RN → R be the function defining our model.
Then, the gradient of this function fθ(z) at a given point z, with a given set of parameters
θ = (θ1, ..., θm) ∈ RM is a vector of its partial derivatives

5fθ(z) =

(
∂fθ(z)

∂θ1

, ...,
∂fθ(z)

∂θn

)
. (3)

The gradient descent is an iterative process which aims to reduce the loss function over our
model fθ. Therefore, on the first iteration we initialize our parameters θ0 to random values
and then update their values by choosing the (gradient) direction that minimize the error

θ(t+1) = θ(t) − λt5 fθ(t)(z), (4)

where λt ∈ R+ is the learning rate, which defines the magnitude of the update and t ∈
{1, ..., T} is a number of iteration. The output of the algorithm can be defined as the final
vector of parameters θ(T ), that minimize the loss function. Others variants of gradient de-
scent algorithms are possible, depending on chosen learning rates and minimized functions
[1, 29]. Notably, the Stochastic Gradient Descent (SGD), as well as its extensions are the
most widely used in different tasks of machine learning for loss minimization [1].
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2.2 Supervised and unsupervised learning

Machine learning includes two main paradigms: supervised and unsupervised. The major
difference between these approaches lie in the presence or absence of a priori information on
the examples. The supervised framework can also be called predictive learning, as it aims to
find the correspondance between given inputs and output labels. In contrast, the objective
of unsupervised learning, is to try to uncover the structure of data based directly on the
examples themselves, in order to find interesting regularities. Almost all learning tasks are
distributed between these two types.

Supervised learning

In supervised algorithms, the input data is divided into two main sets. First, the training set
is defined by pairs DM = (xi, yi)i=1,..,M , where M is the number of examples. This dataset
defines the matching between N -dimensional vectors xi and a nominal label yi ∈ {1, ..., C}.
The values of xi are also called features or atributes. This type of training set is one of
the gold standard in supervised optimization processes. The other part of the data is a test
set (defined similarly), which will allow to evaluate the performance of the model on unseen
data. It consists of data which is aimed to simulate the behavior of the model in real-world
conditions. This type of learning is usually applied to problems of classification and regres-
sion.

Classification task
As discussed before, the formalization of the classification problem is an estimation of the
function f , such that yi = f(xi), with (xi, yi) ∈ DM , i = 1, ...,M . The learning process
approximates the prediction function fθ(x) using a given labeled training dataset. In terms
of probabilistic theory, the selection of a class for a given x is defined by the most probable
label c ∈ {1, ..., C} such that

ŷ = fθ(x) = argmax
c∈{1,...,C}

(p(y = c|x, θ)) . (5)

Finally, the main stage of the process is to evaluate the quality of the model based on predic-
tions made for unseen data of the test set. The classification task is widely applied to many
real-world problems, such as image classification, musical genre recognition, spam filtering,
speech translation and others.

Overfitting
It is important to note that if the model is too flexible (the complexity of the function is su-
perior to that of the problem), then the found solutions might be too specific to the training
set. This phenomenon is called overfitting and means that the model will perform well on
the training set, while giving unsatisfactory result on the test. To avoid this overfitting the
training set is usually subdivided into a validation set, which allows to observe the behavior
of the model on unseen data, in order to tune its parameters.

Unsupervised learning

Unlike supervised learning, there are usually no target values in the unsupervised case. The
objective here is to find some relations directly between the attributes of the data. It is
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possible to formalize this task as a density estimation problem. By contrast with super-
vised learning with a model defined by p(yi|xi, θ), the unsupervised model can be defined by
p(xi|θ), where θ is a parameter vector. So, the major difference of supervised learning is to
try to model the data xi directly.
This type of learning is commonly used in tasks of clustering, structure discovery, data com-
pression and others. Numerous real-world applications include dimensionality reduction,
image inpainting and source separation.

2.3 Convolutional Neural Networks

Neural Network

Inside the family of learning methods, a neural network is defined by sets of connected units
(neurons) arranged in layers. The overall neural network field is inspired by the functioning
of the human brain. A biological neuron interacts with its neighbors through its dendrites
by receiving and sending stimuli to other neurons. When the cumulated signals received by
a neuron exceed a given threshold, it produces and sends a, activation signal (response). A
mathematical model of these processes in a multi-layer setup was first proposed by Frank
Rosenblatt in 1957 and is called the perceptron. The basic types of neural networks are
defined as multilayer perceptrons, where this multilayer structure allows to learn nonlinear
relationships between the input and output of the network.

Generally, an artificial neuron is a function g defined in Rdby expression:

g(x) = σ(
M∑
m=1

amxm − a0) = σ(a · x̃), (6)

where a = (a1, ..., aM)t, a0 is an activation threshold, x = (x1, ..., xM) are the stimulus re-
ceived from neuron neighbors, x̃ = (−1, x1, ..., xm)t and σ is a sigmöıd (σ(x)→ 0

x→−∞
;σ(x)→ 1

x→∞
).

An artificial neural network (with one hidden layer) is a function f : Rd → R:

f(x) =
K∑
k=1

wkσ(ak · x̃) + b, (7)

where K is a number of neurones, b is a bias and w1, ..., wK ∈ R are weights, characterizing
the network.
The first and the last layers of a neural network are respectively called input and output
layers. All intermediate layers called hidden and its values are unknown during the learning.

Convolutional Neural Network

Convolutional Neural Networks (CNN) are similar to multilayer neural networks, but rely on
slightly different operations by using layers of convolution and pooling. Each layer is defined
by multiple filters, convolved across a given input or the previous layer output. By replacing
the linear transform of a neural network by a convolution and given that g(x)(1) = x, the
activation of the layer l + 1 is described by:

z(l+1) = w(l) ∗ g(x)(l) + b(l); (8)

g(x)(l+1) = σ(z(l+1)), (9)
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where w(l) is a vector of weights and b(l) is a bias for layer l.
Therefore, multiple convolution kernels are computed over the previous activations, leading
to several feature maps per layer. When the data is sufficiently stationary, i.e have the same
statistics in every parts, the convolution can be an appropriate operation of filtering. The
filter overpasses a N × D-dimensional data matrix and output a new feature map. Kernel
size can vary from layer to layer. So, during the learning multiple filters can be applied. The
particularity of the operation of convolution is that it provides a spatially-logical connection
between the different elements of data and transmits it to the next layer. In the image
processing, convolution layers allow to identify the shape parameters, detecting the vertical
and horizontal directions of the lines. In the networks with high number of hidden layers,
convolution encourages a sharing of parameters and realizes the feature extraction. [26].
The pooling layers then subsample the data into a lower dimensionality by choosing the
maximum (or average) activations across a given window. Ultimately, all networks produce
a vector of representation g(x)(n) (activations of the deepest units), which are the highest-
order features extracted from the input.
By using convolution and pooling, CNN exhibits very interesting properties such as local
spatio-temporal connectivity and local translation invariance for any given input [16]. On
top of these convolution and pooling layers, CNNs usually rely on fully-connected layers to
combine the features extracted from all convolution and pooling layers and so perform clas-
sification or regression.

CNNs are used for classification problems by evaluating the errors made by the network
and then by backpropagating the gradients of these errors with respect to the parameters
(weights and biases) into all the layers iteratively [2, 20].

Back-propagation

The interactions between layers in the network occur in two ways. One of them is the forward
pass, which defines the output of a given layer depending on the previous one. This follows
the activation functions defined previously (Equation 8). However, the key goal of learning
algorithms is to optimize the parameters of this model. Therefore, the other important
interaction between layers is to define the error back-propagation. This operation defines the
relation between layers and the error function. This will then allow to update the weights of
layers by using gradient descent. An explicit mathematical formulation of back-propagation
process is given in [24].
The process of back-propagation described above allows to CNN to output the high-level
features. In order to explore the non-linearity of these features in CNN, the full connected
layers are used.

Deep convolutional neural network

The general idea of Deep Neural Network (DNN) is that they provide many hidden layers
between the input and output layers [10]. Each layer provides increasingly higher-level and
complex features by uncovering correlations in the previous layer through non-linear trans-
forms. Figure 1 illustrates that the high number of hidden layers generate a bigger number
of relations between neurons. This makes a learning algorithm more flexible and powerful.
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Figure 1: DNN posses a big number of hidden layers. Image taken from [28]

The recent breakthroughs in deep learning provided astonishing results, strongly outper-
forming state-of-the-art models in information retrieval tasks [2, 31].

Receptive fields

The notion of receptive fields is also taken from neuroscience. It represents a region of
neurons with their receptors being sensible to the specific stimulus received from nearest
neurons. The influence of various stimulus can change the state of this neuron. In visual
systems, the mechanism of receptive fields is involved in feature detection [15]. In deep
CNNs, receptive fields are a very important concept. Technically, this is an hyperparameter
corresponding to the filter size. Some researches analyzed the models of artificial receptive
fields (Effective RF) and its impact on the neurons during the learning process [23, 13]. The
authors pay attention to the correct choice of the size of receptive fields and the differences in
neuron responses from deeper layers. Indeed, the features have a low resolution on the first
layers and higher resolution in deeper layers. So, we can consider receptive fields as feature
detectors, which increase the detection capacities of the CNN from low-level to high-level
layers. The formal definition and some example of applications in image processing like edge
or orientation detection are given explicitly in [15].

3 Style transfer

In this section, we introduce the concepts of style transfer and the state-of-the-art in im-
age processing. Then, we will talk about its application to musical signals. As previously
discussed, we will use the term style transfer loosely when discussing musical style, as an
analogy to the existing works in images.

3.1 Concept of style transfer

Neural style transfer

Traditional methods of style transfer in image processing mainly focus on non-parametric
patch-based texture synthesis and transfer [40]. Preferably, style transfer algorithms should
retrieve the semantic content from the target example and combine it with the texture content
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of the origin example. Hence, the idea is to resample small patches of pixels from an original
source texture image (representing the style) and try to fit these to a corresponding target
image (representing the content). Different methods were proposed to improve the quality of
the patch-based synthesis and constrain the structure of the target image [7, 38, 37]. Recently,
neural style transfer [18] has demonstrated remarkable results for image stylization by taking
advantage of the powerful representation offered by deep CNNs. The main problem here is
to find which parts of the network could discriminate between the content and the style in
order to generate an output image with appropriate quality.
To that end, the neural transfer algorithm will use the activation of convolutional filters
and different layers. Indeed, as previously discussed, these filters can be seen as high-level
feature detectors. Hence, when one filter activates it represents a specific content at a specific
location. Regarding style, the reccurent co-activation of low-level filters have been shown to
faithfully describe the texture content of an image [7]. This information can be found directly
by computing the Gram matrices of the neural activations from different layers of a CNN to
represent the artistic style of an image. Then, it uses an iterative optimization method to
generate a new image from white noise by trying to match as closely as possible the neural
activations of the content image while matching the Gram matrices of the style image.
Although several works have been proposed to further improve the original neural style
transfer [19], its application to audio data remains open because of the wide difference in the
definition of audio style. In the following, we expound the application of neural style transfer
as defined in [18].

Content representation

Each layer in a convolutional network is defined by a set of filters. The complexity of each filter
(regarding the level of information that it processes) depends on the depth of its corresponding
layer. Hence, when propagating an image through a network, at the each level this image
produce a particular activation of the filter responses F l ∈ RNl×Ml , where a layer l has Nl

feature maps of size Ml. So, for each layer l, F l
ij is the value of the activation of filter i at

position j. We call F l an activation matrix.
If p̃ is a source image and x̃ is a target image, we define as P l

ij and F l
ij their respective

activation matrices at layer l. If we compare these activations, we can evaluate the difference
in the content between p̃ and x̃, leading to the content loss function

Llcontent(x̃, p̃) =
1

2

Nl∑
i=1

Ml∑
j=1

(F l
ij − P l

ij)
2. (10)

It is interesting to note that initially x̃ can be a white noise (image) or any other random set
of variables. But, with decreasing error the structure of x̃ will converge to p̃, revealing the
same features (lines, object edges, depth).
For the error minimization, the gradient descent method is used. It can be calculated by re-
lying on standard back-propagation from the derivative of the squared-error loss with respect
to the source image

∂Lcontent

∂F l
ij

=

{
(F l

ij − P l
ij), if F l

ij > 0

0, if F l
ij < 0.

(11)

This process allows to modify the filter response of a target image, so that its activations gets
closer to the response of the original image. As the layer used gets deeper, representations
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become more focused on the high-level information of the picture (general outlines), while
obliviating its low-level details (local pixels and textures) [3]. Thence, we will treat the high
level features as a content representation of source image.

Style representation

As discussed previously, we aim to use the information associated to the texture of a target
picture as a notion of style. We are interested by the correlations between different feature
responses with respect to the feature maps of each layer. These correlations are defined by
Gram matrices Gl ∈ RNl×Ml

Gl
ij =

∑
k

F l
ikF

l
kj, (12)

where F l
ik and F l

kj are feature maps i and j in layer l. We can see that the Gram matrices
represent the correlation between given features across any spatial position (as it sums their
co-activations). Following the same method of gradient descent, we can optimize the Gram
matrix of the random image to be closer to a target Gram matrix of a given layer l

El =
1

4N2
l M

2
l

Nl∑
i=1

Ml∑
j=1

(Gl
ij − Alij)2 (13)

where Gl and Al are respectively the style representations of the input and generated pictures
at layer l. The gradient of El is computed using standard back-propagation

∂El
∂F l

ij

=

{
1

N2
l M

2
l
(F l)T (Gl

ij − Alij), if F l
ij > 0

0, if F l
ij < 0.

(14)

Interestingly, we can combine the information from the features at different layers; in order
to obtain a multiscale representation of style from a given image. If we suppose ã is the
source texture image, then the total loss function becomes

Lstyle(ã, p̃) =
∑
l

ωlEl, (15)

where ωl is a weighting coefficient that can be chosen arbitrarily, and p̃ represents the pixel
information of the source image that can be optimized through complete back-propagation.

Content and style matching

Formally, the style transfer looks like a trade-off between component and style components:

Ltotal(x̃, ã, p̃) = αLcontent(x̃, p̃) + βLstyle(ã, p̃) (16)

The proportions of each of two components of a new picture depends on parameters α
and β. The question of the optimal relation between these two representations is open and
goes into the field of the subjective worldview.
The complete scheme of the artistic image style transfer is by [18] presented on the Figure 2.
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Figure 2: The complex schema of transfer algorithm. The style prototype ~a passes through
the CNN and the representations Al for all l are stored. The content prototype ~p passes
through the network, and content representation P l is stored. ~x - a white noise image passes
through the network and results style features Gl and content features F l. On one’s hand,
on each level the loss between Al and Gl computes and gives Lstyle; on the other hand, the
loss Lcontent is computed. The total loss Ltotal is a linear combination of Lcontent and Lstyle.
By back-propagation ~x is iteratively updated. Image taken from [18]

3.2 Application to audio related tasks

The neural algorithm of the texture transfer (and its variations [6, 18, 19]) can be applied
to different types of data. The most important is that the dataset can be represented as
multidimensional tensors. Thus, we can apply this algorithm to the sound. As input, we can
use spectrograms, representing the spectral transforms.

Notion of musical content

The ”content aspect” is very well mirrored in the music domain and can be extracted using
CNN. In order to represent the content of a musical composition we employ the activation
matrices of feature maps. Each matrix corresponds to activation of zones where main trends
of spectrogram can appear. In music composition these trends can represent the melody,
general structure, the most important frequencies.

Notion of musical style

In the algorithm of the artistic image style transfer, the representation of ”style” is a result
of Gram matrix optimization. Indeed, this matrix represents the change of the basis of the
space where it is defined. It means that the modification of the Gram matrix impacts the
change of the space. Actually, the modifications involve the texture aspect of the image. The
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result of the transfer of this concept in the sound processing domain is a not style, but a local
musical texture transfer. We call this method musical style transfer by language abuse.

4 Spectrotemporal analysis based on auditory cortical

physiology

The human auditory system embeds complex sound processing mechanisms which are able to
obtain, process and transfer audio signals to the brain. This system can detect, recognize and
separate a wide variety of signals such as speech, environmental sounds or music. To under-
stand these complex neural representations in the primary auditory cortex (A1), researchers
have studied the responses of the brain to dynamic sounds, leading to the Spectro-Temporal
Receptive Field (STRF) [35] representation.

4.1 STRF-representation

Fundamentals of STRF

The STRF are used to approximate the sound representation computed by neurons in the
human auditory cortex. This representation tries to fully characterize the response of neu-
rons and their temporal dynamics when sounds with rich spectro-temporal content are heard
by humans. Neurons react differently, in particular, with different latencies between sound
covering different parts of the spectrum. The STRF are computed from the responses to
elementary ripples, a family of sounds with drifting sinusoidal spectral envelopes [35]. The
collection of neural activations generated by these ripples is the spectro-temporal transfer
function. Hence, the function STRF (f, t) will describe the response of neurons to the stim-
ulus at frequency f and time t. This is depicted in Figure 3, where we can see that the
activation of a given neuron can be either reinforced by some part of the spectrum (called
excitatory influence of a given frequency at a given time, represented here by a plus circle)
or inhibited by other regions (called inhibitory influence represented by minus circles).

t

f(oct)

t̂

f̂

−

+

−

−

Figure 3: Schematic plot of a STRF (f, t) representation; plus circles represent spectrum
regions that participate to the activation of a neuron (excitatory influence) and minus circles
inhibit its activation (inhibitory influence)

In order to obtain these functions, the moving ripple spectral profile that is used as input
is presented in Figure 4. Here, the black regions depict zones of the ripples excited by certain
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frequencies and white regions designate zones where the response of ripples is suppressed. In
general, any broadband and dynamic sound with complex spectro-temporal envelopes can be
expressed as a linear sum of individual ripples [5].

Figure 4: Envelope of a moving ripple. Image taken from [5]

Cochlea & auditory spectrogram

On the first early stage, sound is processed by the cochlea, a spiral in the inner ear, transform-
ing sound vibrations to neural impulses. The unidimensional pressure waveform is turned
into 2-dimensional templates of neural activity (called auditory spectrogram) which we can
represent on the typical time-frequency axes. Thus, the cochlea have the mission in the
auditory system of early audio treatment and play a role similar to that of a filterbank for
the full spectral analysis. More explicitly, when the acoustic signal s(t) goes through the
cochlea, it is processed by filters, each of which can be determined by its impulse response
h(t, x), leading to the following operation

ycoch(t, x) = s(t)⊗t h(t, x), (17)

where ⊗t is convolution operation in time domain. The result ycoch(t, x) is transmitted to
the auditory nerve, where hair cells perform a compression operation g(t) and later on the
membrane acts as a low-pass filter w(t) on the input. Hence, the resulting signal yan(t, x)
can be modeled as follows

yan(t, x) = g(∂tycoch(t, x))⊗t w(t). (18)

Next, this signal goes through a lateral inhibitory network yLIN(t, x) (described in detail
in [30]), which can be approximated by the positive derivative of the auditory nerve signal
yLIN(t, x) = max(∂tyAN(t, x), 0). Finally, the output of this early stage is

yfin(t, x) = yLIN(t, x)⊗t µ(t, τ), (19)
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where µ(t, τ) is a short window with parameter τ denoting the midbrain phase loss.
The auditory spectrogram is clearly discriminative of the type of stimulus, with high speci-
ficities between noise, separated tones, high and low frequencies, harmonic complexes, speech
and music. Moreover, it can reflect intonations and nuances, such as a vibrato or bowing
characteristics in violin sounds [33].

Auditory cortex and spectrotemporal analysis

The next stage of processing will exhibit the modulations inside both the spectral and tempo-
ral components of the auditory spectrogram yfin(t, x). This signal is processed by the primary
auditory cortex through another filter bank, which is sensitive to different modulations pa-
rameters. These parameters describe slow to fast temporal rates and dense to expanded
spectral scales. It is important to note that the STRFs are centered on particular frequencies
CFs associated with the amplitude, spacing and phase. These characteristics reflect the
perception of various timbre and help to distinguish instruments, voices and speech.

Figure 5: Example of a STRFs. Image taken from [34]

Mathematical formulation

Now that we have transfer functions STRF (f, t) that model the processing of the audi-
tory system, given an input signal spectrogram S(f, t) (computed with any type of spectral
transform), we can compute the set of neural activations O(t) by [21]

O(t) =

∫ ∫
STRF (f, t)S(f, t− τ)dτdf + ε. (20)
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The transfer function is separable, therefore, it can be factorized into a product of purely
temporal and purely spectral functions. The explicit and complex research of the STRF was
undertaken in [21]

5 Dimensionality reduction methods

The STRF is a complete representation providing four-dimensional tensors defined by time,
frequency, scale, and rate. However, its major drawback is that it generates tensors of very
high dimensionality, which could hamper our future learning algorithm. Hence, one of the
major way to deal with these properties in a computational setup is to rely on dimensionality
reduction methods, such as the Principal Components Analysis (PCA), based on analyzing
the variance of various dimensions.

5.1 From PCA to Multilinear-PCA

Principal components Analysis (PCA) is a dimensionality reduction procedure relying on
statistical methods that analyze the variance of different dimensions. The goal is to perform
a maximization of the variance of different dimensions, by finding an orthogonal projection
in the subspaces of the dataset (usually after centering and normalizing the data). In other
words, only the components with a rather large variation will be chosen. One of the key
disadvantage of the PCA approach is that it considers every dimensions in the same way, by
proceeding to a vectorization of the input tensor (leading to a matrix N×D with N elements
and D dimensions). However, in this work, we will need to work with STRF tensors that
have a clear structure (N × F × T × S ×R), which would be lost with the PCA. Therefore,
we will introduce a specific tensorial extension of the PCA, namely Multilinear PCA.

PCA

PCA is a well-known method of analyzing the general behavior of data components. The
objective of this technique is to extract the elements with maximal variance in each of dimen-
sions and to reconstruct a decimated representation of the original, based on these elements.
The algorithm of PCA consist in the next steps. Firstly, the data need to be centralized. We
calculate a mean from each of vector dimensions of data space and subtract the means from
the origin values.
Secondly, we calculate the matrix of covariance. From this square matrix we can compute
the eigenvectors and the eigenvalues which need to be a unit vectors (of the length 1). In
fact, the eigenvectors represent a new basis of the space of original values, constructed with
respect of its general trend. In other words, the eigenvectors correspond exactly to the main
directions of distribution of values in space, thereby characterizing the input dataset.
Thirdly, it is necessary to define the principal components and to form the feature vector.
The main idea is that the eigenvector corresponding to largest eigenvalue is a principal com-
ponent of dataset. After obtaining the eigenvectors from covariance matrix we arrange them
in decreasing order of corresponding eigenvalues. On this stage, in order to reduce we can
ignore the lowest eigenvalues and discard corresponding eigenvectors. Some data will be lost,
but, by hypothesis of the method it is non-significant information.
More generally, the feature vector E is a matrix consisting of all resting eigenvectors: E =
(e1, e2, ..., ep), where p eigenvalues have been chosen from n founded from covariance matrix
initially.
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The final step is to project the feature vector on the space of the original dataset. Technically,
it is a multiplication of the matrix of eigenvectors in the rows by transposed centralized data
matrix:

XPCA = FV T ×XT
c . (21)

The final data XPCA includes the items from original dataset in columns, and number of
rows corresponds to number of dimensions.
The PCA-method classify the data elements by its significance, which is characterized by
eigenvalues. It lets to separate with a help of some criterion (for example, a percent rate
of ignored information) less significant elements from important items and leave them out.
However, in the case of high-level dimensions this algorithm may require a powerful compu-
tational capacities.

Multilinear PCA (MPCA)

When objects are defined by structures of more than two dimensions (matrix), we need to
rely on tensors (generalization of the matrices to three or more dimensions). This can be
a useful representation of complex sound transforms or video data. The order, also called
mode, is defined by the number of dimensions of space in which the object can be placed. For
example, video is a three-order tensor, constructed by rows and columns of pixels changing
in time.
By definition, tensors have a more complex structure and the treatment of these objects can
be computationally expensive. Hence, if we want to use the statistical learning methods
introduced previously with this type of input, we run towards the risk of largely overpassing
the memory capabilities of computers. As previously argued, applying PCA could be a
good idea to alleviate this problem, but in the case of multi-order tensors with high number
of intercorrelated components it may be insufficient. Indeed, the PCA approach does not
account for the inherent tensorial structures and potential correlations amongst them. This
comes form the fact that the classical PCA requires the vectorization of input tensors. For
example, a tensor of size 128 × 216 × 10 is transformed to a vector of size 276480 × 1. In
result we have a 1-order object, where the relations between different dimensions of a same
mode are lost. Therefore, if we apply PCA directly to tensor ogjects, we are forced to ignore
the multidimensional nature of this structure. These observations motivate the introduction
of the Multilinear Principle Component Analysis method (MPCA).

MPCA framework

Detailed mathematical justifications, as well as the questions of convergence of MPCA are
discussed fully in [22]. Some details and notations are taken from [9, 14]. Now we give a
general algorithm of proposed method. The notations used in follows in this paragraph are
taken from [22].
The next steps describe the MPCA algorithm :

1. Centralization
As in the case of two-dimensional space, we need some preprocessing operations on
input samples Xm ∈ RI1×I2×...×IN ,m = 1, ...,M .
Applying to tensors, the centering will look like this: X̄m = Xm − X̄ , where
X̄ = 1

M

∑M
m=1Xm.
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2. Eigen-decomposition
The next step is a calculation of eigenvectors corresponding to the largest eigenvalues
Pn, for n = 1, ..., N . As result, we obtain the eigen-decomposition of n-mode matrix
full projection

Φ(n)∗ =
M∑
m=1

X̃m(n) ∗ X̃T
m(n) (22)

and set of eigenvectors Ũ(n).

3. Optimization
Then, k = 1, ..., K times, where K is an arbitrary defined number of iterations, we
produce by sequence the followings operations:

• Calculate Ỹm = X̃m ×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T for m = 1, ...,M ;

• Calculate ΨY0 =
∑M

m=1 ‖Ỹm‖2
F , where ¯̃Y is zero if X̃m is centered.

• For all n = 1, ..., N calculate the new projection matrix Ũ(n), which is a key
operation of MPCA:

Ũ(n) = argmax
Ũ(1),Ũ(2),...,Ũ(N)

ΨY , (23)

where ΨY is a total tensor scatter. These matrices Ũ(n) consist in Pn eigenvectors
of n-mode matrix Φ(n) and correspond to biggest Pn eigenvalues.
After that, the new projection Ỹm and scatter ΨYk can be defined. The iteration
continues until the scatter change sufficiently or, in other words, if η is some
predefined threshold and if ΨYk −ΨYk−1

< η, then go to the next step.

4. Projection
The final reduced tensor is a result of a multilinear projection. It is defined by the
vector

Y = Xm ×1 Ũ(1)T ×2 Ũ(2)T ...×N Ũ(N)T ,m = 1, ..,M. (24)

This MPCA-method proposed in [22] allows to reduce the number of input dimensions, while
at the same time keeping the internal mode-wise relationships [27].
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Part II

Experimentations & results

6 Preprocessing

6.1 Spectral transform

In this internship, we use the Torch package developed in the Lua language that offers
convenient and practical tools for learning networks. We started by developing a toolbox
created to simplify the utilization of Deep Neural Networks and include useful packages of
cortical representations and other possible transforms like Mel, STFT or wavelets. The Torch-
toolbox also includes tools that can import, preprocess and visualize data, build models and
convenient criteria of optimization, and finally construct learning structures with supervised
and unsupervised options.
By using the cortical-toolbox we obtained 8 datasets corresponding to 8 2D-transforms:
Mel spectrograms, Mel-Frequency Cepstral Coefficients (MFCC), Wavelet-transforms, Short-
Time Fourier Transforms (STFT), Scattering transforms, Chroma, gammatone transforms
and cochleograms.

6.2 Dataset

For all experiments, we used a GTZAN dataset, a public set of music samples well-known
in MIR community. It consists in 1000 half-minute music examples, labeled in 10 classes
representing musical classes. It is most used especially for music genre recognition task
(MGR).

Figure 6: The content of GTZAN. In columns: number of samples identified by the Echo
Nest Musical Fingerprinter (ENMFP); manual searching (self); number of songs in last.fm;
number of artists in last.fm (for tracks not found). Table taken from [32].

The database GITZAN contains inaccuracies of at least three types: repetitions (it has
been found 50 exact repetitions), mislabelings and distortions [32]. Those inaccuracies impact
the results of learning but they do not means that we cannot use effectively this dataset. One
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solutions of this problem might be a ”smart” repartition of samples between training, vali-
dation and testing sets. We used a manual distribution without mislabelings and repetitions
in the same subset.

6.3 Analysis of audio transforms

Two bidimensional stationarity tests (trend stationarity for each of 4 vector dimensions) was
used to motivate the use of STRF transforms. The stationarity rate was measured by scalar
coefficient ∈ [0; 1]. It was compare with the rates of 8 others spectral transforms.
In order to assess the discriminative power of the models, we start by performing genre
classification. We evaluate this task by relying on the 10 genres from the GTZAN set and
the 10 (different) genres from the Million Song Dataset (MSD). Finally, we evaluate the task
of genre classification on the GTZAN set but with models that had first been pretrained on
the genre classification task for the MSD set. This will allow us to evaluate the capacity of
the model to perform feature transfer between different datasets.

6.4 Reduction of dimensionality

The data in our works as in many other cases are represented by a set of big dimension tensors.
The elements of tensors have three or more indexes (depends on dimensionality of object)
and correspond to the order of the tensors. The space of spectro-temporal modulations has 4
dimensions and is naturally represented by 4-order tensors. However, high level dimensions
provide more of data volume that implies obstacles for machine learning. It also raises a
question of memory and calculation capacities of computing devices. STRF-representation is
a complex 4-dimensional representation of sound and requires big computational capacities.
This technical problem can be resolved by different methods of reduction. At the same time,
we would keep the advantageous properties of this representation which is multidimension-
ality, and parameters of modulations in both spectral and time domains.

The problem comes down to decimate data by reducing the number of points in the
spectro-temporal space. In this internship, we used two main concepts: an empirical di-
mensions evaluation (learning channel by channel) and the dimension reduction by MPCA.
Then, we evaluated and compared the results of both models. As a testing problem, we used
a typical task of music genre classification.

7 Models

Parameters of models

During this internship, we used two different learning models to deal with problems of clas-
sification and dimension reduction studying.
For the classification task, the set was divided manually in three sets: train, validation
and test. This division avoided problems about repetitions and mislabeling of the dataset
GTZAN. The CNN model with 4 convolutional layers was used. Each layer consists in 300
neurons, the size of convolution is 64×64×64×64. Two first kernels are the size 11×11 and
two last - 5×5 with a strides 1, 2, 2, 2 respectively. Pooling size is 3×3×3×3. The number
of channels is 1 for channel-by-channel analysis and 198 for complex analysis of STRF. As
the activation function σ, non-linear function ReLU was chosen.
In order to reduce the dimensionality of STRF-representations, we used the method of MPCA
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with a variation order 0.95 for normalized data.
The both models were adapted to the size of the transforms and trained by batches 50 and
5 samples respectively.

8 Music style transfer

Particularities of audio data

The image in RGB-color model can be digitally represented as 3 channels of two-dimensional
matrices. The lines and columns are equivalent in meaning, that implies that image is
indifferent by rotation. It is not the case for audio signal. Sound data can be viewed as
a spectrogram (built with Fourier transform or otherwise) and represents two-dimensional
matrix or multidimensional tensor. But in case of typical spectrogram of short-time Fourier
transform (STFT), properties of both frequency and time dimension are not similar. However,
any two-dimensional sound transform TxF can be treated as an image, if it is considered as
1xT image with F channels [37].
One more problem is the sound reconstruction of the waveform from spectrogram with respect
of axes. For STRF, it can be Griffin-Lim algorithm and other inverse function for given
transforms.

Updating of image processing algorithms for sound processing

After applying the dimension reduction algorithm to the STRF-representations of the dataset,
we can use tensors as the input in music style transfer algorithm. This algorithm is based
on the methods proposed by [18, 19].
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9 Results

We evaluated each of spectrotemporal subsets of STRF by learning on classification task.
The Figure 7 demonstrate the distribution of learning rate of each subset.

Figure 7: The most representative spectrotemporal subsets of STRF. On the axis of abscissa
the score dimension is represented. On the axis of ordinates the rate dimension is represented.

The other calculations are currently being processed:
Stationarity learning;
Results of reduction of dimensionality bu MPCA;
Texture transfer algorithm.
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Part III

Conclusion

10 Discussion

The goal of this internship was to analyze the different sound representations, in particular
Spectro-Temporal Receptive Fields, and to produce the algorithms of music style transfer
using this type of transform.
During this internship we studied neural networks, in particular Deep CNN, produced dif-
ferent sound transforms from the base of dataset GTZAN, analyzed stationarity properties
of these transforms, studied in detail the Spectro-Temporal Receptive Fields and we tried to
apply the algorithm of music style transfer inspired by [39] to the STRF. Before applying
STRF to the neural network, we reduced its dimensionality by Multilinear PCA.

10.1 Advantages & shortcomings

We already noted that the algorithm shown in this work is called artistic style transfer .
Actually, it is langage injury. style doesn’t represent what specialists understand with this
term. We suppose that everything that is not classified as content is style, but the notion
context also consists in obscure aspects. The notion of style requires more subtle approaches.
An other imperfection is that the STRF still is a transform requiring large memory and
calculation capacities. For instance, we are forced to use the methods of dimension reduction.
It means that we partly loose some informations about the sound.
However, we believe that the MPCA is an efficient method of dimension reduction for the
tensors of high dimensionality. It allows to keep maximum of useful informations and get rid
of the stationary dimensions of the STRF-transform.
Even after the dimension number reduction, the STRF demonstrates a good score compared
to the other sound transforms in the typical classification task.

10.2 Perspectives & future work

Over the last years, MIR keeps consistency to treat musical style transfer problems. However,
the notion of music style remains obscure and abstract. Nevertheless, we can try to define
this notion. With ears and intuition, several elements take a hand to specify music style.
Firstly, it deals with instrumental composition of music. Indeed, such instruments are more
typical of some centuries or compositors. Secondly, voices and the interpreters techniques
are crucial to refer a composition to a particular style. Thirdly, the artwork structure often
can be linked to a particular composer. Taking into account those specifications and some
others in the algorithms conception could lead to a finest notion of musical style. The use of
those links with other metadata (like for instance sampling frequency or the interpreter name
if it is available) could help to treat classification problems. Finally, The best we can split
musical styles from musical contents, the best we can improve algorithm development. It is
also possible to evaluate different models based on the overall accuracy (ratio of correctly
classified examples) and the number of epochs to obtain this accuracy (before overfitting
occurs as assessed with the validation set).
As a possible application of algorithms studied during this internship, we see a problem
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of cover versions style recognition. Cover versions or, more generally, remakes are popular
author music compositions (song) interpreted by other artists than the original ones. Often,
new versions contain the elements of the original compositions, but also with new variants
of musical arrangement. In order to detect remakes, cover recognition methods can be used.
The recognition requires the identification of the similar musical contents (music structure,
general melody, lyrics) in the different tracks. The STRF transforms can be used as an input
for future algorithms of song recognition.
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