
Master 2

Parcours ATIAM

Rapport de stage de fin d’étude
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Abstract

We present in this report structure preserving integrators based on the discretization of the
Lagrangian field theory. The particular case where the configuration space of the system is a Lie
group is then studied to introduce Lie group variational integrators. This type of integrators is
applied on the Reissner beam model, and applications for sound synthesis are presented.

Keywords Lie group variational integrators, multisymplectic geometry, structure preserving inte-
grators, Reissner beam.

Résumé

Dans ce rapport sont présentés des intégrateurs numeriques, basés sur la discrétisation de la
théorie lagrangienne des champs et préservant la structure des sytèmes. Le cas particulier où l’es-
pace de configuration est un groupe de Lie est ensuite étudié afin d’introduire les intégrateurs
variationnels par action d’un groupe de Lie. Ce type d’intégrateur est appliqué au modèle de la
poutre de Reissner, et des applications pour la synthèse sonore sont présentées.

Mots-clés Intégrateurs variationels par action d’un groupe de Lie, géométrie multisymplectique,
intégrateurs préservant les structures, poutre de Reissner.
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Part I

Introduction

1 Context

In many scientific domains such as computational chemistry, weather forecasting or sound synthesis,
physical models use time and space scales much smaller than those of the desired output; for example,
sound synthesis is ideally performed at sample rates higher than 40kHz over periods of time that exceed
several seconds or minutes. Complex physical systems are modelled by Partial Differential Equations
(PDEs) whose analytical solutions cannot be determined in general, and are thus approached by
numerical methods. The High Performance Computing (HPC) could offer new possibilities for those
simulations that demand more and more machine power.

However, the HPC cannot compensate the drawbacks of some computing methods which are useless
because of the very nature of some of the physical problems : the modelled physical systems evolve on
curved configuration spaces, namely manifolds, making them intrinsically non linear. The non linear
effects have a huge impact on the results of the numerical methods, making them irrelevant. Without
taking into account their intrinsically non linear structure, the small scale errors percolate to large
scale errors and cannot be avoided by simply increasing digital precision.

Algorithms built to preserve the geometrical structure of the physical systems do not present this
problem. The so-called geometrical integrators are numerical methods with built-in geometrical prop-
erties conservation, which makes them more robust than general purpose methods. Numerous ex-
amples have already been deployed in fields from mechanics to financial prediction, that show new
possible applications to the HPC domain.

2 Purpose

The main purpose of the internship is to show the interest of geometric integrators for High Perfor-
mance Computing by building a Lie group multisymplectic integrator, and compare its application
on the Reissner beam problem to the associated integrable solutions in order to show its structure
preserving features.

The internship is done at the Institut de Recherche et Création Acoustique/Musique (IRCAM) in
the S3AM team under te guidance of Joël Bensoam. This production contributes to the elaboration of
a project draft, which presents the interest of several mathematical theories for HPC – among which
the evoked methods, the Port Hamiltonian Systems (PHS) and the stochastic integrators – in order to
obtain a funding from the European Union for the creation of an international consortium of research
institutes, lead by IRCAM in the person of Joël Bensoam and Thomas Hélie, and focusing on building
frameworks for massively parallel exascale computing.

3 Summary

This report presents the general formalism of Lie group multisymplectic integrators, followed by an
application on the Reissner beam problem, that can be used in sound synthesis to model a string.

The formalism of multisymplectic Lagrangian theory is presented in part III. It is the generalisation
of the symplectic case presented as an introduction (see part II) to the multisymplectic setting. The
discrete counterpart of the discrete multisymplectic Lagrangian formalism is introduced in part IV.
The case where the configuration space is a Lie group yields new results for the continuous and
discrete formalism, both presented in parts V and VI. Finally, those results are applied in the case of
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the Reissner beam problem, for which the continuous and discrete models are introduced, a hint on
possible integrable solution is given, and applications to sound synthesis are presented.

The continuous formalism of parts III and V are mainly inherited from Bensoam [1] and thus do
not constitute a personal work; however, the example on the pendulum in section 8 is by us. Their
discrete counterparts are the generalisation of particular applications found in several sources (see
Marsden [11] and Vankershaver [15] for example). The Reissner beam discrete model takes elements
from Demoures [4].

This work has been presented along with Joël Bensoam to several mathematics and HPC commu-
nity partners of the GEOdESiC project during a working trip to Edinburgh (Scotland), Groningen
(Netherlands) and Trondheim (Norway); this was the occasion to confront this work to other areas,
such as PHS and HPC.

We shall point out that the focus is not on the HPC aspects of numerical methods in this report.
The subject of applying the presented methods on HPC is a non trivial problem in itself, and we did
not have the scientific maturity to tackle it within the six month duration of the internship; this is
one of the purposes of the GEOdESiC project.
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Part II

Introduction to Lagrangian mechanics and its
discretization

We introduce here the approach involved in continuous Lagrangian mechanics, and how to discretize
it in order to conserve the structure preserving features.

Section 4 gives the general ideas and philosophy of Lagrangian mechanics in the case where the state
of physical systems only varies along time. The goal of this quick introduction is to grasp the main
concepts before introducing the more complex case of the Lagrangian field theory which involves the
same principles. After introducing the Lagrangian and the action map, we obtain the Euler-Lagrange
equations through the Hamilton principle. The two main results of quantity preservation are then
proved, namely the symplecticity of the flow and the preservation of momentum maps on solutions.

Section 5 presents the ideas behind the discretization of the Lagrangian mechanics and gives an
overview of the current state of the art. The same concepts will be use to build the discretizations in
parts IV and VI in the multisymplectic case.

4 Lagrangian mechanics

This exposition is mainly inspired by the beginning of Marsden [12].
A physical system is represented at each time by its position (q, q̇) in a tangent bundle TQ with

Q an N -dimensional configuration manifold, and let £ : TQ → R be a Lagrangian associated to the
problem. The action map is defined as the time integral of the Lagrangian along a curve :

A(q) :=

∫ T

0
£ (q, q̇) dt

The Hamilton principle stands that solutions q of the problem are critical points of the action map
fixed at the endpoints, that is, for any variation δq of the curve q,

dA(q) · δq =

∫ T

0

(
∂£

∂qA
− d

dt

∂£

∂q̇A

)
δqAdt+ [ΘL(q) · δq]T0 = 0 (4.0.1)

where ΘL = ∂£
∂q̇A

. When the endpoints of the curve q are fixed, the integral on the boundary of the

time interval vanishes in (4.0.1), and as the variations δq are arbitrary, we obtain the Euler-Lagrange
equations

d

dt

∂£

∂q̇A
− ∂£

∂qA
= 0 (4.0.2)

which are the equations of motion.

Symplecticity of the flow Let the flow Ft : TQ → TQ be defined as Ft(vq) = (q(t), q̇(t)) where
q is a solution of the Euler-Lagrange equations (4.0.2) such that (q(0), q̇(0)) = vq ∈ TQ, and let
At : TQ→ R be defined such that

At(vq) :=

∫ t

0
£(Fs(vq))ds

then for any variation δvq of initial conditions, we obtain

dAt(vq) · δvq = Θ£ (Fs(vq)) · δ (Fs(vq))−Θ£(vq) · δvq = (F ∗t Θ£ −Θ£) (vq) · δvq



4

since the integral on the interior of [0, t] in (4.0.1) vanishes along solutions of Euler-Lagrange equations.
Taking the differential of dAt yields

0 = ddAt = F ∗t dΘ£ −Θ£

or equivalently
F ∗t Ω£ = Ω£ (4.0.3)

where Ω£ is called the symplectic form. This property is called the conservation of the symplectic
form by the Lagrangian flow, or simplecticity of the flow for short.

Noether theorem Let G be a Lie group leaving the Lagrangian £ invariant and acting trivially on
time, then the action A is invariant under the action of the group. This implies the existence of an
infinitesimal generator ξ ∈ g of G such that ξydAt = 0 on solutions, hence

0 = ξy (F ∗t Θ£ −Θ£) = F ∗t (ξyΘ£)− ξyΘ£

or equivalently
F ∗t (ξyΘ£) = ξyΘ£ (4.0.4)

The momentum map Jξ : TQ→ R defined by Jξ := ξyΘ£ is therefore conserved by the flow, that is,
is invariant on solutions of the problem. This is the result of the first Noether theorem.

5 Discretizing the Euler-Lagrange equations

We introduce here the approach that will be used later to obtain the discrete counterpart of Lagrangian
mechanics.

One way to obtain a numerical method is to discretize the Euler-Lagrange Ordinary Differential
Equations (ODEs) in time using an approximation of time derivatives with finite variations – for
example, the first derivative can be approximated by the slope of the line between two consecutive
points. This method is straightforward, resolving in an exploitable numerical method. General purpose
methods, such as those based on Runge-Kutta, have reached a certain maturity after decades of
improvement. However, those give no guarantee on the conservation of invariant quantities, such as
momenta or total energy for a closed system.

Another approach is to take a step back and discretize the Lagrangian instead of the Euler-Lagrange
equations. In the same way the Euler-Lagrange equation has been obtained from the application of the
Hamilton principle to the Lagrangian, its discrete Euler-Lagrange equation counterpart is obtained
from the discrete Lagrangian. The knowledge of the Lagrangian allows, both in continuous and
discrete settings, to look for geometrical symmetries. The Noether theorem can then be applied, giving
some geometrical invariants of the system, yielding useful guarantees on its behaviour. Moreover, the
symplectic form is conserved by both continuous and discrete Lagrangian flows. The deduced numerical
methods are called structure preserving integrators, and have been actively developed in the 1990’s,
and are now very well documented (see Marsden [11] for an exposition of the continuous and discrete
Lagrangian field theory, and Hairer [7] for a general overview of the properties of structure preserving
methods for ODEs).

The two approaches described above can be summed up by the following non-commutating diagram

Lagrangian
£ : TQ→ R

Discrete Lagrangian
Ld : Q×Q→ R

Euler-Lagrange ODEs Discrete Euler-Lagrange equations
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For a little more than a decade, the extension of this principle in the multisymplectic setting has
been studied, that is, when the base space is not restrained to time alone, but also takes into account
several spatial dimensions; this should be seen as the generalisation of the previous setting. Similarly,
the idea is to obtain the discrete Euler-Lagrange equations by discretizing the Lagrangian and apply-
ing the Hamilton principle on it, instead of directly discretizing the Euler-Lagrange PDE. Again, the
application of the Noether theorem leads to geometrical invariants in both continuous and discrete set-
tings, and an analogous to the symplectic flow property, the multisymplectic form formula, arises (see
Echeverŕıa-Enŕıquez [13] and Marsden [12] for respectively continuous and discrete multisymplectic
settings).

Finally, the particular case where the configuration space is a Lie group allows for a reduction of
the Lagrangian and yields the conservation of momenta through Noether theorem in both continuous
and discrete settings. The symplectic Lagrangian formalism with Lie groups is well documented (see
Holm [8] for an introduction on rigid body dynamics), but the use of Lie groups in Lagrangian field
theory and in its discrete counterpart is a much more recent development (see Vankershaver [15] for
a general overview of both continuous and discrete multisymplectic settings with Lie groups, and
Demoures [4] for a study of the properties of multisymplectic Lie groups variational integrators). This
is the approach we will be presenting in parts V and VI, and that will be used to tackle the problem
of the Reissner beam in part VII.



6

Part III

Multisymplectic Lagrangian theory and Lie
group symmetries

This part introduces the multisymplectic Lagrangian theory, which is the generalization of the La-
grangian mechanics when the physical system does not only evolve along time, but also along spatial
dimensions. The physical invariants of the system, namely the multisymplectic form and the momenta,
are characterized. Finally, an example is given in section 8 with the pendulum; it is not multisym-
plectic, but its simplicity helps to grasp the concepts that will be used in the multisymplectic case on
the Reissner beam problem in part VII.

6 Lagrangian field theory

The interest of the Lagrangian field theory is to formulate the partial differential equations describing
the system in a geometrical manner, that is, to represent the solution of the equation by a sub-manifold
such that the constraints expressed by the equations are translated by the fact that some differential
forms cancel on the sub-manifold. This approach yields an intrinsic formulation that may simplify the
computation, and also allows to look for equivalences between PDEs by looking for invariants.

6.1 First-order jet bundles

Let M be an orientable smooth manifold, E a smooth manifold and (E, π,M) a principal smooth
fibre bundle over M of typical fibre Q. The base M of the fibre bundle represents space-time, and its
dimension is dim(M) = n+ 1 with n the number of spatial dimensions. In the symplectic case, n = 0
and only time is taken into account; multisymplectic case takes place when n > 0. Q is the parameter
space of the considered physical system, and is of dimension dim(Q) = N . For example, in the case
of a rigid body motion, N = 6 (3 translations and 3 rotations).

Let Γ(π) be the set of global sections of the fibre bundle (E, π,M) (also denoted by π). If U is an
open subset of M , we write ΓU (π) the set of local sections defined on U . In particular, the section
defining the trajectory of a physical system in its configuration space along time belongs to ΓU (π) for
a given U . From now on, the sections are supposed to be smooth, that is belong to C∞(E,M).

Let (J1E, π1, E) be the bundle of 1-jets of sections of π. Roughly speaking, the manifold J1E will
be defined as the space of the derivatives of the parameter space with respect to the base space, which
in the simple case of E being position and M time, would be velocity space. For p ∈ E, J1

pE is defined
by J1

pE = preimπ1({p}); it is the fibre of J1E corresponding to p, and its elements are denoted by p̄.
Let π : J1E → M be defined as π = π ◦ π1; π and π1 being fibre bundles, this defines a new fibre
bundle (J1E, π,M).

A local coordinate system is defined such that elements of M are noted by a local system x =
(xµ), µ = 1, ..., n + 1, and those of Q by y = (yA), A = 1, ..., N , where x and y are homomorphisms
from M to Rn+1 and Q to RN respectively. Any element of E is denoted by the local coordinate
system (xµ, yA). Let φ ∈ ΓU (π) be a local section of π defined on U ⊂M , φ is entirely determined by
the functions φA : U → F such that ∀x ∈ U , φ(x) = (xµ, φA(x)).

In the same manner, a local coordinate system on J1E can be constructed from (xµ, yA) such that
any element p̄ of J1E is denoted by the local coordinates (xµ, yA, vAµ ) where

vAµ =

(
∂φA

∂xµ

)∣∣∣∣
x
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with π1(p̄) = p, π(p) =, yA = φA(x) and φ : M ⊃ U → E is a representative of p̄. For any given section

φ : M ⊃ U → E, the section j1φ : M ⊃ U → J1E is defined so that ∀x ∈ U , j1φ(x) = (xµ, yA, ∂φ∂x

∣∣∣
x
).

Let TM =
⋃
x∈M TxM be the tangent bundle to M , let (~∂µ) ∈ TxM be a basis of fibre TxM

associated with the dual base (dxµ) ∈ T ∗xM so that dxµ(~∂ν) = δµν . In the same manner, let TQ be the

tangent bundle to Q with basis (~∂A), TE the tangent bundle to E with basis (~∂µ, ~∂A) and TJ1E the

tangent vector space to J1E with basis (~∂µ, ~∂A, ~∂
A
µ ).

Given any p̄ = (xµ, yA, vAµ ), there always exist a section φ representative of p̄ such that

vAµ = dyA
(
∂φ

∂xµ

∣∣∣∣
x

)
.

Sections ψ : M ⊃ U → j1E that have an antecedent φ by j1· so that ψ = j1φ are called holonomic
sections. The proper definition of that term is the object of section 6.2.

6.2 Contact form

Let ψ : M ⊃ U → J1E be a holonomic section of π, let p̄ = (xµ, yA, vAµ ) be a point of ψ(U) and

~u = αµ~∂µ + βA~∂A + γAµ
~∂Aµ ∈ Tp̄J

1E be a tangent vector to ψ at point p̄, then ~u checks

dyA(~u)− vAµ dxµ(~u) = βA − αµvAµ = 0 (6.2.1)

This is the intuitive reason to introduce the contact form, used to characterize the holonomic sections
of J1E.

6.2.1 Contact form

First we define the vertical differential; let V (π) = KerTπ be the vertical bundle associated with π
and V (π1) = KerTπ1 the vertical bundle associated with π1.

Definition 1 (Vertical differential). Let φ : U → E be a section of π, the vertical differential of the
section φ at point p ∈ φ(U) is the map

dVp φ : TpE → Vp(π)
u 7→ u− Tp(φ ◦ π)u

For any section φ = (xµ, φA(xµ)) of π and ∀p ∈ φ(U), we have the following results :

dVp φ( ~∂µ) = − ∂φA

∂xµ

∣∣∣∣
π(p)

~∂A (6.2.2a)

dVp φ( ~∂A) = ~∂A (6.2.2b)

For a given section φ, dVp φ only depends on j1φ(π(p)) = ∂φ
∂x

∣∣∣
π(p)

; the contact form can now be

defined using dVp φ.

Definition 2 (Contact form). Consider p̄ ∈ J1E, the contact form of J1E is the vectorial 1-form in
J1E defined at point p̄ by

θp̄ : Tp̄J
1E → V (π)
ū 7→ dVp φ(Tp̄π

1(ū))

with φ any representative section of p̄.



8

The definition of θp̄ only depends on p̄ and not on a particular representative section. For any given
point p̄, and any section φ representative of p̄, the contact form may be evaluated on the base vectors
(~∂µ, ~∂A, ~∂

A
µ ), and, using the equalities (6.2.2a) and (6.2.2b), gives the result

θp̄(~∂µ) =dVp φ(~∂µ) = − ∂φA

∂xµ

∣∣∣∣
π(p)

~∂A = −vAµ ~∂A

θp̄(~∂A) =dVp φ(~∂A) = ~∂A

θp̄(~∂Aµ ) =dVp φ(~0) = ~0.

Hence, let ~u = αµ~∂µ + βA~∂A + γAµ
~∂Aµ be a vector of Tp̄J

1E,

θp̄(~u) = (βA − αµvAµ )~∂A

Therefore, the contact form can be written in a local coordinate system

θp̄ = (dyA − vAµ dxµ)⊗ ~∂A
=: θA ⊗ ~∂A

where θA is a 1-form equal to dyA − vAµ dxµ. As we saw previously in (6.2.1), this equation is equal to
zero in the case ~u is tangent at point p̄ to an holonomic section ψ representative of p̄; this is used to
define holonomic sections.

6.2.2 Holonomic section

Proposition 1. Let ψ : M ⊃ U → J1E be a section of π, then ψ is holonomic if and only if ψ∗θ = 0.

Proof. (⇒) : The implication has already been proven in (6.2.1).
(⇐) : Let us assume that ψ∗θ = 0 where ψ : U → J1E is a section of π. Consider x ∈ U , let

(xµ, yA, vAµ ) be a system of local coordinates on U , then ψ(x) = (xµ, φA(xµ), fAν (xµ)) and

ψ∗θ = (dφA − fAµ dxµ)~∂A =

(
∂φA

∂xµ
dxµ − fAµ dxµ

)
~∂A = 0

From that can be deduced f = ∂φ
∂x , which means that ∀p̄ ∈ ψ(U), p̄ = (xµ, φA(x), ∂φ

A

∂xµ (x)), proving
that ψ is holonomic.

For any holonomic section ψ and p̄ ∈ ψ(U), ψ is tangent to the vector space Ker(θp̄) at point p̄,
which has (~∂µ+vAµ

~∂A, ~∂
A
µ ) as a basis. In other words, ∀~u ∈ Tp̄ψ tangent vector to ψ at point p̄ belongs

to the kernel of θp̄, so that θp̄(~u) = ~0.

6.2.3 Lift of a vector field

In this section, we define the lift of an arbitrary vector field in χ(E) into the corresponding vector
field in χ(J1E), so that it transforms holonomic sections into other holonomic sections. To do so, one
must determine the properties of a lifted vector field from χ(E) to χ(J1E), that is, given a vector field
Z ∈ χ(E), determine j1Z ∈ χ(J1E).

Proposition 2. Let Z = αµ~∂µ + βA~∂A be a vector field of χ(E) with (~∂µ, ~∂A, ~∂
A
µ ) the natural basis of

TJ1E, the 1-jet prolongation of Z on TJ1E is the vector field defined at point p̄ = (xµ, yA, vAµ ) by

j1Z(p̄) = αµ~∂µ + βA~∂A +

(
∂ζA

∂xµ
+ vBµ

∂ζA

∂yB

)
~∂Aµ

where ζA = j1ZyθA = βA − vAµ αµ.

Proof. The proof is given in appendix B.1.
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6.3 Hamilton principle

The Hamilton principle will be used to determine the trajectories of the studied physical system in
J1E, implying the introduction of the variational formulation. This section is focused on the Hamilton
principle and the way it is expressed in the 1-jet bundle formalism.

6.3.1 Lagrangian system

Let ω = dx1∧...∧dxn+1 ∈ Λn+1(M) be a fixed volume (n+1)-form on the manifold M , the Lagrangian
density is defined as a smooth real-valued function £ ∈ C∞(J1E).

Definition 3 (Lagrangian form). For a local system of coordinates (xµ, yA, vAµ ), the Lagrangian form
is defined as the π-semibasic (n+ 1)-form in J1E

L = £(xµ, yA, vAµ )ω

Given a bundle and a Lagrangian form, a Lagrangian system can be defined as follows.

Definition 4 (Lagrangian system). A Lagrangian system is a pair ((E, π,M),L) where M is an
orientable manifold, (E, π,M) a differentiable bundle and L a Lagrangian form on E.

Based on the Lagrangian form, the Hamilton principle (also known as principle of stationary action)
can be defined, stating that the path of a physical system, represented by a section in J1E, will
minimise the action map.

6.3.2 Hamilton principle

Definition 5 (Hamilton principle). Let ((E, π,M),L) be a Lagrangian system, Γc(π) the set of
compactly supported sections of π, and the action map

A : Γc(π) → R
φ 7→

∫
U (j1φ)∗L (6.3.1)

where U is the domain of φ, the variational problem posed by the Lagrangian form is the problem of
searching for the stationary sections of the action map.

In order to apply the Hamilton principle, one need to express the variation of action along an
arbitrary vector field Z ∈ χ(E); it is given by

δA =

∫
∂U

(j1φ)∗
(
j1Zy

(
∂£

∂vAµ
θA ∧ dnxµ + L

))
−
∫
U

(j1φ)∗
(
ζA
(

d

(
∂£

∂vAµ

)
− 1

n+ 1

∂£

∂yA
dxµ

)
∧ dnxµ

)
(6.3.2)

where ζA = j1ZyθA. The detail of this computation is given in appendix B.2.
This leads to the introduction of the Poincaré-Cartan form.

6.3.3 Euler-Lagrange equations

Definition 6 (Poincaré-Cartan form). Let £ be a Lagrangian density, and L = £ω a Lagrangian
form, the Poincaré-Cartan form ΘL is a (n+ 1)-form in J1E defined by

ΘL =
∂£

∂vAµ
θA ∧ dnxµ + L
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We also introduce the Euler-Lagrange 1-form T Aµ defined by

T Aµ = d

(
∂£

∂vAµ

)
− 1

n+ 1

∂£

∂yA
dxµ.

Using this notation, the variation of action δA is written

δA =

∫
∂U

(j1φ)∗
(
j1ZyΘL

)
−
∫
U

(j1φ)∗
(
ζAT Aµ ∧ dnxµ

)
(6.3.3)

Since Z is an arbitrary vector field, we can choose one that vanishes on the boundary of the domain,
that is Z(∂U) is identically null. In that case, the first integral of the variation of action is null, and the
second integral is equal to zero for any vector field Z, that is for any ζA, leading to the Euler-Lagrange
equations

∀A ∈ {1, ..., N},
(

∂

∂xµ
∂£

∂vAµ
− ∂£

∂yA

)
(j1φ) = 0 (6.3.4)

To sum up, the Hamilton principle has led to the fact that any solution of the problem verifies the
Euler-Lagrange equation (6.3.4).

7 System invariants

7.1 Variation theorem

7.1.1 Lagrangian multisymplectic form

Given the Poincaré-Cartan form ΘL, the Lagrangian multisymplectic (n + 2)-form can be defined as
ΩL = −dΘL; let us compute this expression.

dΘL = d

(
∂£

∂vAµ

)
∧ θA ∧ dnxµ +

∂£

∂vAµ
dθA ∧ dnxµ + dL

= T Aµ ∧ θA ∧ dnxµ +
1

n+ 1

∂£

∂yA
dxµ ∧ θA ∧ dnxµ +

∂£

∂yA
dyA ∧ ω

+
∂£

∂vAµ
dvAµ ∧ ω −

∂£

∂vAµ
dvAν ∧ dxν ∧ dnxµ

= T Aµ ∧ θA ∧ dnxµ −
∂£

∂yA
θA ∧ ω +

∂£

∂yA
θA ∧ ω +

∂£

∂vAµ
dvAµ ∧ ω −

∂£

∂vAµ
dvAµ ∧ ω

= T Aµ ∧ θA ∧ dnxµ

Given that T Aµ and θA are 1-forms, −T Aµ ∧ θA = θA ∧ T Aµ , we get

ΩL = θA ∧ T Aµ ∧ dnxµ (7.1.1)

or in coordinates

ΩL = dyA ∧ d

(
∂£

∂vAµ

)
∧ dnxµ +

(
vAµ d

(
∂£

∂vAµ

)
− ∂£

∂yA
dyA

)
∧ ω

Notice that, since ζA = j1ZyθA in expression (6.3.3), ζAT Aµ ∧ dnxµ = j1ZyΩL. This allows is to
express the variation of action as

δA =

∫
∂U

(j1φ)∗
(
j1ZyΘL

)
−
∫
U

(j1φ)∗
(
j1ZyΩL

)
(7.1.2)

We now have the elements to introduce the variation theorem. This theorem gives a powerful way
to investigate for solutions of the Hamiltonian principle by giving equivalent propositions.
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7.1.2 Variation theorem

Theorem 1 (Variation theorem). Let φ be a section of π, the following propositions are equivalent

(1) φ is a stationary point of the action A

(2) φ is a solution of the Euler-Lagrange equation

(3) ∀W ∈ χ(J1E), (j1φ)∗(WyΩL) = 0

Proof. Only the implications (1)⇒ (2) and (2)⇒ (3) are discussed here.

(1)⇒ (2) This is a direct result from the computing of the variation of action in section 6.3 that
led us to the Euler-Lagrange equation (6.3.4).

(2) ⇒ (3) Let φ be a section of π and W ∈ χ(J1E), where φ is a solution of the Euler-Lagrange
equation.

Let Xν ∈ χ(J1E) be the vector field Xν = Tj1φ(~∂ν), and let X be the (n + 1)-vector field X =
(X1, ..., Xn+1) tangent to j1φ, then

(j1φ)∗(WyΩL)(~∂1, ..., ~∂n+1) = (WyΩL)(X)

Given the fact that θA(Xν) = 0 because Xν is tangent to j1φ,

(WyΩL)(X) = ΩL(W,X) = (θA ∧ T Aµ ∧ dnxµ)(W,X)

= θA(W )(T Aµ ∧ dnxµ)(X) + (−1)νθA(Xν)(T Aµ ∧ dnxµ)(W,X∼ν)

= θA(W )(T Aµ ∧ dnxµ)(X)

where X∼ν = (X1, ..., Xν−1, Xν+1, ..., Xn+1).
In the particular case where W is tangent to j1φ, then obviously θA(W ) = 0 since W verifies the

holonomic criteria. If W ∈ V (π1), then it has no components along ~∂µ nor ~∂A, hence θA(W ) = 0. In
either case

(WyΩL)(X) = 0

Note that φ does not need to be a stationary point of A to prove the point in those cases.
In the general case where W ∈ χ(J1E), φ satisfies the Euler-Lagrange equation

(j1φ)∗
(
T Aµ ∧ dnxµ

)
= 0

This yields
(j1φ)∗(T Aµ ∧ dnxµ)(~∂1, ..., ~∂n+1) = (T Aµ ∧ dnxµ)(X) = 0

and finally
ΩL(W,X) = θA(W )(T Aµ ∧ dnxµ)(X) = 0

which proves the implication.

7.2 Multisymplectic geometry

In this section, we discuss the covariant Hamiltonian field theory, which is the counterpart of the
Lagrangian field theory, and its relation to the symplectic manifold structure. After a short intro-
duction to Hamiltonian systems, we introduce the properties of the symplectic form relative to the
Hamiltonian formalism. We then explore the properties of the multisymplectic form in the Lagrangian
field theory.
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7.2.1 Covariant Hamiltonian formalism

Given a Lagrangian system (J1,L), we define its dual Hamiltonian system (J1E∗,H) thanks to the
fibre-preserving map FL : J1E → J1E∗ called the Legendre transform, which to any given element
of J1E denoted in local coordinates by (xµ, yA, vAµ ) associates the element (xµ, yA, pAµ ) where pAµ are
called the conjugate momenta and are expressed by

pAµ =
∂£

∂vAµ
.

The relation between vAµ and pAµ is a continuously differentiable bijection. To the Lagrangian density
£ corresponds the covariant Hamiltonian H expressed by

H =
∂£

∂vAµ
vAµ −£

and the Hamiltonian form H is given by the product of H with the volume form ω.
The (n+1)-form ΘH is defined on the dual jet bundle J1E∗ so that the Poincaré-Cartan (n+1)-form

is the pull back of ΘH by the Legendre transform on J1E∗; ΩH is defined analogously with respect to
the Lagrangian pre-multisymplectic (n+ 2)-form ΩL, yielding

ΘL = FL∗ΘH
ΩL = FL∗ΩH

In coordinate, we have

ΘH = pAµdyA ∧ dnxµ −Hω
ΩH = dyA ∧ dpAµ ∧ dnxµ + dH ∧ ω

We introduce the canonical multisymplectic (n+ 2)-form on J1E∗ ΩHcan := ΩHµ ∧ dnxµ = dyA ∧ dpAµ ∧
dnxµ; this relates to ΩH thanks to the relation ΩH = ΩHcan + dH ∧ ω. The canonical mutlisymplectic
(n+ 2)-form on J1E∗ can now be defined by pulling back ΩHcan by the Legendre transform, such that
ΩLcan := FL∗ΩcanH. We obtain the expression

ΩLcan = dyA ∧
(

∂2£

∂xν∂vAµ
dxν +

∂2£

∂yB∂vAµ
dyB +

∂2£

∂vBν ∂v
A
µ

dvBν

)
∧ dnxµ

=
∂2£

∂xµ∂vAµ
dyA ∧ ω +

∂2£

∂yB∂vAµ
dyA ∧ dyB ∧ dnxµ +

∂2£

∂vBν ∂v
A
µ

dyA ∧ dvBν ∧ dnxµ

Before we move on to the multisymplectic properties of the Lagrangian systems, we shall first discuss
the easier case of symplectic manifolds and Hamiltonian systems.

7.2.2 Symplecticity of the flow

In the symplectic setting, we only consider a one dimensional base space M , namely time; a number
of important results then arise for Hamiltonian systems that we shall point out. In the next section,
the multisymplectic setting will be presented; this reason of the current section is partly to introduce
some complex notions in this simplified setting that may be easier to manipulate and that have a more
intuitive physical meaning than their multisymplectic counterparts.

Definition 7 (Symplectic manifold). A symplectic manifold (X,Ω) is a smooth manifold X equipped
with a closed non-degenerate 2-form Ω called the symplectic form.
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Let us consider a base space M of dimension 1 that we identify with time, and a configuration space
Q of dimension N , then the cotangent bundle TQ∗ of the dual jet bundle J1E∗ is the phase space of
dimension 2N whose elements are denoted (q, p) where q ∈ Q and p := ∂£

∂q̇ is the conjugate momentum

of q̇ := ∂q
∂t . The smooth manifold TQ∗ equipped with the 2-form Ωcan is a symplectic manifold. Indeed,

Ωcan is a (n + 2)-form, where n + 1 = 1 = dim(M), and since dΩcan = d
(
dqA ∧ dpA

)
= 0, dΩcan is

closed.

Definition 8 (Symplectic map). A differentiable map g : U → X, where U ⊂ X is an open set, is
symplectic with respect to the symplectic manifold (X,Ω) if

g∗Ω = Ω

Let us illustrate this notion on the simple example of linear mappings in the case of the previously
defined Hamiltonian symplectic manifold. For any ξ = (ξq, ξp), ν = (νq, νp)

Ωcan(ξ, ν) = dqA ∧ dpA(ξ, ν) = dqA(ξq)dpA(νp)− dpA(ξp)dqA(ξq) = ξAq ν
A
p − νAq ξAp = ξTJν

where J =

[
0 I
−I 0

]
. In the case where N = 1, then Ωcan(ξ, ν) = det

[
ξq νq

ξp νp

]
is the oriented area of

the parallelogram defined by ξ and ν; in the general case, it is the sum of the oriented areas of the
projections onto the planes (qA, pA) of the N -dimensional parallelogram. Now, let A : TQ∗ → TQ∗

be a linear mapping such that ∀x ∈ TQ∗, A(x) = Ax, and let us suppose that this map is symplectic,
then ∀ξ, ν,

(A∗Ωcan)(ξ, ν) = Ωcan(Aξ,Aν) = ξTATJAν

= Ωcan(ξ, ν) = ξTJν

This condition is true for all ξ and ν if ATJA = J . In the case where N = 1, symplecticity of the
linear mapping is synonymous with area preservation (see figure 1); in fact, this property is not limited
to linear mappings and can be shown for any symplectic mapping (see section 8 for an illustration of
this property on the Lagrangian flow of the pendulum, and Hairer [7] for a complete proof).

p

q
ξ

ν

p

q

Aν

Aξ

Figure 1 – Simplecticity of a linear mapping in the case N = 1.

In this setting, the Lagrangian canonical symplectic form is expressed by

ΩLcan =
∂2£

∂t∂vAµ
dyA ∧ dt+

∂2£

∂yB∂vA
dyA ∧ dyB +

∂2£

∂vB∂vA
dyA ∧ dvB (7.2.1)

Notice that ΩLcan is not completely defined on TQ, on the contrary to ΩHcan who belongs to the phase
space, since a term with dt appeared. This makes the Lagrangian canonical symplectic form less
intuitive to represent, even in the case where N = 1.

We shall see here an important property of the Lagrangian flow in the symplectic configuration,
and then, thanks to an analogous reasoning, how this property is expressed in the multisymplectic
configuration
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Definition 9 (Lagrangian flow). The flow of a Lagrangian system over time is the map that for any
initial conditions (q0, q̇0) at time t0 associates the solution (q(t), q̇(t)) of the Hamiltonian system at
time t,

F tL : TQ → TQ
(q0, q̇0) 7→ (q(t), q̇(t))

where (q(t0), q̇(t0)) = (q0, q̇0).

Proposition 3. The flow of a solution of a Lagrangian system is symplectic relative to the symplectic
form ΩL defined by (7.1.1).

Proof. Let us consider the action map (6.3.1), it is written in our setting

A(q) =

∫ t1

t0

£(q(t), q̇(t))dt.

Taking its variation relative to δq yields in accordance with (6.3.3)

dA(q) · (δq) =

∫ t1

t0

(
∂£

∂qA
− ∂

∂t

∂£

∂q̇A

)
(q(t), q̇(t))δqA(t)dt+ [ΘL(q(t), q̇(t)) · δq(t)]t1t0 .

Let (q, q̇) be such that (q(0), q̇(0)) = (q0, q̇0) =: vq ∈ TQ, we define the restricted action map At :
TQ→ R such that

At(vq) :=

∫ t1

t0

£(F sL(vq))dt

where F sL = (q(s), q̇(s)). Evaluated along a solution of the Lagrangian problem, the variation of action
becomes

dAt(vq) · (δvq) = ΘL(F tL(vq)) · δ(F tL(vq))−ΘL(vq) · δvq =
(
F t∗L ΘL −ΘL

)
(vq) · δvq

From this we get dAt = F t∗L ΘL − ΘL, and thus ddAt = F t∗L ΘL − ΘL = 0; since ΩL = −dΘL, this
yields

F t∗L ΩL = ΩL.

The Lagrangian flow of a solution of the Lagrangian system is indeed symlectic with respect to the
Lagrangian mulitsymplectic 2-form ΩL

7.2.3 Multisymplectic form formula

The multisymplectic form formula is the analogous of the symplecticity of the Lagrangian flow (prop-
erty 3) in the case of multisymplectic field theory.

Theorem 2 (Multisymplectic form formula). Let φ be a solution of the Lagrangian problem defined
on U , then for any Y,Z ∈ χ(E), ∫

∂U
(j1φ)∗(j1Y yj1ZyΩL) = 0 (7.2.2)

Proof. Starting from the action variation expression (7.1.2), we write

δA =

∫
∂U

(j1φ)∗
(
j1ZyΘL

)
−
∫
U

(j1φ)∗
(
j1ZyΩL

)
We recall from the variation theorem that any solution of the Lagrangian system cancels the second
integral. A first variation of a solution φ of the system is a vertical vector field Y ∈ χ(E) whose flow
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F Yε is such that F Yε ◦φ also is a solution of the Lagrangian system. In other words, using the variation
theorem, ∀Z ∈ χ(E),

j1(F Yε ◦ φ)∗(j1ZyΩL) = 0

Taking the derivative with respect to ε yields

d

dε

∣∣∣∣
ε=0

(
j1(F Yε ◦ φ)∗(j1ZyΩL)

)
= lim

ε→0

1

ε

(
j1(φ∗F Yε )∗(j1ZyΩL)− j1φ∗(j1ZyΩL)

)
= (j1φ)∗

(
lim
ε→0

1

ε

(
F Y ∗ε (j1ZyΩL)− (j1ZyΩL)

))
= (j1φ)∗Lj1Y j

1ZyΩL = 0

We then show that, for any φ solution of the Euler-Lagrange equations,∫
∂U

(j1φ)∗(j1Y yj1ZyΩL) = 0

7.3 Lagrangian symmetries and Noether theorem

A symmetry of a Lagrangian system is defined as a diffeomorphism in the phase space of the system
that leaves the Lagrangian form invariant. This diffeomorphism can be thought of being generated by
a vector field S, leading to the introduction of the notion of infinitesimal natural symmetry.

Definition 10 (Infinitesimal natural symmetry). Let ((E, π,M),L) be a Lagrangian system, an
infinitesimal natural symmetry of the Lagrangian system is a vector field S ∈ χ(E) such that its
prolongation j1S leaves L invariant, that is

Lj1SL = 0

In the case where S is an infinitesimal symmetry of the Lagrangian, the Poincaré-Cartan form is
also left invariant by S.

Proposition 4. If S ∈ χ(E) is an infinitesimal symmetry of the Lagrangian system ((E, π,M),L),
then

Lj1SΘL = 0

Proof. We refer to Echeverŕıa-Enŕıquez [13] for the proof.

The first Noether’s theorem states that the existence of symmetries leads to the conservation of
quantities called currents.

Theorem 3 (First Noether’s theorem). Let S ∈ χ(E) be an infinitesimal natural symmetry of the
Lagrangian system ((E, π,M),L), then the n-form J(S) = (j1S)yΘL is a constant closed form on the
critical sections φ of the variational problem, that is the Noether current (j1φ)∗J(S) is a conserved
quantity.

Proof. Let φ ∈ Γ(U) be a stationary point of the action, for any W ∈ χ(J1E),

(j1φ)∗(WydΘL) = 0

according to theorem 1; it is true in particular for W = j1S. Moreover, by invariance of the Lagrangian
with respect to S, we have by proposition (4)

Lj1SΘL = 0
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This yields

(j1φ)∗Lj1SΘL = (j1φ)∗
(
d((j1S)yΘL)

)
+ (j1φ)∗

(
(j1S)ydΘL

)
= (j1φ)∗

(
d((j1S)yΘL)

)
= d

(
(j1φ)∗

(
(j1S)yΘL

))
= 0

which proves the theorem.

8 Example : the pendulum

In this section, we shall illustrate the developed formalism in the easiest case, the symplectic setting
with a 1 dimensional fibre.

O

~x1

~x2

~g
l

m

~X1

~X2

Consider a simple pendulum, consisting of a punctual mass m
attached to an inextensible massless rod of length l moving in a
fixed plane which origin is at the pivotal point of the rod, and only
consider as forces acting on the mass the gravitational force and
the tension in the rod. Let ( ~X1, ~X2) be a direct base of normalised
orthogonal vectors invariant in the frame of the pendulum, such
that ~X1 is along the rod towards the mass, and also define (~x1, ~x2)
as a base of the fixed Galilean referential with the same orientation
as ( ~X1, ~X2) and with ~x1 along ~g the gravitational field; let denote
the position of the mass at time t by X(t) and x(t) respectively in
the moving frame and in the fixed frame; at the equilibrium

xeq = X =

[
l
0

]
.

Let θ be the angle between the string and the vertical line, oriented by (~x1, ~x2); at any time t, x and
X check

x(t) = Rθ(t)X

with Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2) the rotation of angle θ that belong to the special orthogonal

group of order 2. Since Q is a commutative Lie group, we identify (SO(2),×) with the more trivial
(R,+), and use θ instead of Rθ.

We define the base space M = R as the time axis, and (E = M ×Q, π,M) the (trivial) fibre bundle
of typical fibre Q = R the parameter space in which θ evolves. There exists a global coordinate system
such that for any p ∈ E, p = (t, θ). From this we get that the 1-jet of φ in J1E = M × TQ is given
in coordinates by j1φ(t) = (t, θ(t), θ̇(t)).

The Lagrangian density is defined as the difference between the kinetic and potential energies

£(θ, ω) =
1

2
ml2ω2 +mgl cos(θ).

The associated Lagrangian system is given by the pair ((E, π,M),L) where L(θ, θ̇) = £(θ, θ̇)dt is the
Lagrangian 1-form. The Euler-Lagrange equation is given for any section φ of π at point p = (t, θ) by(

∂

∂t

∂£

∂ω
− ∂£

∂θ

)
(t, θ(t), θ̇(t)) = 0

⇔ θ̈(t) +
g

l
sin(θ(t)) = 0. (8.0.1)
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As states the variational theorem, any solution verifying the Hamilton principle, i.e. a stationary
point of the action, is solution of the Euler-Lagrange equation. Represented in the tangent space,
the solutions follow a path corresponding to a constant level energy, represented as gray trajectories
evolving in the counter trigonometric direction in figure 2.

The pendulum system is completely integrable, and its solution can be expressed depending on the
total energy of the system. Let the mechanical energy E(θ, ω) be defined as

E(θ, ω) =
1

2
ml2ω2 +mgl(1− cos(θ))

The explicit expressions are given in appendix B.3.

0 2 4 6 8
−2

0

2

4

6

t

θ

(a) θ represented against time

−3 −2 −1 0 1 2 3

−2

0

2

θ

θ̇

(b) Solutions on the tangent space TQ

Figure 2 – Three solutions of the problem corresponding to different levels of energy.

We can check the equivalence between the Euler-Lagrange equation (8.0.1) and the last proposition
in the variation theorem 1. For this, we compute the Poincaré-Cartan 1-form

Θ£ =
∂£

∂ω
(dθ − ωdt) + L = ml2

(
g

l
cos(θ)− 1

2
ω2

)
dt+ml2ωdθ.

We also compute the multisymplectic form

ΩL = (dθ − ωdt) ∧
(

d

(
∂£

∂ω

)
− ∂£

∂θ
dt

)
= (dθ − ωdt) ∧ (ml2dω +mgl sin(θ)dt)

= −mgl sin(θ)dt ∧ dθ +ml2dθ ∧ dθ̇ + θ̇ml2dθ̇ ∧ dt (8.0.2)

Let W = α~∂t + β~∂θ + γ~∂ω ∈ χ(J1E) be a vector field of J1E, then

WyΩL = ml2
(
−α

(g
l

sin(θ)dθ + ωdω
)

+ β
(g
l

sin(θ)dt+ dω
)

+ γ (ωdt− dθ)
)

(8.0.3)

Let φ be a section of π, then the pullback of (8.0.3) by j1φ is equal to

(j1φ)∗(WyΩ`) = ml2

(
−α

(
g

l
sin(θ)θ̇ + θ̇

∂θ̇

∂t

)
+ β

(
g

l
sin(θ) +

∂θ̇

∂t

))
dt (8.0.4)
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The term in γ is null because j1φ is a holonomic section, hence the pullback of the contact form θ by
j1φ is identically null. By independence of α and β in (8.0.4), the condition (j1φ)∗(WyΩL) = 0 gives
us the two equations

θ̇
(
θ̈ +

g

l
sin(θ)

)
= 0 (8.0.5a)

θ̈ +
g

l
sin(θ) = 0 (8.0.5b)

The equation (8.0.5a) is implied by (8.0.5b), which is the Euler-Lagrange equation (8.0.1); the equiv-
alence of the propositions of the variational theorem 1 is indeed verified in the case of the pendulum
problem.

Since the pendulum evolves in the symplectic setting in a 1-dimensional fibre, the conservation of
the Lagrangian flow can be illustrated. We recall the proposition (3) that stated the symplecticity of
the Lagrangian flow relative to the symplectic form ΩL defined by (7.1.1), which in the case of the
pendulum is given by (8.0.2). As can be seen in the expression, the component of ΩL dual to TQ is a
constant 2-form, and since the Lagrangian flow has no component along time, ΩL is proportional to
the measure of oriented areas in TQ. For this reason, the result of the symplecticity of the Lagrangian
flow is equivalent to the area preservation of elements of TQ by the flow, as shown in 7.2. Figure 3
shows the time evolution of two figures; the area preservation by the Lagrangian flow can clearly be
observed. Note that this property is not true in general, it only occurs if the term associated to dy∧dv
in the expression of ΩLcan in (7.2.1), namely ∂2£

∂2v
, is constant.

−3 −2 −1 0 1 2 3

−2

0

2

θ

θ̇
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0

2

θ

θ̇

Figure 3 – Area preservation of squares by the Lagrangian flow.
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Part IV

Discrete multisymplectic Lagrangian theory
and Lie group symmetries

The motivation of this part is to obtain numerical methods that preserve geometric properties of
the system. As explained in section 4, general methods based on the direct discretization of the
Euler-Lagrange PDEs have no such properties, but reproducing the development of part III on a
discrete system equipped with a discrete Lagrangian allows the definition of discrete analogous to the
continuous objects, and ensures their conservation by the discrete methods.

9 Discrete Lagrangian field theory

9.1 Base space discretization

In order to build the discrete version of the Lagrangian field theory, we first need to discretize the base
space. There are several ways to do this, such as defining a mesh over the base space, for example the
regular mesh consisting of rectangles in the case of a two dimensional base space; in a more general
approach, we will discretize the base space a set of non degenerates polytopes in M .

We call k-polytope σ a polytope with k corners, and we denote its associated set of vertices by
[vi1 , ..., vik ], where vi ∈ M for any i. We define the notation σj := vij where σ = [vi1 , ..., vij , ..., vik ].
Let us define the set of non degenerate polytopes PM on M . From now on we suppose that all
the polytopes have the same number of corners k, and we denote the set of polytopes PkM . We
define the set of boundary indices the set F(I) ⊂ I such that ∀i ∈ F(I), vi ∩ ∂U = ∅. Finally,
let n : V → I be the global index bijection such that for any vertex it associates a unique index :
∀p ∈ {1, ..., k},∀(ij)1≤j≤k ∈ I, n([vi1 , ..., vik ]p) = ip. The use of a global index map n may be overly
complicated, but as we shall see in the computation of the variation of action, it is a very efficient way
to deal with the sum indexes.

9.2 Hamilton principle

The overall idea of this section is to compute the variation of action on a discrete Lagrangian. Such a
Lagrangian is defined as the integral of the continuous Lagrangian on a portion of the base space M ,
here on a polytope; it is therefore a discrete differential form, which is homogeneous to a ”portion” of
action in this case.

Theorem 4. Let L be a Lagrangian, let σ be a (n+ 1)-polytope of M with k vertices, k > n+ 1, and
(q1, ..., qk) ∈ Qk, if |σ| and max

1≤i<j≤k
‖qj−qi‖ are small enough, there exist an exact discrete Lagrangian

LE defined by

LE(σ1, q1, ..., σk, qk) =

∫
σ
(j1φ)∗L

where j1φ is the unique solution of the Euler-Lagrange equation for L which satisfies ∀i ∈ {1, ..., k}, φ(σi) =
qi.

Proof. We refer to [11] for the proof.

Another way to present the discrete Lagrangian is done by Leok [9]

LE(σ1, q1, ..., σk, qk) = ext φ∈Γ(σ)
φ(σi)=qi

∫
σ
(j1φ)∗L



20

which is equivalent, but shows more clearly that the discrete Lagrangian is defined as the evaluation
of the action on the solution of the Hamilton principle.

The link between this definition of the discrete Lagrangian, whose arguments are a ploytope and a
set of points in E, and the continuous Lagrangian, defined on J1E, may not seem obvious at first sight,
but is a common formulation in discrete differential calculus, and allows to easily treat the discrete
equivalents of ΘL and ΩL among others. However, a classical way to discretize the Lagrangian is to
define a grid on the base space, and replace the exact derivatives of φ by approximations based on
finite differences, and relates more intuitively to the continuous formalism. This type of approach is
used in the example of the pendulum in section 11.

We now introduce the notion of discrete path, which is the analogous of the 1-jet of a section of
E defined in section 6. It lacks the notion of derivative since it is not defined with the help of a
contact form, but as we just explained, the idea of derivation can be retrieved from the definition
of the discrete Lagrangian, within which hides the approximation of the derivatives, and thus the
approximate derivatives can be deduced from the particular choice of a discrete Lagrangian.

Definition 11 (Discrete path). A discrete path ψd in E = M ×Q is defined on a set I ∈ N by

ψd : I → E
i 7→ (v(i), φd(i))

where v : I →M and φd : I → Q. The space of discrete path is denoted by Cd.

Given a discrete path ψd defined on I = {1, ..., N}, we define an associated discrete curve q :
{v(1), ..., v(N)} → Q such that ∀i ∈ I, q(v(i)) = φd(i), and an associated set of vertices (vi)i∈I such
that ∀i ∈ I, vi = v(i). Let us define the set of non degenerate polytopes PM on M associated to ψd
as the set of polytopes whose corners correspond to the set of vertices ψd. For notational purpose, we
will write ψd(σ) := (ψd(n(σ0)), ..., ψd(n(σk)) = (σ0, φ(σ0), ..., σk, φ(σk)).

The exact discrete action AEd for ψd is defined by

AEd (ψd) =
∑
σ∈PkM

LE(ψd(σ)).

Let us consider a section φ ∈ Γ(U) and ψd ∈ C a discrete path on U , and denote ∀i ∈ I, qi := q(vi) =
φ(vi). It can easily be proved that, when verifying the hypothesis of theorem 4, the exact discrete
action evaluated on the discrete section ψd is equal to the action evaluated on the continuous section
φ solution to the Euler-Lagrange equations :

AEd (ψd) =
∑
σ∈PkM

LE(ψd(σ)) =
∑
σ∈PkM

LE(σ1, φ(σ1), ..., σk, φ(σk))

=
∑
σ∈PkM

∫
σ
(j1φ)∗L =

∫
U

(j1φ)∗L = A(φ)

As arises in the definition of the discrete exact Lagrangian, we need to know the exact solution
j1φ of the Euler-Lagrange equation on each (n + 1)-polytope σ in order to know the discrete exact
Lagrangian on those polytopes. Obviously, this is the goal of the problem, and for that reason we
have to approach the discrete exact Lagrangian LE with an discrete approximated Lagrangian Ld, or
simply discrete Lagrangian, whose expression only relies on ψd. This is done by replacing the infinite
dimensional space of section on each polytope Γ(σ) by a finite dimensional subspace satisfying the
boundary conditions on φ.
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Definition 12 (Discrete Lagrangian). Let LE be a discrete exact Lagrangian, a discrete Lagrangian
Ld : Ek → R of order r is defined such that there exist an open subset V ∈ Ek and constants
CV0 , ..., C

V
n > 0 and hV0 , ..., h

V
n > 0, and constant integers r0, ..., rn ≥ r, so that for any (n+1)-polytope

σ with k vertices such that ∀i ∈ {1, ..., k}, max
1≤m<n≤k

‖pri(σn)− pri(σm)‖ := hi ≤ hVi ,

‖Ld (ψ(σ))− LE (ψ(σ)) ‖ ≤
n∑
i=0

CVi h
ri+1
i

for all solutions j1φ of the Euler-Lagrange equations with boundary condition φ(σi) ∈ V.

Along with the discrete Lagrangian Ld we define the discrete action Ad for ψd as

Ad(ψd) =
∑
σ∈PkM

Ld(ψd(σ)).

As for the continuous action, finding the solutions to the discrete problem is equivalent to looking
for the stationary solutions of the discrete action map. In order to compute the variation of discrete
action, we first recall the notion of ith derivative defined for any f : Xk → R by Dif(x1, ..., xk) =
∂f
∂xi

(x1, ..., xk).
Let ψd ∈ Cd be a discrete path, and δψd ∈ TψdCd an arbitrary variation of ψd such that ∀i ∈
I, (δψd)i = (δvi, δqi) for the purpose of notation, then the variation of action at ψd in direction δψd
is expressed by

δAd(ψd) := dAd|ψd (δψd) =
∑
σ∈PkM

dLd(ψd(σ))(δψd)

=
∑
σ∈PkM

k∑
i=1

D2i−1Ld(ψd(σ))dvn(σi)(δψd) +D2iLd(ψd(σ))dqn(σi)(δψd)

=
∑
σ∈PkM

k∑
i=1

D2i−1Ld(ψd(σ))δvn(σi) +D2iLd(ψd(σ))δqn(σi)

=
∑
j∈I

∑
σ∈PkM
σi=vj

D2i−1Ld(ψd(σ))δvj +D2iLd(ψd(σ))δqj

=
∑

j∈I\F(I)

DDELLd|vj ((δψd)j) +
∑
σ∈PkM
σ∩∂U 6=∅

∑
i∈{1,...,k}
σi∈∂U

Θi
Ld(ψd(σ))

where the discrete Euler-Lagrange map DDELLd is defined for any vertex v in the interior of PkM by

DDELLd|v =
∑
σ∈PkM
σi=v

D2i−1Ld(ψd(σ))dv +D2iLd(ψd(σ))dq

and the discrete Poincaré-Cartan 1-forms Θi
Ld are defined by

Θi
Ld(ψd(σ)) = D2i−1Ld(ψd(σ))dvn(σi) +D2iLd(ψd(σ))dqn(σi)

In the case of variations δψd vanishing at the end points, ψd is a solution of the Hamilton problem
if and only if the discrete Euler-Lagrange map is null on the interior vertices of PkM , which leads to
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the discrete Euler-Lagrange equations expressed for any j ∈ I\F(I) by∑
σ∈PkM
σi=vj

D2i−1Ld(ψd(σ)) = 0 (9.2.1a)

∑
σ∈PkM
σi=vj

D2iLd(ψd(σ)) = 0 (9.2.1b)

In the continuous case, those two equations are both expressed in the Euler-Lagrange equation, which
gives only one equation to verify; but discrete paths solutions of the first equation are not automatically
solutions of the second equation, since they are independent in the general case.

The discrete Poincaré-Cartan forms verify

dLd =
k∑
i=1

Θi
Ld .

The discrete Cartan 2-forms are defined as Ωi
Ld = −dΘi

Ld . Given that d(dLd) = 0, the discrete Cartan
forms verify

k∑
i=1

Ωi
Ld = 0

10 System invariants

10.1 Multisymplectic geometry

10.1.1 Symplecticity of the discrete flow

In the symplectic setting, we define the discrete Lagrangian flow as the iteration of the numerical
method on a pair (q0, q1) ∈ Q×Q.

Definition 13 (Discrete flow). The discrete flow of a discrete Lagrangian system over time is the
map that, for any initial conditions (q0, q1) at time t0 associates the solution (qN , qN+1) of the discrete
Lagrangian system at time tN ,

F tNLd : Q×Q → Q×Q
(q0, q1) 7→ (qN , qN+1)

Proposition 5. The discrete flow of a solution of the discrete Lagrangian problem is symplectic with
respect to the discrete symplectic form ΩLd.

Proof. We refer to Marsden [11] for the proof.

In the symplectic case, one can can be convinced of the existence of the flow by noticing that
the polytopes are in this case segments, and that therefore the Euler-Lagrange equations involve the
vertices on the boundary of two joined segments, that is on three consecutive indexes.

10.1.2 Discrete multisymplectic form formula

Theorem 5 (Discrete multisymplectic form formula). Let ψd be a solution of the discrete Euler-
Lagrange equations, then for any Y,Z ∈ χ(Ed),∑

σ∈PkM
σ∩∂U 6=∅

∑
i∈{1,...,k}
σi∈∂U

(
ψ∗d(j

1Y yj1ZyΩi
Ld)
)

(σ) = 0 (10.1.1)
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Proof. When taking the double differential of the discrete action Ad evaluated at a solution ψd along
first variations Y and Z, one obtain that

dd Ad ψd (Y,Z) = d

 ∑
σ∈PkM
σ∩∂U 6=∅

∑
i∈{1,...,k}
σi∈∂U

Θi
Ld(ψd(σ))

 (Y,Z)

and since ddAd = 0, the result of theorem (5) is proven.

10.2 Lagrangian symmetries and Noether’s theorem

We here use the notation proposed by Marsden [11] and Demoures [4].
Let G be a Lie group with the group action ΦE : G × E → E on E that acts trivially on

the base space, let us define the lift to the discrete jet space for any g ∈ G by Φ
J1
dE
g (ψd(σ)) =

(ΦE
g (ψd(σ1)), ...,ΦE

g (ψd(σk))) for any σ and ψd; the corresponding infinitesimal generator is defined

by ξJ
1
dE(ψd(σ)) = (ξE(ψd(σ1)), ..., ξE(ψd(σk))). A discrete Lagrangian is said to be invariant under

the lifted action if for any g ∈ G, Ld ◦ Φ
J1
dE
g = Ld. The group G is then a symmetry of Ld, and this

implies that Ld is also infinitesimally invariant.

Definition 14 (Discrete infinitesimal natural symmetry). Let ((E, π,M),Ld) be a Lagrangian system,
a discrete infinitesimal natural symmetry of the Lagrangian system is a vector field ξ ∈ g leaving Ld
invariant, that is

ξydLd = 0

The discrete momentum maps J iLd : J1
dE :→ g∗, i ∈ {1, ..., k} are defined for all ξE ∈ g by

J iLd ·ξ
E := ξJ

1
dEyΘi

Ld . For any path ψd solution of the discrete Euler-Lagrange equations and σ ∈ PkM ,(
k∑
i=1

J iLd · ξ
E

)
(ψd(σ)) =

(
k∑
i=1

ξJ
1
dEyΘi

Ld

)
(ψd(σ)) =

(
ξJ

1
dEydLd

)
(ψd(σ)) = 0

This yields (
k∑
i=1

J iLd · ξ
E

)
(ψd(σ)) = 0 (10.2.1)

This is the statement of the local discrete Noether theorem.
To obtain the global discrete Noether theorem, the discrete momentum maps are summed over an

arbitrary subdomain of PkM . For this purpose, we define JS where S ⊂ PkM such that

JS(ψd) =
∑
σ∈S

(
k∑
i=1

J iLd · ξ
E

)
(ψd(σ))

Theorem 6 (Discrete global Noether first theorem). Let ξJ
1
dE be an infinitesimal symmetry of the

discrete Lagrangian Ld , let ψd be a solution of the Lagrangian system defined by Ld, then for any
S ⊂ K,

JS(ψd) = 0 (10.2.2)

Proof. The proof is obtained immediately by summing (10.2.1) over σ ∈ S.
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11 Example : the pendulum

A solution of the problem is now a path ψd = (ti, θi), i ∈ {0, ..., N}. Let us first consider the case
where ti = ih with h ∈ R∗+ is the time step. We choose to define the discrete Lagrangian by

Ld(θ0, θ1) = h£

(
θ0,

θ1 − θ0

h

)
= h

(
1

2

(
θ1 − θ0

h

)2

+ cos(θ0)

)

where the derivative θ̇(0) has been approximated by θ1−θ0
h . Here we chose to take m = g = l = 1

without loss of generality to lighten the equations. This Lagrangian is at least of order 1 in time, since

LE(t0, θ0, t1, θ1) =

∫ t1

t0

£
(
θ, θ̇
)
dt =

∫ t1

t0

£

(
θ0,

θ1 − θ0

h

)
+O(h)dt

= h£

(
θ0,

θ1 − θ0

h

)
+O(h2) = Ld(θ0, θ1) +O(h2)

Computing one term further would show the term in h2 is non zero, hence the Lagrangian is of order
exactly 1.

By applying (9.2.1b) on the discrete Lagrangian, we obtain the discrete Euler-Lagrange equation
∀k ∈ {1, ..., N − 1}

θk+1 − 2θk + θk−1

h2
+ sin(θk) = 0 (11.0.3)

This numerical method is also known as the symplectic Euler method. We also compute Θi
Ld and ΩLd

Θ1
Ld(θ0, θ1) =

(
−θ1 − θ0

h
+ h sin(θ0)

)
dθ0

Θ2
Ld(θ0, θ1) =

θ1 − θ0

h
dθ1

ΩLd(θ0, θ1) =
1

h
dθ0 ∧ dθ1

The discrete flow is given ∀k ∈ {1, ..., N − 1} by

FLd(θk−1, θk) = (θk, 2θk − θk−1 − h2 sin(θk))

It is indeed symplectic relative to ΩLd since(
F ∗LdΩLd

)
(θk−1, θk) =

1

h
dθk ∧ d

(
2θk − θk−1 − h2 sin(θk)

)
=
−1

h
dθk ∧ dθk−1

=
1

h
dθk−1 ∧ dθk = ΩLd(θk−1, θk)

which we recall is the analogous of the symplectic form formula in the symplectic setting.
Having in mind to compare the properties of symplectic integrators with more general methods, we

introduce the explicit Euler method; it is obtained by the direct discretization of the Euler-Lagrange
equations for the pendulum. First, we introduce

y :=

[
θ

θ̇

]
ẏ =

[
θ̇

θ̈

]
=

[
θ̇

− sin(θ)

]
and we discretize as

yk+1 =

[
θk+1

θ̇k+1

]
=

[
a(yk, yk+1)
b(yk, yk+1)

]
.
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In the case where a (or b) depends explicitly on yk+1, the obtained method is said to be implicit,
otherwise it is explicit. If we define a and b such that

a(ykyk+1) = θk + hθ̇k b(yk, yk+1) = θ̇k − h sin(θk+1)

we find our previously defined symplectic Euler method; we note that the computation of θk is explicit,
and θ̇k implicit. In the case both are explicit, we obtain the explicit Euler method

a(ykyk+1) = θk + hθ̇k b(yk, yk+1) = θ̇k − h sin(θk)

which is also of order 1.
The property of symplecticity of the flow can be observed on the tangent space TQ as the conser-

vation of oriented areas, as explained in section 7.2, and confronted to results for other methods. The
figure 4 shows the transportation of a square by the discrete flows of the explicit Euler and symplectic
Euler methods. The explicit Euler method is clearly not symplectic, since the area of the square grows
bigger, whereas the area of the square transported by the symplectic Euler method seems constant
(up to a certain order of approximation of θ̇), as predicted by the theory.
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Figure 4 – Transportation of squares by the discrete Lagrangian flow of explicit and symplectic Euler
methods.

We shall illustrate here that the symplectic integrators approximatively preserve energy, that is,
that the discrete energy is bounded in an constant interval centred around the exact energy value. In
the continuous setting, the energy is exactly preserved, and this feature is very important in many
applications; the discrete conservation of energy is indeed of primordial importance. This property can
be proved in general, but the proof is not developed here; we refer to Hairer [7] for a general exposition.
Note that no analogous property in the more general multisymplectic setting has been proved yet,
but, as we shall see in part VII, one can reduce the multisymplectic problems to symplectic ones by
integrating along the space dimensions of the base space to observe the property of conservation of
energy.

The application of the first part of the discrete Euler-Lagrange equations (9.2.1a) in the case of non
fixed time steps (ti)i∈{0,...,N} leads to

1

2

((
θk+1 − θk
tk+1 − tk

)2

−
(
θk − θk−1

tk − tk−1

)2
)
− cos(θk) + cos(θk−1) = 0 (11.0.4)

which for tk+1 − tk = h rewrites

(θk+1 − θk−1)

(
θk+1 − 2θk + θk−1

h2

)
− cos(θk) + cos(θk−1) = 0 (11.0.5)
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This is the difference between the discrete energy

Ed(t0, θ0, t1, θ1) =
1

2

(
θ1 − θ0

t1 − t0

)2

− cos(θ0)

at times tk−1 and tk. We recall the second part of the Euler-Lagrange equations (9.2.1b) that define the
numerical scheme (11.0.3), and we replace the approximation of the second derivative of θk in (11.0.4)
by the term with sine, yielding

θk+1 − θk−1

2
sin(θk) = cos(θk)− cos(θk−1) (11.0.6)

Finally, from the Taylor expansion of cos(θk−1), we obtain

cos(θk−1) = cos(θk) + (θk − θk−1)(− sin(θk)) +O(h) = cos(θk)−
(
θk+1 − θk−1

2

)
sin(θk) +O(h)

proving that equation (11.0.6) holds up to the first order. This yields that the energy is approximately
conserved with an order 1 error. An exact energy preserving numerical scheme can be implemented
by using adaptive time steps, but is not discussed here; see Hairer [7] for a backward error analysis.
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(a) Energy of explicit Euler method with h = 0.15s
and symplectic Euler method with h = 0.3s.
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(b) Energy relative error for symplectic Euler method
with h = 0.3s.

Figure 5 – Discrete energy for initial condition (θ0, θ̇0) = (1, 0).

The discrete energy is shown in figure 5 for the pendulum. One can clearly see that the explicit
Euler methods artificially ”creates” energy and grows as O(h), whereas the symplectic Euler method
oscillates around the true value. In the tangent space, as shown in figure 6, we observe that the
explicit Euler method diverges outwards, and the symplectic Euler method evolves on a closed path;
the energy stays in a boundary. By noticing the fact that the symplectic methods forms a closed loop
in the tangent space in figure 6, and therefore oscillates around a level of energy corresponding to the
curves formed by the exact solutions, we get a hint of the link between symplecticity and approximative
energy preservation in a more general scope than the way we approached it in our particular case.
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(a) Explicit Euler method with h = 0.15
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(b) Symplectic Euler method with h = 0.3

Figure 6 – Discrete approximate solutions of the pendulum problem for initial condition (θ0, θ̇0) =
(1, 0).
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Part V

Lagrangian field theory with a Lie group as the
fibre

The goal of this part is to follow the same construction as in part III, but in the case of a principle
jet bundle with a Lie group as the fibre; a Lie group being a differential manifold, the previous
development still holds, but new results arise.

12 Lagrangian field theory

12.1 Jet prolongation and contact form

Let π : M → E be a principal bundle of typical fibre G with G a Lie group. An element of the group
is denoted by g = (yA), and the identity element of G by e. Let ~eA = TeLg(~∂A) be the left invariant

basis on TG obtained by left translation of ~∂A at e. An element p of E is denoted in local coordinates
by (xµ, yA), and an element p̄ of J1E by (xµ, yA, ξAµ ) where

(j1φ)∗ξAµ = λA
∣∣
P

(
∂φA

∂xµ

)
with φ ∈ Γ(π) a section representative of p̄, and λA the Maurer-Cartan 1-form defined as the dual basis
of the left invariant basis, such that λA(~eB) = δAB. The basis associated to the velocity coordinates ξAµ
is denoted by ~aAµ and its dual basis by dξAµ .

12.1.1 Contact form

The contact form ϑ at any point p̄ is now expressed in local coordinates by ϑp̄ = ϑA ⊗ ~eA where
ϑA = λA − ξAµ dxµ. We also need to compute the lift of a vector field, that differs from the standard
formalism by a Lie bracket term.

12.1.2 Lift of a vector field

Proposition 6. Let Z = αµ~∂µ + βA~eA be a vector field of χ(E) with (~∂µ, ~eA, ~aAµ ) the left invariant

basis of TJ1E, the 1-jet prolongation of Z on TJ1E is the vector field defined at point p̄ = (xµ, yA, ξAµ )
by

j1Z(p̄) = αµ~∂µ + βA~eA +

(
∂ΞA

∂xµ
+ ξCµ T

B
C

∂ΞA

∂yB
+ [ξµ, β]A

)
~aAµ

where ΞA = j1ZyϑA = βA − ξAµ αµ and TBC = dyB(~eC).

Proof. See Bensoam [1] for a detailed computation of j1Z.

12.2 Hamilton principle

12.2.1 Reduced Lagrangian

Let ω = dx1 ∧ ... ∧ dxn+1 ∈ Λn+1(M) be a fixed volume (n+ 1)-form on the manifold M , the reduced
Lagrangian density is defined as a smooth real-valued function l ∈ C∞(J1E), and the associated
reduced Lagrangian form is defined as the (n+ 1)-form in J1E

` = l(xµ, yA, ξAµ )ω

in a natural local system of coordinates (xµ, yA, ξAµ ).
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12.2.2 Hamilton principle

In this context of a Lie group, the action map A associated to a Lagrangian system ((E, π,M), `) is
defined as

A : Γc(π) → R
φ 7→

∫
U (j1φ)∗`

Following the same development than the one presented in section 6.3, we compute the variation of
action from

δA =

∫
∂U

(j1φ)∗(j1Zy`) +

∫
U

(j1φ)∗j1Zyd`

We obtain

δA =

∫
∂U

(j1φ)∗
(
j1Zy`+ ΞA

∂l

∂ξAµ
dnxµ

)
−
∫
U

(j1φ)∗
(

ΞA
(

d

(
∂l

∂ξAµ

)
∧ dnxµ −

(
ad∗ξν

∂l

∂ξν

)
A

ω − TBA
∂l

∂yB
ω

))
(12.2.1)

where Ξ = ϑA(j1Z) = βA − ξAµ αµ. The detail of computations is given in appendix B.4.

12.2.3 Euler-Poincaré equations

The Poincaré-Cartan (n+ 1)-form is defined on J1E by

Θ` =
∂l

∂ξAµ
ϑA ∧ dnxµ + `

After introducing the Euler-Lagrange form ΓA defined by

ΓA = d

(
∂l

∂ξAµ

)
∧ dnxµ −

(
ad∗ξν

∂l

∂ξν

)
A

ω − TBA
∂l

∂yB
ω

and noticing that ΞA = j1ZyϑA, the variation of action becomes

δA =

∫
δU

(j1φ)∗(j1ZyΘ`)−
∫
U

(j1φ)∗(j1Zy(ϑA ∧ ΓA))

The Euler-Poincaré equations emerge when taking a vector field Z vanishing on ∂U , giving ∀A ∈
{1, ..., N}, (j1φ)∗ΓA = 0, that is(

∂

∂xµ

∂l

∂ξAµ
−
(

ad∗ξµ
∂l

∂ξµ

)
A

− TBA
∂l

∂yB

)
(j1φ) = 0

13 System invariants

13.1 Variation theorem

13.1.1 Lagrangian multisymplectic form

The Lagrangian multisymplectic (n+ 2)-form is computed thanks to the Poincaré-Cartan form as

Ω` = −dΘ` = ϑA ∧ d

(
∂l

∂ξAµ

)
∧ dnxµ −

∂l

∂ξAµ
dϑA ∧ dnxµ − dl ∧ ω
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= ϑA ∧
(

ΓA +

(
ad∗ξµ

∂l

∂ξµ

)
A

ω + TBA
∂l

∂yB
ω

)
+

∂l

∂ξAµ

(
dξAν ∧ dxν − dλA

)
∧ dnxµ − TBA

∂l

∂yB
dλA ∧ ω − ∂l

∂ξAµ
dξAµ ∧ ω

= ϑA ∧ ΓA +

(
ad∗ξµ

∂l

∂ξµ

)
A

λA ∧ ω + TBA
∂l

∂yB
λA ∧ ω

+
∂l

∂ξAµ
dξAµ ∧ ω −

∂l

∂ξAµ
dλA ∧ dnxµ − TBA

∂l

∂yB
λA ∧ ω − ∂l

∂ξAµ
dξAµ ∧ ω

= ϑA ∧ ΓA +

(
ad∗ξµ

∂l

∂ξµ

)
A

λA ∧ ω +
∂l

∂ξAµ
[λ, λ]A ∧ dnxµ

= ϑA ∧ ΓA +
∂l

∂ξAµ

(
[ξµ, λ]A ∧ ω + [λ, λ]A ∧ dnxµ

)
Moreover,

[ξµ, λ]A ∧ ω + [λ, λ]A ∧ dnxµ

= [ξµ, ϑ]A ∧ ω + [ξµ, ξνdxν ]A ∧ ω +
1

2
[(ϑ+ ξνdxν) ∧ (ϑ+ ξηdx

η)]A ∧ dnxµ

= [ξµ, ϑ]A ∧ ω +
1

2
[ϑ ∧ ϑ]A ∧ dnxµ + [ϑ ∧ ξνdxν ]A ∧ dnxµ +

1

2
[ξνdxν ∧ ξηdxη]A ∧ dnxµ

= [ξµ, ϑ]A ∧ ω +
1

2
[ϑ ∧ ϑ]A ∧ dnxµ + [ϑ, ξµ]A ∧ ω +

1

2
[ξνdxν , ξµ]A ∧ ω

= [ϑ, ϑ]A ∧ dnxµ +
1

2
[ξν , ξµ]Adxν ∧ ω = [ϑ, ϑ]A ∧ dnxµ

We finally get

Ω` = ϑA ∧ ΓA +
∂l

∂ξAµ
[ϑ, ϑ]A ∧ dnxµ

Ω` vanishes when evaluated on critical sections (j1φ). This leads to the variation theorem, which is
the same as theorem (1) formulated for reduced Lagrangian systems.

13.1.2 Variation theorem

Theorem 7 (Variation theorem for reduced Lagrangian systems). Let φ be a section of π, the following
propositions are equivalent

(1) φ is a stationary point of the reduced action A

(2) φ is a solution of the Euler-Poincaré equations

(3) ∀W ∈ χ(J1E), (j1φ)∗(WyΩ`) = 0

The proof is essentially the same as the proof of theorem (1) and is therefore not developed here.

13.2 Noether theorem

Since the fibre is a Lie group, invariant Noether current immediately emerge. Let Φh : G → G with
h ∈ G be a left action of G acting on itself, it leaves the reduced Lagrangian ` invariant. From
Bensoam [1] we get that the infinitesimal generator Sη of the left action Φh is the right invariant
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vector field XR
η generated by η ∈ g. A corresponding left invariant vector field XL

ν coincides with XR
η

where ν = Adg−1 η. The expression of j1Sη is obtained from proposition (6)

j1Sη =
(
Adg−1 η

)A
~eA +

(
∂ΞA

∂xµ
+ ξCµ T

B
C

∂ΞA

∂yB
+ [ξµ, β]A

)
~aAµ

where ΞA = j1SηyϑA =
(
Adg−1 η

)A
. From this we compute the expression of the momentum n-form

J(Sη) := (j1Sη)yΘ` =
∂l

∂ξAµ
λA(j1Sη)d

nxµ −
(
∂l

∂ξAµ
ξAµ − l

)
����
ω(j1Sη)

=
∂l

∂ξAµ

(
Adg−1 η

)A
dnxµ =

〈
∂l

∂ξµ
,Adg−1 η

〉
dnxµ

=
〈

Ad∗g−1 π
µ, η
〉

dnxµ

where πµ = ∂l
∂ξµ
∈ g∗ is the left momentum. By denoting Πµ = Ad∗g−1 πµ ∈ g∗ the right momentum

associated to πµ, we define the momentum n-form

J := Πµdnxµ

where the momentum J(Sη) is obtained by J(Sη) = 〈J, η〉.
The infinitesimal natural symmetry Sη leaving the reduced Lagrangian ` invariant, one may apply

the Noether theorem (3), leading to the fact that for any η ∈ g, the Noether current (j1φ)∗J(Sη) =
(j1φ)∗((j1Sη)yΘL) is conserved on solutions of the Euler-Poincaré equations. Finally, the invariance
of the momentum n-form J on critical sections φ of the action is equivalent to an of equation on the
right momenta

d
(
(j1φ)∗J

)
=
∂Πµ

∂xµ
ω = 0

⇔
∑ ∂Πµ

∂xµ
= 0
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Part VI

Discrete Lagrangian field theory with Lie
group as a fibre

This part follows the same development as in part IV in the case where the fibre is a Lie group, in
order to adapt the discrete setting to the continuous formulation used in part V

14 Discrete Lagrangian field theory

14.1 Base space discretization

The fibre is now a Lie group G. The implied modifications of the previous results come from the
fact that the discrete approximations of the derivatives of the sections with respect to the base space
directions can now be expressed with the help of the associated Lie algebra g, as in the continuous
setting of part V. The overall idea is to take advantage of the Lie group structure, and to ensure that
it is preserved by the discrete numerical method. This is achieved by updating the group elements by

gvj = gviτ(∆vi,vjξvi,vj )

where ξ ∈ g is an approximation of the left invariant velocity, and τ : g→ G is a local diffeomorphism
in the neighbourhood of eG such that τ(0) = eG, typically the exponential map.

A way to tackle this problem is to use a multisymplectic generalisation of a Galerkin Lie group
variational integrator. We refer to Leok [9] for a presentation of this integrator, and we address the
multisymplectic case whitout exhibiting the symplectic case first.

In order to simplify the model and the computations, we make the choice to only consider fixed
orthogonal grids as discretization of the base space, that is, the set of vertices V is of the form
∆0{0, ...,K0} × ...×∆n{0, ...,Kn}. The polytopes are chosen to consist of n+ 2 corners, and to be of
the form σi0,...,in = [vi0,...,in , vi0+1,...,in , ..., vi0,...,in+1], which in the case of a 2 dimensional base space
consists of a set of rectangle triangles, as illustrated in figure 7.

vi,j vi+1,j

vi,j+1

vi,j,k

vi+1,j,k

vi,j+1,k

vi,j,k+1

Figure 7 – Two and three dimensional cells.

14.2 Hamilton principle

We introduce the multi indexes I := (i0, ..., in) ∈ {0, ...,K0 − 1}× ...×{0, ...,Kn − 1} and, for a given
I and k ∈ {0, ..., n}, Ik+ := (i0, ..., ik + 1, ..., in) and Ik− := (i0, ..., ik − 1, ..., in) . We also define
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σI := [vi0 , ..., vin ], and for each vertex vI

gI := g(vI) ∈ G (14.2.1)

ξkI := ξk(vI) =
1

∆k
τ−1

(
g−1
i0,...,in

g−1
i0,...,ik+1,in

)
=

1

∆k
τ−1

(
g−1
I gIk+

)
∈ g ∀k ∈ {0, ..., n} (14.2.2)

A discrete path ψd is defined on a polytope σI by

ψd(σI) = (σI , gI , ξ
0
I , ξ

n
I ) ∈ J1

dE (14.2.3)

where we denote J1
dE := Pn+2

M ×G×gn+2. Finally we choose the particular definition of the discrete La-
grangian as a map Ld : Pn+2

M ×G×gn+1 → R and we introduce the notation LId := Ld(σI , gI , ξ0
I , ..., ξ

n
I ).

The discrete action Ad evaluated on a path ψd is given by

Ad(ψd) =
∑
σ∈PkM

Ld(ψd(σ)) (14.2.4)

Let ψd ∈ Cd be a discrete path and δψd ∈ TψdCd and arbitrary variation of ψd such that ∀i, (δψd)i =
(δvi, δgi); here we restrain ourself to the case where δvi = 0, in other words for a fixed grid, therefore
we override the notation in (δψd)i = δgi. We compute the variations δξkI as

δξkI =
1

∆k
dτ−1

∆kξ
k
I

(
Ad∗

τ(∆kξ
k
I )

(ζIk+)− ζI
)

(14.2.5)

where ζI = g−1
I δgI . We introduce the discrete momenta µkI ∈ g∗ (see Demoures [4]) by

µkI :=
(

dτ−1
∆kξI

∗)
DξkLId (14.2.6)

The variation of action at ψd in direction δψd is then expressed by

δAd(ψd) = dAd(ψd) · δψd =
∑
σ∈PkM

dLd(σ, gσ, ξ0
σ, ..., ξ

n
σ ) · δψd

=
∑
I

dLd(σI , gI , ξ0
I , ..., ξ

n
I ) · δψd =

∑
I

(
DgLId · δgI +

n∑
k=0

DξkLId · δξkI

)

=
∑
I

(
DgLId · δgI +

n∑
k=0

〈
DξkLId,

1

∆k
dτ−1

∆kξ
k
I

(
−ζI + Adτ(∆kξ

k
I ) ζIk+

)〉)

=
∑
I

(
DgLId · δgI +

n∑
k=0

〈
− 1

∆k

(
dτ−1

∆kξ
k
I

∗)
DξkI
LId, ζI

〉
+

〈
1

∆k
Ad∗

τ(∆kξ
k
I )

(
dτ−1

∆kξ
k
I

∗)
DξkI
LId, ζIk+

〉)
=
∑
I

(
(gI)

−1DgLId · ζI +

n∑
k=0

− 1

∆k
µkI · ζI +

1

∆k
Ad∗

τ(∆kξ
k
I )
µkI · ζIk+

)
(14.2.7)

Introducing the notation

aI = (gI)
−1Dg`

I
d +

n∑
k=0

− 1

∆k
µkI and bkI =

1

∆k
Ad∗

τ(∆kξ
k
Ik−

)
µkIk−
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we obtain for the variation of action

δAd(ψd) =

K0−1∑
i0=0

...

Kn−1∑
in=0

aI · ζI +

K0−1∑
i0=0

...

Kn−1∑
in=0

n∑
k=0

bkIk+ · ζIk+

=

K0−1∑
i0=0

...

Kn−1∑
in=0

aI · ζI +

K0−1∑
i0=0

...

Kk∑
ik=1

...

Kn−1∑
in=0

n∑
k=0

bkI · ζI

=

K0−1∑
i0=1

...

Kn−1∑
in=1

(
aI +

n∑
k=0

bkI

)
· ζI +A

where A are the terms on the border of the discrete domain. With the current notation and summation
conventions, which has been chosen for its convenient way to express ξkI , A is artificially complex and
very painful to explicit because of the indices combinations. This is why we express in the following
the terms on the boundary with respect to sums over σ.

We define DDELLId by

DDELLd(σ, gσ, ξ1
σ, ..., ξ

k
σ) =

〈
(gI)

−1DgLId +

n∑
k=0

1

∆k

(
−µkI + Ad∗

τ(∆kξ
k
Ik−

)
µkI

)
, g−1
I dgI

〉
(14.2.8)

where we use the short cut notation dζI = g−1
I dgI , and the discrete Cartan forms Θi

Ld by

Θ1
Ld(σ, gσ, ξ

0
σ, ..., ξ

n
σ ) =

〈
g−1
σ DgLId −

n∑
k=0

1

∆k
µkI , g

−1
I dgI

〉
(14.2.9)

Θk+2
Ld (σ, gσ, ξ

0
σ, ..., ξ

n
σ ) =

〈
1

∆k
Ad∗

τ(∆kξ
k
I )
µkI , g

−1
Ik+

dgIk+

〉
(14.2.10)

Taking vanishing variations on the border of the domain yields the discrete Euler-Poincaré equations,
given for any n+ 1 dimension of the base space at I = (i0, ..., in) ∈ {1, ...,K0−1}× ...×{1, ...,Kn−1}
by

(gI)
−1DgLId +

n∑
k=0

1

∆k

(
−µkI + Ad∗

τ(∆kξ
k
Ik−

)
µkI

)
= 0 (14.2.11)

15 System invariants

15.1 Lagrangian symmetries and Noether’s theorem

Let Φh with h ∈ G be a left action Φh : G → G of G acting on itself, the induced action on J1
dE is

denoted Φ
J1
dE
g and the associated infinitesimal generator ηJ

1
dE . In that case the discrete Lagrangian

Ld is invariant with respect to the action ΦJ1
dE , and is therefore infinitesimally invariant with respect

to ηJ
1
dE .

The discrete momentum maps J iLd : J1
dE → g∗, i ∈ {0, ..., n} are defined for all η ∈ g by〈
J iLd , η

〉
:= ηJ

1
dEyΘi

Ld

The variations of the path induced by the infinitesimal generator of the left action is δgI = ηIgI . Given
the discrete Cartan forms expressions (14.2.9) and (14.2.10), the momentum maps can be computed
for any multi index I and η ∈ g as

〈
J1
Ld(σI , gI , ξ

0
I , ..., ξ

n
I ), η

〉
=

〈
g−1
σ DgLId −

n∑
k=0

1

∆k
µkI , g

−1
I ηIgI

〉
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=

〈
g−1
σ DgLId −

n∑
k=0

1

∆k
µkI ,Adg−1

I
ηI

〉

=

〈
Ad∗

g−1
I

(
g−1
σ DgLId −

n∑
k=0

1

∆k
µkI

)
, ηI

〉
〈
Jk+2
Ld (σI , gI , ξ

0
I , ..., ξ

n
I ), η

〉
=

〈
1

∆k
Ad∗

τ(∆kξ
k
I )
µkI ,Adg−1

Ik+

ηIk+

〉
=

〈
1

∆k
Ad∗

g−1
Ik+

(
Ad∗

τ(∆kξ
k
I )
µkI

)
, ηIk+

〉
We then identify

J1
Ld(σI , gI , ξ

0
I , ..., ξ

n
I ) = Ad∗

g−1
I

(
g−1
σ DgLId −

n∑
k=0

1

∆k
µkI

)
(15.1.1)

Jk+2
Ld (σI , gI , ξ

0
I , ..., ξ

n
I ) =

1

∆k
Ad∗

g−1
I
µkI (15.1.2)

where we used the fact that

Ad∗
g−1
Ik+

Ad∗
τ(∆kξ

k
I )

= Ad∗
g−1
Ik+

Ad∗
g−1
I gIk+

= Ad∗
g−1
I

Evaluating the sum the momentum maps against η ∈ g gives us〈
n+2∑
i=1

J iLd(σI , gI , ξ
0
I , ..., ξ

n
I ), η

〉
=
〈

Ad∗
g−1
I
g−1
σ DgLId, ηI

〉
=
〈
g−1
σ DgLId,Adg−1

I
ηI

〉
=
〈
DgLId, ηIgI

〉
= 0

since Ld is infinitesimally invariant with respect to η. For any path ψd solution of the discrete Euler-
Lagrange equations and σ ∈ Pn+2

M , we obtain the statement of the local Noether theorem

n+2∑
i=1

J iLd(ψd(σ)) = 0 (15.1.3)

The global Noether theorem (6) still holds, only the expressions of the momentum maps differ.
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Part VII

Reissner beam

The Reissner beam models a non linear system on a 2 dimensional base space. It is a system of partic-
ular interest to model the non linear behaviour of strings when they are subject to large displacements,
since in that case the hypothesis of the perfect string do not hold any more.

Since its configuration space, the 6 dimensional space of translations and rotations SE(3), is a Lie
group, it can be handled by the formalism presented in part V. This model is presented in section 16,
followed by a short investigation of possible integrable solutions in section 17. A discretization of the
model is then introduced in section 18 and applied to obtain numerical results. Finally, applications
for sound synthesis are presented in section 19.

We refer to appendix A for a presentation of the mathematical objects and operations involved in
the use of Lie group SE(3) on which the model of the Reissner beam is based.

16 Nonlinear model

Let us consider a beam of length L with constant circular cross-section of area A and radius a,
and density ρ, each section of the beam is considered to be a rigid body evolving in the three-
dimensional space, thus having six degrees of liberty. The beam configuration is entirely described by
the knowledge, for any couple (t, s) ∈ M = R × [0, L] consisting of the time date and the curvilinear
position, of the translation r(t, s) ∈ R3 and rotation R(t, s) ∈ SO(3) of each section with respect to a
reference configuration Σ0.

Figure 8 – Σ(t) and Σ0, respectively current and reference configurations of the beam.

Let E1 be a unit vector along the axis of the reference beam, oriented by the increasing s coordinate,
and E2, E3 any pair of unit vectors such that (E1, E2, E3) is a directly oriented orthonormal basis of R3.
As represented in figure 8, the coordinates at time t of any point of the section located at curvilinear
position s is

x(t, s) = r(t, s) +R(t, s)X

where X = αE2 + βE3 with α2 + β2 ≤ a2 is the position within the section of the beam at s. The
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previous equality can be expressed thanks to a unique map H(t, s) ∈ SE(3) ' SO(3)× R3 such that

y(t, s) :=

[
x(t, s)

1

]
=

[
R(t, s) r(t, s)

0 1

] [
X
1

]
= Ĥ(t, s)Y

H(t, s) is an element of the Lie group SE(3) = G (see appendix A for a detailed explanation of
the notation of SE(3) elements). To any motion of the beam corresponds a section φ such that
∀(t, s), φ(t, s) = (t, s,H(t, s)).

We define (χL, εL) the left invariant lift of the tangent vectors Ḣ := ∂H
∂t and H ′ := ∂H

∂s to the Lie
algebra g = se(3) by

χAL = λA
∣∣
H

(
Ḣ
)
, εAL = λA

∣∣
H

(
H ′
)

In the matrix representation, we have the simple relation ξ̂µ = Ĥ−1 ∂Ĥ
∂xµ

. We get

χ̂L = Ĥ−1 ˙̂
H =

[
RT Ṙ RT ṙ

0 0

]
:=

[
ω̂L γL
0 0

]
(16.0.4)

ε̂L = Ĥ−1Ĥ ′ =
[
RTR′ RT r′

0 0

]
:=

[
Ω̂L ΓL
0 0

]
(16.0.5)

From now on, we override the notation χ: = χL and ε := εL.
To sum up, the base space M = R×[0, L] consists of a time and spatial coordinates, the configuration

space G = SE(3) is a Lie group, hence the motion of the beam is represented by a section of the total
space J1E := M ×G× g2 given for any (t, s) ∈M by j1φ(t, s) = (t, s,H(t, s), χ(t, s), ε(t, s)).

Let the reduced Lagrangian be defined as the difference between kinetic and potential energy l =
K − U . We compute for the kinetic energy

K(H,χ, ε) =

∫∫
S

1

2
ρẋT ẋdSds =

∫∫
S

1

2
ρẏT ẏdS

=

∫∫
S

1

2
ρY T ˙̂

HT ˙̂
HY dSds =

∫∫
S

1

2
ρ
(
XT ṘT ṘX + 2ṙT ṘX + ṙT ṙ

)
dS

=
1

2

∫∫
S
ρ
(
γTRTRγ + ωT X̂TRTRX̂ω

)
dS + 2ṙT Ṙ

∫∫
S
ρXdS︸ ︷︷ ︸
=0


=

1

2

∫∫
S
ρ
(
γTγ + ωT X̂T X̂ω

)
dS

=
1

2
χT Jχ

where the tensor of inertia J is expressed by

J =

∫∫
S
ρ

[
X̂T X̂ 0

0 I3

]
dS =

[
Jr 0
0 Jd

]
, Jr =

ρIρ 0 0
0 ρIa 0
0 0 ρIa

 , Jd =

m 0 0
0 m 0
0 0 m

 (16.0.6)

Iρ =

∫∫
S

(Y 2 + Z2)dS = πa2, Ia =

∫∫
S
Y 2dS =

∫∫
S
Z2dS =

πa2

2

and m = ρA is the linear mass.
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In the same manner we have

U(H,χ, ε) =
1

2

(
(Ω− Ω0)TM + (Γ− Γ0)TF

)
=

1

2

(
(Ω− Ω0)TCr(Ω− Ω0) + (Γ− Γ0)TCd(Γ− Γ0)

)
=

1

2

(
(ε− ε0)TC(ε− ε0)

)
where F = Cd(Γ − Γ0) and M = Cr(Ω − Ω0) are respectively the internal force and torque, and the

Hook tensor C is expressed by C =

[
Cr 0
0 Cd

]
where

Cr =

GIρ 0 0
0 EIa 0
0 0 EIa

 , Cd =

EA 0 0
0 GA 0
0 0 GA

 (16.0.7)

with E, G and A respectively the Young modulus, the shear coefficient and the cross-sectional area,
and ε0 = (Ω0,Γ0) is the deformation of the reference configuration such that ε0 = E4 = (0, 0, 0, 1, 0, 0).

Finally, we get the left invariant Lagrangian density l on the natural coordinate system (t, s,H, χ, ε)
and its associated reduced Lagrangian form `

l(χ, ε) =
1

2

(
χT Jχ− (ε− ε0)TC(ε− ε0)

)
`(χ, ε) = l(χ, ε)ω

where ω = dt ∧ ds.
Applying the Hamilton principle gives us the Euler-Poincaré equations ∀A ∈ {1, ..., 6}

∂

∂t

∂l

∂χA
+

∂

∂s

∂l

∂εA
−
(

ad∗χ
∂l

∂χ

)
A

−
(

ad∗ε
∂l

∂ε

)
A

= 0. (16.0.8)

After computing the partial derivatives of l and defining the left momenta

π :=
∂l

∂χ
= Jχ and σ :=

∂l

∂ε
= −C(ε− ε0)

in se(3)∗, we get from equation (16.0.8) the equivalent formulation

∂

∂t
π +

∂

∂s
σ − ad∗χ π − ad∗ε σ = 0. (16.0.9)

Since the fibre SO(3) is a Lie group, the Noether theorem (3) applies. We define the right momenta
Π and Σ presented in section 15, associated respectively to π and σ as

Π = Ad∗H−1 π and Σ = Ad∗H−1 σ

We introduce the momentum 1-form J = Πds−Σdt, and we recall from section 15 that the conservation
of the Noether current (j1φ)∗J is equivalent the following equation on the right momenta

∂

∂t
Π +

∂

∂s
Σ = 0 (16.0.10)

This conservation law can also be retrieved from (16.0.9) by introducing introduce the right invariant
tangent vector lifts χR and εR as

χR = ḢH−1 = AdH χ and εR = H ′H−1 = AdH ε
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in which case we have Π = ∂l
∂χR

and Σ = ∂l
∂εR

. Equations (16.0.9) and (16.0.10), respectively in the
left and right representation, are indeed equivalent.

In order to obtain a well-posed problem, we compute the compatibility condition, obtained by
differentiating (16.0.4) and (16.0.5)

∂

∂s
χ̂− ∂

∂t
ε̂ =

∂

∂s
(Ĥ−1)

∂

∂t
Ĥ − ∂

∂t
(Ĥ−1)

∂

∂s
Ĥ +H−1

�����������(
∂2

∂s∂t
Ĥ − ∂2

∂t
∂sĤ

)
=

∂

∂s
(Ĥ−1)Ĥχ̂− ∂

∂t
(Ĥ−1)Ĥε̂ = ε̂T χ̂− χ̂T ε̂ = χ̂ε̂− ε̂χ̂ = [χ̂, ε̂]

yielding
∂

∂s
χ− ∂

∂t
ε = [χ, ε] (16.0.11)

In the right representation, equation (16.0.11) becomes

∂

∂s
χR −

∂

∂t
εR = [χR, εR] (16.0.12)

The non-linear model for the Reissner beam is given by equations (16.0.9) and (16.0.11), or equiv-
alently by (16.0.10) and (16.0.12).

17 Integrable solutions

Under some assumptions, the previous system is completely integrable. The overall idea of the reso-
lution has been developed with Hélein and Bensoam in [2], and is reproduced here. However, it has
not led to a formal resolution yet, this is why no explicit solution is given.

The goal is to turn the problem into finding the connection maps solutions of a zero equation. By
doing so, the problem becomes equivalent to a principal chiral model, for which explicit integrable
solutions exist. The study of this category of problems is given for example in Mañas [10].

To reformulate the problem in an appropriate manner, we use the right representation of the non-
linear model. We need the equations (16.0.12) and (16.0.10) to linearly depend on χR and εR, hence
Π and χR (respectively Σ and εR) must verify a linear relation independent of H.

We make the hypothesis that the tensors J and C are proportional to the identity, and we write
J = JI and C = CI; in that case, the Ad operator and the matrix product commute, and the relation
between Π and χR simply becomes Π = Ad∗H−1(JAdH−1 χR) = JχR. We chose to take J and C equal
to one, and ε0R = 0. The equations (16.0.12) and (16.0.10) respectively become :

∂

∂s
χR −

∂

∂t
εR − [εR, χR] = 0

∂

∂t
χR −

∂

∂s
εR = 0

The hypothesis that have been made do not correspond to realistic physical properties, and cannot
be used as is to compare experimental results and formal resolutions, but are nonetheless desirable
to quantify the numerical results in a particular case. Moreover, a future work might show that the
hypothesis could be weakened, in particular on the hypothesis of proportionality of the tensors to the
identity.

Consider the 1-form ω = χRdt+ εRds and its Hodge star ?ω = χRds+ εRdt, the previous system is
equivalent to {

dω − ω ∧ ω = 0

d(?ω) = 0
(17.0.13)
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We introduce ωL = 1
2(ω+ ?ω) = 1

2(εs +χs)d(s+ t) and ωR = 1
2(ω− ?ω) = 1

2(εs−χs)d(s− t), where L
and R respectively stands for left and right moving. Those forms check ?ωL = ωL and ?ωR = −ωR.

Thanks to the spectral parameter λ ∈ (C∪ {∞})\{±1} := D, we introduce the family of connection
forms (ωλ)λ∈D defined by

ωλ =
ωL

1 + λ
+

ωR
1− λ =

ω − λ ? ω
1− λ2

.

We have ωλ = ω when λ = 0. Moreover, system (17.0.13) is equivalent ∀λ ∈ D to the equation

dωλ − ωλ ∧ ωλ = 0.

This equation is a necessary and sufficient condition for the existence of a family of maps (Hλ)λ∈D
from R2 to SE(3)C the complexification of SE(3) such that

dHλ = ωλHλ

on R2.
There exist a correspondence between the family (Hλ)λ∈D and the solutions of linear wave equations

through the transformations called the dressing and undressing procedures, which are described in
Hélein [2]. In particular, the correspondence could be made with the soliton solutions, and further
investigations could focus on the existence of such solutions in the case of weaker hypothesis on the
tensors J and C.

18 Numerical solutions

In this section, we present a discretization of the Reissner beam model with the help of the formalism
developed in part VI. The discrete equations are then used to derive numerical methods, and are
applied on various cases.

18.1 Discretization

Let us consider a set U = [0, T ] × [0, L] on the base space, let h, l ∈ R2 and N,P ∈ N2 be such that
hN = T and lP = L, we choose a fixed set of vertices

V =
{
vi+j(N+1) := vji = (i, j) / (i, j) ∈ {0, ..., N} × {0, ..., P}

}
and define ∀i ∈ {0, ..., N}, ti = hi and ∀j ∈ {0, ..., P}, sj = lj. The mesh consists of a set of triangles

P3
M :=

{
σji = [vji , v

j
i+1, v

j+1
i ] / (i, j) ∈ {0, ..., N − 1} × {0, ..., P − 1}

}
. An illustration of such a type

of mesh is given in figure 9.
Lie algebra elements χ and ε in se(3) will be represented with the use of a local diffeomorphism

τ : se(3)→ SE(3) around the origin verifying τ(0) = e such that τ(hχji ) = (Hj
i )−1Hj

i+1 and τ(lεji ) =

(Hj
i )−1Hj+1

i as presented in section 14. This yields for all (i, j) ∈ {0, ..., N − 1} × {0, ..., P − 1}

χji = τ−1
(

(Hj
i )−1Hj

i+1

)
/h and εji = τ−1

(
(Hj

i )−1Hj+1
i

)
/l (18.1.1)

There are numerous possibilities for the definition of τ ; as proposed by Leok [9], we choose to use the
analogous of the Cayley map for SE(3), which gives a good approximation of the exponential map
for small displacements around the origin. This choice of approximation is motivated by the fact that
the two maps are close near the origin, and the Cayley map is easier to invert and faster to compute
in the case of the Lie group SE(3), thus interesting for numerical applications. The following results
regarding the Cayley map are developed in Demoures [3].
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Figure 9 – Base space discretization.

The Cayley map for the rotation group SO(3) is an isomorphism between so(3) and SO(3), and is
defined for any ω ∈ so(3) by

cay(ω) =

(
I3 −

ω̂

2

)−1(
I3 +

ω̂

2

)
= I3 +

4

4 + ωTω

(
ω̂ +

ω̂2

2

)
.

The Cayley map is invertible for any rotation R ∈ SO(3) which is not a rotation of angle ±π, in which
case tr(R) = −1, and its inverse is given by

cay−1(R) = 2 (R− I3) (R+ I3)−1 =
2

1 + tr(R)

(
R−RT

)
.

The relation between the Cayley map and the exponential map is found by using the Rodrigues formula
for the exponential of an element ω ∈ so(3) and yields

cay−1(eω̂) =
tan

(
‖ω‖

2

)
‖ω‖

2

ω̂

which is equivalent to ω̂ when ω → 0, which shows that the Cayley and exponential maps are close in
a neighbourhood of the origin.

The Cayley map can be extended for the SE(3) group as the map τ defined for any χ = (ω, γ) ∈ se(3)
by (see [3])

τ(χ) =

(
I4 −

1

2
χ̂

)−1(
I4 +

1

2
χ̂

)
=

[
cay(ω̂) 4

4+‖ω‖2
(
I3 + ω̂

2 + ωTω
4

)
γ

0 1

]

Likewise, τ is invertible for any H = (R, r) ∈ SE(3) where R is not a rotation of angle ±π, and the
expression of its inverse is given by

τ−1(H) = −2 (I4 +H)−1 (I4 −H) =

[
cay−1(R) 2(I3 +R)−1r

0 0

]
Finally, we compute dτ−1

χ : R6 → R6 the differential of τ−1 for any χ = (ω, γ) (see [3])

dτ−1
χ =

[
I3 − 1

2 ω̂ + 1
4ωω

T 0
−1

2

(
I3 − 1

2 ω̂
)
γ̂ I3 − 1

2 ω̂

]
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Its dual dτ−1
χ
∗

on se(3)∗ is expressed as a matrix by the transpose of dτ−1
χ .

We approximate the reduced discrete Lagrangian on the triangle σji by

`i,jd := `d(ψd(σ
j
i )) = hl£

(
χji , ε

j
i

)
Reformulating the variation of action (14.2.7) in our particular case, we obtain

δAd(ψd) =

N−1∑
i=1

P−1∑
j=1

(
(Hj

i )−1DH`
i,j
d +

1

h

(
Ad∗

τ(hχji−1)
µji−1 − µ

j
i

)

+
1

l

(
Ad∗

τ(lεj−1
i )

νj−1
i − νji

))
· ζji

+
N−1∑
i=1

(
(H0

i )−1DH`
i,0
d +

1

h

(
Ad∗τ(hχ0

i−1) µ
0
i−1 − µ0

i

)
− 1

l
ν0
i

)
· ζ0
i

+
P−1∑
j=1

(
(Hj

0)−1DH`
0,j
d −

1

h
µj0 +

1

l

(
Ad∗

τ(lεj−1
0 )

νi−1
0 − νj0

))
· ζj0

+
N−1∑
i=0

1

l

(
Ad∗

τ(lεP−1
i )

νP−1
i

)
· ζPi +

P−1∑
j=0

1

h

(
Ad∗

τ(hχjN−1)
µjN−1

)
· ζjN

+

(
(H0

0 )−1DH`
0,0
d −

1

h
µ0

0 −
1

l
ν0

0

)
· ζ0

0 (18.1.2)

where DH`
i,j
d = 0 for any pair i, j. Applying the Hamilton principle on this Lagrangian yields the

discrete Euler-Poincaré equations (14.2.11), that is ∀i, j ∈ {1, ..., N − 1} × {1, ..., P − 1},

1

h

(
Ad∗

τ(hχji−1)
µji−1 − µ

j
i

)
+

1

l

(
Ad∗

τ(lεj−1
i )

νj−1
i − νji

)
= 0 (18.1.3)

where µji and νji are the discrete momenta in se(3)∗ associated respectively to χji and εji and expressed
by

µji =

(
dτ−1

hχji

∗
)
Dχ`

i,j
d , νji =

(
dτ−1

lεji

∗
)
Dε`

i,j
d

Computing the partial derivatives of `d gives

Dχ`
i,j
d = Jχji Dε`

i,j
d = −C(εji − E4)

where J and C are the inertial and Hook tensors defined respectively in (16.0.6) and (16.0.7). The
momenta then become

µji =

(
dτ−1

hχji

)T
Jχji , νji = −

(
dτ−1

lεji

)T
C(εji − E4) (18.1.4)

The expression of the equations on the boundary can be deduced from (18.1.2) by independence of
the variations ζji

∀i ∈ {1, ..., N − 1} 1

h

(
Ad∗τ(hχ0

i−1) µ
0
i−1 − µ0

i

)
− 1

l
ν0
i = 0 (18.1.5a)

∀j ∈ {1, ..., P − 1} − 1

h
µj0 +

1

l

(
Ad∗

τ(lεj−1
0 )

νj−1
0 − νj0

)
= 0 (18.1.5b)
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∀i ∈ {1, ..., N − 1} 1

l
Ad∗

τ(lεP−1
i )

νP−1
i = 0 (18.1.5c)

∀j ∈ {1, ..., P − 1} 1

h
Ad∗

τ(hχjN−1)
µjN−1 = 0 (18.1.5d)

1

l
Ad∗

τ(lεP−1
0 )

νP−1
0 = 0 (18.1.5e)

1

h
Ad∗τ(hχ0

N−1) µ
0
N−1 = 0 (18.1.5f)

1

h
µ0

0 +
1

l
ν0

0 = 0 (18.1.5g)

We compute the discrete Cartan forms (14.2.9) and (14.2.10)

Θ1
`d

(
Hj
i , χ

j
i , ε

j
i

)
=

〈
−1

h
µji −

1

l
νji , (H

j
i )−1dHj

i

〉
(18.1.6)

Θ2
`d

(
Hj
i , χ

j
i , ε

j
i

)
=

〈
1

h
Ad∗

τ(hχji )
µji , (H

j
i+1)−1dHj

i+1

〉
(18.1.7)

Θ3
`d

(
Hj
i , χ

j
i , ε

j
i

)
=

〈
1

l
Ad∗

τ(lεji )
νji , (H

j+1
i )−1dHj+1

i

〉
(18.1.8)

and the associated discrete momenta (15.1.1) and (15.1.2)

J1
`d

(
Hj
i , χ

j
i , ε

j
i

)
= Ad∗

(Hj
i )−1

(
−1

h
µji −

1

l
νji

)
(18.1.9)

J2
`d

(
Hj
i , χ

j
i , ε

j
i

)
=

1

h
Ad∗

(Hj
i )−1 µ

j
i (18.1.10)

J3
`d

(
Hj
i , χ

j
i , ε

j
i

)
=

1

l
Ad∗

(Hj
i )−1 ν

j
i (18.1.11)

Since the fibre is a Lie group that acts on itself and leaves `d invariant, the discrete Noether theorem (6)
applies.

18.2 Time-stepping resolution

The idea of the time resolution is to integrate the state of the beam at the next time step by integrating
the current state along velocity at the current time step, that is

gji+1 = gji τ(hχji ) (18.2.1)

For a time resolution, the state of the beam gj0 and the velocity χj0 is given at time step i = 0
for all sections of the beam j ∈ {0, ..., P − 1}. The state at time step i = 1 can then be computed
by using (18.2.1). Since the state gj0 is given, the variations on vertices (0, j) vanish for all j ∈
{0, ..., P}. The other variations being free, conditions (18.1.5a) and (18.1.5c) have to be verified,
which constitute the numerical method together with the discrete Euler-Poincaré equations (18.1.3).
Here condition (18.1.5c) is ensured by taking εP−1

i = E4 ∀i ∈ {1, ..., N − 1}. An implementation of
this numerical method is given by algorithm 1.

As did Demoures in [4], we can study the symplectic property of the time evolution of the solution.
To do so, we need to reformulate the problem in a symplectic setting. This is done by defining a
temporal discrete Lagrangian `td : GP × gP → R obtained by summing `d along space at each time
step

`td
i

:= `td(Hi, χi) =
P−1∑
j=0

`i,jd
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Algorithm 1: Time resolution algorithm

Data: ∀j ∈ {0, P − 1} : gj0, χ
j
0

Initialisation:
for j = 0 to P − 1 do

gj1 = gj0τ
(
hχj0

)
µj0 =

(
dτ−1

hχj0

∗
)
Jχj0

end
Iteration:
for i = 1 to N − 2 do

for j = 0 to P − 1 do
if j < P − 1 then

εji = 1
l τ
−1
(

(gji )
−1gj+1

i

)
else

εji = E4

end

νji = −
(

dτ−1

lεji

∗
)
C(εji − E4)

if j = 0 then

µ0
i = Ad∗τ(hχ0

i−1) µ
0
i−1 − h

l ν
0
i

else if j = P − 1 then

µP−1
i = Ad∗

τ(hχP−1
i−1 )

µP−1
i−1 + h

l Ad∗
τ(lεP−2

i )
νP−2
i

else

µji = Ad∗
τ(hχji−1)

µji−1 + h
l

(
Ad∗

τ(lεj−1
i )

νj−1
i − νji

)
end

find χji such that χji = J−1

(
dτ−1

hχji

)
µji

gji+1 = gji τ
(
hχji

)
end

end

where Hi is the vector (H0
i , ...,H

P−1
i ) and χi = (χ0

i , ..., χ
P−1
i ). The associated action map Ad is given

by

Ad(H) =
N−1∑
i=0

`td(Hi, χi)

The variation of action is expressed by

δAd(ψd) =

N−1∑
i=0

DH`
t
d(Hi, χi) · δHi +Dχ`

t
d(Hi, χi) · δχi

=

N−1∑
i=1

1

h

(
Ad∗τ(hχi−1) µi−1 − µi

)
· ζi +

1

h
µ0 · ζ0 +

1

h
Ad∗τ(hχN−1) µN−1 · ζN
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Applying the Hamilton principle yields the discrete Euler-Poincaré equations ∀i ∈ {1, ..., N − 1}
Ad∗τ(hχi−1) µi−1 = µi (18.2.2)

which are equivalent to equations (18.1.3), (18.1.5a) and (18.1.5c). We also deduce from the variation
of action the boundary conditions

µ0 = 0 (18.2.3)

Ad∗τ(hχN−1) µN−1 = 0 (18.2.4)

which are respectively equivalent to (18.1.5b), (18.1.5e), (18.1.5g) and (18.1.5d), (18.1.5f).
We define the Poincaré-Cartan forms Θ+

`td
:= Θ2

`td
and Θ−

`td
:= −Θ1

`td
on GP × gP by applying (14.2.9)

and (14.2.10)

Θ+
`td

(Hi, χi) =

〈
1

h
Ad∗τ(hχi)

µi, H
−1
i+1dHi+1

〉
=

P−1∑
j=0

Θ2
`d

(
Hj
i , χ

j
i , ε

j
i

)

Θ−
`td

(Hi, χi) = −
〈
−1

h
µi, H

−1
i dHi

〉
=

P−1∑
j=0

−Θ1
`d

(
Hj
i , χ

j
i , ε

j
i

)
−Θ3

`d

(
Hj
i , χ

j
i , ε

j
i

)
We also define the momentum map J+

`td
:= J2

`td
and J−

`td
:= −J1

`td
on GP × gP → g∗ by applying (15.1.1)

and (15.1.2)

J+
`td

(Hi, χi) =
P−1∑
j=0

J2
`d

(
Hj
i , χ

j
i , ε

j
i

)

J−
`td

(Hi, χi) =

P−1∑
j=0

−J1
`d

(
Hj
i , χ

j
i , ε

j
i

)
− J3

`d

(
Hj
i , χ

j
i , ε

j
i

)
Since the discrete local Noether theorem (6) holds for the Lagrangian `td, we get J+

`td
= J−

`td
=: J`td

and

we compute

J`td
(Hi, χi) =

P−1∑
j=0

1

l
Ad∗

(Hj
i )−1 µ

j
i (18.2.5)

Figure 11 shows the computation of the coefficients of J`td
against time. One can see that those

are preserved up to a round-off error (the precision used for the coefficients of the Lie group and
algebra elements is 10−16; see appendix C for a more extensive discussion on the mathematical objects
representation in the implementation).

In the case where a boundary condition is given at time i = 0, H0 is fixed and therefore ζ0 = 0. The
discrete Euler-Poincaré equations (18.2.2) holds since ζi is arbitrary for all i > 0, hence the discrete
flow map F`td

: GP × gP → GP × gP corresponding to the discrete Euler-Poincaré equations leaves the

symplectic form Ω`td
= dΘ+

`td
invariant

F ∗`td
Ω`td

= Ω`td
(18.2.6)

We recall from the example in section 11 that the symplecticity implies that the energy of the system
is approximately conserved; hence, integrating the discrete solution of the beam with time boundary
conditions should leave the energy approximately invariant.

We define the discrete energy E`td
: GP × gP → R as

E`td
(Hi, χi) =

P−1∑
j=0

K(χji ) + U(εji ) =

P−1∑
j=0

1

2
χji

T
Jχji +

1

2
(εji − E4)TC(εji − E4) (18.2.7)
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Figure 10 shows that the energy computed for the numerical example is indeed approximately con-
served as expected, with a relative error that seem to be of order 10−3. Figure 12 shows the same
result over a 30 minutes computation, which represent 1.8× 106 time steps of duration 0.001s.

Numerical results The numerical resolution of the Reissner beam has been computed for the
following parameters, that roughly correspond to the physical properties of a 1m long and 10cm
diameter rubber beam :

h = 0.001s; l = 0.1m; L = 1m

E = 1.0× 104Pa; ν = 0.3; ρ = 1.5× 103kg/m3; a = 0.05m
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(a) Discrete kinetic, potential and total energies.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

·10−3

t (s)

(E
(t
)
−
E
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E
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)

(b) Relative error of discrete total energy.

Figure 10 – Approximate conservation of energy over 5s.

Remark At each iteration of the main loop of algorithm (1), one need to find χ such that

µ =
(

dτ−1
hχ

∗) Jχ (18.2.8)

for a given µ. The implementation of this resolution has been done by solving the non linear 6 by
6 system of equations F (χ) = 0 with F the difference between the right and left members of equa-
tion (18.2.8) with external libraries. This non linear system has not be proved by us to have solutions
in the general case, and therefore the solving is done by supposing the existence and uniqueness of
such a solution – at least in the neighbourhood of the heuristic initial value χ0. For this reason, the
convergence of the solver strongly relies on the parameters of the problem. In particular, the relation
between the density ρ and the Young modulus E is a predominant factor of the convergence of the
solver. In the case where ρ and E are of similar magnitude, the algorithm does well and solves the
system with an arbitrary precision, but for E bigger than ρ by several orders of magnitude, the solver
is incapable to complete at some nodes, even with very rough precision for the zero solving (10−3).
For this reason, the examples presented are limited to the case where the young modulus is small
(between 103 and 105), which narrows the scope of the possible applications. More detail is given on
the implementation in appendix C.
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Figure 11 – Exact conservation of discrete momenta over 5s.
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Figure 12 – Approximate conservation of energy for a 30min computation.

18.3 Space-stepping resolution

The space resolution is done by integrating the state of the beam at the next space step along defor-
mation at the current time step, that is

gj+1
i = gji τ(lεji ) (18.3.1)

The state of a section of the beam g0
i and its velocity ε0i are given at all time steps i ∈ {0, ..., N −1}.

The state at space step j = 1 can then be computed by using (18.3.1). The numerical method
is obtain by verifying conditions (18.1.5b) and (18.1.5d) together with the discrete Euler-Poincaré
equations (18.1.3). Condition (18.1.5c) is ensured by taking χjN−1 = 0 ∀j ∈ {1, ..., P − 1}. The
obtained algorithm is the same as algorithm 1 where the role played by χ, ε and µ, ν are inverted.
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Since the implementation is very similar, it is not explicitly given here, the reader should refer to the
time algorithm and apply the appropriate modifications.

In the case where a boundary condition is given at section j = 0, ζ0
i is equal to zero for all i, hence

we are not ensured that equation (18.1.5b) is true. The discrete Euler-Poincaré equations (18.2.2)
does not hold any more, and the associated discrete flow is not ensured to be symplectic with respect
to Ω`td

; therefore, the energy may not be conserved in the case of a space boundary condition. In the
same manner, the discrete Noether theorem does not hold in time since the discrete Euler-Poincaré
equations (18.2.2) are not verified, hence the momentum map J`td

is not conserved over time any more.
The same treatment could be applied to a time integrated Lagrangian that would lead to similar

results on space symplecticity and momentum conservation, but has not been done since the ideas are
the same and the result of the conservation of a symplectic form along space and the approximative
conservation of a ”spatial” energy do not have any physically meaningful interpretation.

19 Application to sound synthesis

In this section we shall apply the results of the discrete modelling of the Reissner beam to sound
synthesis. The modelling of a string by a Reissner beam is valid in the case of large displacements as
long as the system stays in the elastic domain, which is the case in the setting of musical instruments
for example.

We shall point out that the results exposed here are not usable as is for sound synthesis since, as
pointed out by remark 18.2, the physical properties of the material, in particular ρ and E, do not
correspond to those used for a typical string (guitar, piano, violin, etc) which would be made of nylon
or steel; this is due to a problem of convergence of the solver. However, the principles presented here
are the same regardless the physical properties of the material.

19.1 Case A : plucked string

In this application, we focus on a time stepping algorithm, with homogeneous Dirichlet condition on
space boundary, and Dirichlet and Neumann conditions on time boundary. In other words, we suppose
that the string is fixed at the endpoints, and that the position and speed of the string is prescribed
at t = 0. We choose the following conditions

H0
i = (Id3, (0, 0, 0)) ∀i ∈ {1, ..., N}

HP
i = (Id3, (L, 0, 0)) ∀i ∈ {1, ..., N}
χj0 = 0se(3) ∀j ∈ {1, ..., P}

and we prescribe the position of the beam H0 at t = 0 by

O E1

E3

LαL

βL

s

H(0, s)
e1

e3

where α ∈]0, 1[ and β ≥ 0. There is no translation along E2 component, nor any rotation on another
axis than E2, hence the beam should stay in the plane spanned by E1 and E3 at every time t. Expressed
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explicitly, we have for H0 :

Ĥ(0, s) =


cos(θa) 0 sin(θa) s

0 1 0 0
− sin(θa) 0 cos(θa) β

s
α

0 0 0 1

 if s ∈]0, αL[

Ĥ(0, s) =


cos(θb) 0 sin(θb) s

0 1 0 0

− sin(θb) 0 cos(θb) β
(
L− s−αL

1−α

)
0 0 0 1

 if s ∈]αL,L[

where θa = −α/
√
α2 + β2 and θb = (1− α)/

√
(1− α)2 + β2. This type of configuration corresponds

to an excitation of the string obtained by pulling it at a unique point and releasing it at t = 0 without
any initial speed.

To perform a time stepping integration, the algorithm (1) has to be slightly modified in order to
take into account the homogeneous Dirichlet in space boundary conditions. Since H0

i and HP
i are

prescribed and constant for all i, variations are null on the corresponding nodes, hence we do not
need to verify equations (18.1.5a) nor (18.1.5c), and since the position is prescribed at t = 0 we do
not need to verify (18.1.5b), (18.1.5e) and (18.1.5g) either. Finally, we are just left with the discrete
Euler-Poincaré equations (18.1.3).
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Figure 13 – Time evolution of the string over a 1s time period.

The result of the iteration of the algorithm with the previous boundary conditions is given for the
following parameters :

h = 0.001s; l = 0.05m; L = 1m

E = 5.0× 104Pa; ν = 0.35; ρ = 1.0× 103kg.m−3; a = 0.01m;

α = 1/3; β = 0.01;
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Figure 14 – Amplitude of the spectral analysis of the vibration of the string.

The time evolution of the string is represented in figure 13. One can clearly see the right and
left propagating waves that reflect on the endpoints. The spectral analysis of 30s of signal given in
figure 14 shows that the signal has well-defined partials, but is clearly not harmonic. This is consistent
with the fact that the system is intrinsically non linear.

19.2 Case B : hammered string

We take here the same boundary conditions, but with a different initial value. We suppose the string
is at the equilibrum at t < 0, and we impose the initial velocity; we obtain

H0
i = (Id3, (0, 0, 0)) ∀i ∈ {1, ..., N}

HP
i = (Id3, (L, 0, 0)) ∀i ∈ {1, ..., N}
Hj

0 = (Id3, (0, 0, 0)) ∀j ∈ {1, ..., P}

where the velocity of the beam χ0 at t = 0 is given by

O
E1

E3

L

αL

δL

βL/h
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where α ∈]0, 1[, β ≥ 0 and δ ∈]0, α[. There is again no translation along E2 component, nor any
rotation, hence the beam should stay in the plane spanned by E1 and E3 at every time t. The explicit
expression for χ0 is

χ(0, s) = 0se(3) if s ∈
]
0, (α− δ

2
)L

[
∪
]
(α+

δ

2
)L,L

[
χ(0, s) =

(
0, 0, 0, 0, 0,−βL

h
cos

(
π
s/L− α

δ

))
if s ∈ [(α− δ

2
)L, (α+

δ

2
)L]

This type of configuration corresponds to an excitation of the string obtained by hammering it, as for
a piano for example.
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Figure 15 – Time evolution of the string over a 1s time period.

The result of the iteration of the algorithm is given for the same physical properties. Here we chose

α = 1/3; β = 3.5× 10−4; δ = 0.3;

We observe on figure 15 the left and right propagating waves again, and figure 16 shows that the
first and more prominent frequency of the signal is the same as for figure 14, which is consistent with
the fact that the physical properties of the system are unchanged between the two examples; however,
the partials are different.
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Figure 16 – Amplitude of the spectral analysis of the vibration of the string.

Part VIII

Conclusion

20 Summary

After a state of the art on the Lagrangian multisymplectic theory, we proposed a synthetic and
general method to design structure preserving multisymplectic integrators. We then investigated the
case where the configuration space of the physical system is a Lie group, and introduced a way to
build Lie group integrators in a particular choice of base space discretization. Finally, we applied this
formalism in the 2-dimensional case of the Reissner beam, and proposed some applications in sound
synthesis by modelling a vibrating string by a Reissner beam.

21 Perspectives

Starting from this report, several perspectives can be outlined :

– Because of their long time behaviour, the methods exposed in this report are of particular interest
for HPC. The challenges faced by their implementation for large scale computing are to obtain
a massively parallel implementation of the algorithms, to integrate them together with the Port
Hamiltonian System in order to divide the physical system in parallel I/O subsystems, and to
make efficient Lie groups computations.

– The methods we studied are only defined for conservative, force and torque free systems. An
important point for concrete applications would be to develop an algorithm that takes forces
into account. This has already been done in particular cases, for example on a 2-D base space
case with a potential by Demoures [4].
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– On a smaller scale, our implementation of the Reissner beam shows promising results, but is
currently unable to perform simulations interesting for musical sound synthesis, and its computa-
tion time makes it unable to run in real time. This problem could be overcome by implementing
a more efficient solving of the non-linear system. Interesting sound synthesis applications would
also need the modelling of interaction with other systems and dissipation effects, which require
to modify the current model that does not take them into account.
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A SE(3) memento

In the matrix representation, elements Ĥ of the group (SE(3),×) are represented by

Ĥ =

[
R r
0 1

]
∈M4×4(R)

where R ∈M3×3(R) is a rotation matrix (that can be considered as an element of the three dimensional
rotation group SO(3)) and r ∈ R3 is a translation vector. Since the representation of R in a vector
form is not unique and depends on the choice of a particular set of Euler angles, we never explicitly
use this representation, and stick with the matrix representation; the same remark holds for Ĥ.

The product of two elements of the group Ĥ1 and Ĥ2 is given by

Ĥ1 × Ĥ2 =

[
R1R2 R1r2 + r1

0 1

]
and the invert of an element Ĥ is given by

Ĥ−1 =

[
RT −RT r
0 1

]
In the matrix representation, elements ξ of the Lie algebra (se(3),+) are represented by

χ̂ =

[
ω̂ γ
0 0

]
∈M4×4(R)

where ω̂ ∈ M3×3(R) is an element of so(3) and γ ∈ R3. Here ω̂ is a skew symmetric matrix, hence
can be written in the form

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 =: ω · J

where we define J := (J1, J2, J3) by

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 ,
Here ω is the vector representation of the element of so(3), and its matrix representation is obtained
through the hat map operation ·̂ : R3 → M3×3(R) such that ω̂ = ω · J . We define the vector
representation of se(3) elements by

χ = (ω, γ) ∈ R6.

The composition of two elements χ1 and χ2 of the algebra is given by

χ1 + χ2 = (ω1 + ω2, γ1 + γ2)

and the inverse of an element χ by

χ−1 = −χ = (−ω,−γ)

We also give the expressions in vector form of the operators

Ad :SE(3)× se(3)→ se(3)
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Ad∗ :SE(3)× se(3)∗ → se(3)∗

where Ad∗ is defined by the pairing 〈·, ·〉 : se(3)∗ × se(3)→ R

〈Ad∗ ·, ·〉 = 〈·,Ad ·〉

We obtain for H = (R, r), χ = (ω, γ) and π = (µ, β) :

AdH χ = (Rω,−Rω × r +Rγ)

Ad∗H−1 π = (Rµ+ r ×Rβ,Rβ)
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B Proofs and computations

B.1 Proof of proposition (2)

Let Z ∈ χ(E) be an arbitrary vector field with Z = αµ~∂µ + βA~∂A and let p̄ = (xµ, yA, vAµ ) be a
point of J1E denoted in a local coordinate system, for each p̄ is associated the couple (p, (Xµ|p)) of
p point of E and (Xµ|p) a basis of TpE given by p = π1(p̄) and ∀µ ∈ {1, ..., n + 1}, θp̄(Xµ|p) = 0

and dxν(Xµ) = δνµ. With Xµ defined in that manner, it can be written Xµ = ~∂µ + vAµ
~∂A (remark:

∀µ ∈ {1, ..., n+ 1}, Xµ ∈ χ(E) is a vector field, defined at point p ∈ E by the vector Xµ|p).
Consider a one-parameter transformation group τZε along Z parametrized by ε, let pε = τZε (p) be

a point of E and Xε
µ|pε = Tpτ

Z
ε (Xµ) a vector of TpεE, and construct p̄ε such that π1(p̄ε) = pε and

∀µ ∈ {1, ..., n+ 1}, θp̄ε(X
ε
µ|pε) = 0; then j1Z is defined at point p̄ by

j1Z(p̄) = lim
ε→0

p̄ε − p̄

ε
= αµ~∂µ + βA~∂A + lim

ε→0

(vε)
A
µ − vAµ
ε

with dyA(Xε
µ|pε) = (vε)

A
ν dxν(Xε

µ|pε).
We introduce the Lie derivative of Xµ at point p with respect to Z

LZXµ(p) = [Z,Xµ]p = lim
ε→0

Tpετ
Z
−ε(Xµ)−Xµ|p

ε

Taking the Lie derivative of Z at point pε with respect to Xµ, Xε
µ|pε can be expressed as

Xε
µ|pε = Xµ|pε + ε [Xµ, Z]pε +O(ε2)

which yields, Xε
µ being normalised along ~∂ν ,

(vε)
A
µ − vAµ = εθAp̄ε

(
[Xµ, Z]pε

)
+O(ε2)

From this comes

dvAµ (j1Z) = lim
ε→0

(vε)
A
µ − vAµ
ε

= θAp̄ε

(
[Xµ, Z]pε

)

We compute the Lie bracket for any function f

[Xµ, Z]f = Xµ

(
αν~∂ν + βA~∂A

)
f − Z

(
~∂µ + vBµ

~∂B

)
f

=
(
~∂µ + vBµ

~∂B

)(
αν

∂f

∂xν
+ βA

∂f

∂yA

)
−
(
αν~∂ν + βA~∂A

)( ∂f

∂xµ
+ vBµ

∂f

∂yB

)
=

(
∂αν
∂xµ

+ vBµ
∂αν
∂yB

)
∂f

∂xν
+

(
∂βA

∂xµ
+ vAµ

∂βA

∂yB

)
∂f

∂yA

This yields

γAµ = θAp̄ε

(
[Xµ, Z]pε

)
=

(
∂βA

∂xµ
+ vAµ

∂βA

∂yB

)
− vAν

(
∂αν
∂xµ

+ vBµ
∂αν
∂yB

)
=

∂

∂xµ
(
βA − vAν αν

)
+ vBµ

∂

∂yB
(
βA − vAν αν

)
=
∂ζA

∂xµ
+ vBµ

∂ζA

∂yB

where ζA = βA − vAν αA, which proves the proposition.



57

B.2 Computation of (6.3.2)

In order to find the stationary sections of the action map A, one need to look for the sections φ that
realise

δA(φ) = lim
ε→0

A(φε)−A(φ)

ε
= 0

where φε is a variation of φ given by a one-parameter transformation group associated to an arbitrary
vector field Z ∈ χ(E).

Let τM : M → M be the diffeomorphism induced by τZε so that τZε ◦ φ = φε ◦ τM ; the following
diagram commutes :

M E j1E

M E j1E

φ

j1φ

π π1

φε

j1φε

π π1

τM τZε j1τZε

Then for any φ : M ⊃ U → E, the variation of action δA evaluated on φ varying along Z is given by

δA = lim
ε→0

1

ε

(∫
τM (U)

(j1φε)
∗L −

∫
U

(j1φ)∗L
)

= lim
ε→0

1

ε

(∫
τM (U)

(j1τZε ◦ j1φ ◦ τ−1
M )∗L −

∫
U

(j1φ)∗L
)

= lim
ε→0

1

ε

(∫
τM (U)

(τ−1
M )∗(j1φ)∗(j1τZε )∗L −

∫
U

(j1φ)∗L
)

= lim
ε→0

1

ε

(∫
U

(j1φ)∗(j1τZε )∗L −
∫
U

(j1φ)∗L
)

=

∫
U

(j1φ)∗
(

lim
ε→0

1

ε

[
(j1τZε )∗L − L

])
=

∫
U

(j1φ)∗Lj1ZL

=

∫
U

(j1φ)∗d(j1ZyL) +

∫
U

(j1φ)∗j1ZydL

=

∫
∂U

(j1φ)∗(j1ZyL) +

∫
U

(j1φ)∗j1ZydL (B.2.1)

The last line has been obtained thanks to the Cartan formula for Lie derivative LXf = d(Xyf)+Xydf
and the Stokes theorem

∫
U df =

∫
∂U f .

In order to obtain the first integral in the expression (B.2.1), we need to introduce some useful
notation

dnxµ = ~∂µyω = (−1)µ+1dx1 ∧ ... ∧ dxµ−1 ∧ dxµ+1 ∧ ... ∧ dxn+1

dxν ∧ dnxµ = ωδνµ

Moreover, notice that dxµ∧ω = 0, hence dyA∧ω = θA∧ω, and let us define ζA = θA(j1Z) = βA−vAµ αµ.
We compute j1ZydL :

j1ZydL = j1Zy(d£ ∧ ω)
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= j1Zy

(
∂£

∂yA
θA ∧ ω +

∂£

∂vAµ
dvAµ ∧ ω

)
=

∂£

∂yA
(
θA(j1Z)ω − θA ∧ ω(j1Z)

)
+
∂£

∂vAµ

(
dvAµ (j1Z)ω − dvAµ ∧ ω(j1Z)

)
=

∂£

∂yA
(
ζAω − θA ∧ αµdnxµ

)
+
∂£

∂vAµ

((
∂ζA

∂xµ
+ vBµ

∂ζA

∂yB

)
ω − dvAµ ∧ αλdnxλ

)
We have

∂ζA

∂xµ
ω =

∂ζA

∂xν
δνµω =

∂ζA

∂xν
dxν ∧ dnxµ =

(
dζA − ∂ζA

∂yB
dyB − ∂ζA

∂vBλ
dvBλ

)
∧ dnxµ

=

(
dζA − ∂ζA

∂yB
dyB + αλdvBλ

)
∧ dnxµ

and

∂£

∂vAµ
dζA ∧ dnxµ = d

(
ζA

∂£

∂vAµ
dnxµ

)
− ζAd

(
∂£

∂vAµ

)
∧ dnxµ

Using the equality ω = 1
n+1dxµ ∧ dnxµ, this yields

j1ZydL =
∂£

∂yA

(
ζA

1

n+ 1
dxµ − αµθA

)
∧ dnxµ +

∂£

∂vAµ

(
αλdvBλ −

∂ζA

∂yB
dyB

)
∧ dnxµ

+ d

(
ζA

∂£

∂vAµ
dnxµ

)
− ζAd

(
∂£

∂vAµ

)
∧ dnxµ +

∂£

∂vAµ

(
vBµ

∂ζA

∂yB
dxλ − αλdvAµ

)
∧ dnxλ

= d

(
ζA

∂£

∂vAµ
dnxµ

)
+ ζA

(
1

n+ 1

∂£

∂yA
dxµ − d

(
∂£

∂vAµ

))
∧ dnxµ

−
(
∂£

∂vAµ

∂ζA

∂yB
+ αµ

∂£

∂yB

)
θB ∧ dnxµ + αλ

∂£

∂vAµ

(
dvBλ ∧ dnxµ − dvAµ ∧ dnxλ

)
By construction of j1φ, (j1φ)∗θB = 0, implying

(j1φ)∗
((

∂£

∂vAµ

∂ζA

∂yB
+ αµ

∂£

∂yB

)
θB ∧ dnxµ

)
= 0

Furthermore

(j1φ)∗
(
dvBλ ∧ dnxµ

)
=
(
(j1φ)∗dvBλ

)
∧
(
(j1φ)∗dnxµ

)
= d

(
(j1φ)∗vBλ

)
∧ dnxµ

= d

(
∂φA

∂xλ

)
∧ dnxµ =

∂

∂xµ

(
∂φA

∂xλ

)
dxµ ∧ dnxµ

=
∂2φA

∂xµ∂xλ
ω

Hence

(j1φ)∗
(
dvBλ ∧ dnxµ − dvBµ ∧ dnxλ

)
=

(
∂2φA

∂xµ∂xλ
− ∂2φA

∂xλ∂xµ

)
ω = 0

since φ ∈ C∞(U , E).
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Using those equalities, and applying once again the Stokes theorem, the variation of action can now
be written

δA =

∫
∂U

(j1φ)∗
(
j1ZyL+ ζA

∂£

∂vAµ
dnxµ

)
−
∫
U

(j1φ)∗
(
ζA
(

d

(
∂£

∂vAµ

)
− 1

n+ 1

∂£

∂yA
dxµ

)
∧ dnxµ

)
Notice that ζA = j1ZyθA and

(j1φ)∗((j1ZyθA) ∧ dnxµ) = (j1φ)∗(j1Zy(θA ∧ dxµ))

since j1φ is holonomic, this yields that the integral along ∂U in the expression of δA can be written∫
∂U

(j1φ)∗
(
j1Zy

(
∂£

∂vAµ
θA ∧ dnxµ + L

))
The expression of the variation of action is finally

δA =

∫
∂U

(j1φ)∗
(
j1Zy

(
∂£

∂vAµ
θA ∧ dnxµ + L

))
−
∫
U

(j1φ)∗
(
ζA
(

d

(
∂£

∂vAµ

)
− 1

n+ 1

∂£

∂yA
dxµ

)
∧ dnxµ

)

B.3 Solutions of the pendulum system

.
We introduce the notation ω0 =

√
g
l . Writing E as 2mglk2, we can discuss the expression of the

solutions with respect to k ∈ R+ thanks to the Jacobi elliptic functions for any solution starting at
θ(0) = 0. Solution starting at another position can be deduced by inverting the function to obtain the
necessary time translation.

k < 1 In this case, the pendulum oscillates around the position θ = 0.

θ(t) = sgn
(
sn(ω0t, k

2) dn(ω0t, k
2)
)

arccos
(
1− 2k2 sn2(ω0t, k

2)
)

θ̇(t) = 2kω0 cn(ω0t, k
2)

k = 1 This is the unstable limit case. The pendulum takes an infinite amount of time to reach the
position θ = π.

θ(t) = 4 arctan
(
eω0t

)
− π

θ̇(t) =
2ω0

cosh (ω0t)

k > 1 In this case the pendulum spins around the origin in circles.

θ(t) = sgn

(
sn

(
kω0t,

1

k2

)
cn

(
kω0t,

1

k2

))
arccos

(
1 + 2k2

(
dn2

(
kω0t,

1

k2

)
− 1

))
θ̇(t) = 2kω0 dn

(
kω0t,

1

k2

)
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B.4 Computation of (12.2.1)

We here introduce a result that will be useful for the computing of the variation of action.

Proposition 7. The Maurer-Cartan 1-form is solution of the Maurer-Cartan equation

dλ+ [λ, λ] = 0

Proof. Let X,Y be two arbitrary vector fields on G,

dλ(X,Y ) = LXλ(Y )− LY λ(X)− λ([X,Y ]).

In the case of two left invariant vector fields, LXλ(Y ) = LY λ(X) = 0 since λA is the dual basis of a
left invariant basis. Moreover, in that case we also have λ([X,Y ]) = [λ(X), λ(Y )], yielding

dλ([X,Y ]) + [λ(X), λ(Y )] = 0

Since dλ is a 2-form, and the previous equality is true for any pair of left invariant vector fields, it is
also true for any pair of vector fields, leading to

dλ+ [λ, λ] = 0

Let us define Ξ = ϑA(j1Z) = βA − ξAµ αµ so that ω(j1Z) = αµdnxµ and compute j1Zyd` :

j1Zyd` = j1Zy(dl ∧ ω) = j1Zy

(
∂l

∂yA
TAB ϑ

B ∧ ω +
∂l

∂ξAµ
dξAµ ∧ ω

)
=

∂l

∂yA
TAB
(
ϑB(j1Z)ω − ϑB ∧ ω(j1Z)

)
+

∂l

∂ξAµ

(
dξAµ (j1Z)ω − dξAµ ∧ ω(j1Z)

)
=

∂l

∂yA
TAB
(
ΞBω − αµϑB ∧ dnxµ

)
+

∂l

∂ξAµ

((
∂ΞA

∂xµ
+ ξCµ T

B
C

∂ΞA

∂yB
+ [ξµ, β]A

)
ω − ανdξAν ∧ dnxν

)
We have

∂ΞA

∂xµ
ω =

∂ΞA

∂xν
δνµω =

∂ΞA

∂xν
dxν ∧ dnxµ =

(
dΞA − ∂ΞA

∂yB
TBC λ

C − ∂ΞA

∂ξBν
dξBν

)
∧ dnxµ

= dΞA ∧ dnxµ −
∂ΞA

∂yB
TBC λ

C ∧ dnxµ + ανdξAν ∧ dnxµ

and
∂l

∂ξAµ
dΞA ∧ dxµ = d

(
ΞA

∂l

∂ξAµ
dnxµ

)
− ΞAd

(
∂l

∂ξAµ

)
∧ dnxµ.

Moreover,

∂l

∂ξAµ
[ξµ, β]A =

∂l

∂ξAµ
[ξµ,Ξ + ξνα

ν ]A =
∂l

∂ξAµ
αν [ξµ, ξν ]A +

〈
∂l

∂ξµ
, [ξµ,Ξ]

〉
=

∂l

∂ξAµ
αν [ξµ, ξν ]A +

〈
ad∗ξµ

∂l

∂ξµ
,Ξ

〉
=

∂l

∂ξAµ
αν [ξµ, ξν ]A + ΞA

(
ad∗ξµ

∂l

∂ξµ

)
A
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where the co-adjoint operator ad∗ is defined by 〈π, [α, β]〉 = 〈β, ad∗α π〉. This yields

j1Zyd` = ΞA
∂l

∂yB
TBA ω − TBC

∂l

∂yB
αµϑC ∧ dnxµ

+
∂l

∂ξAµ

(
dΞA ∧ dnxµ −

∂ΞA

∂yb
TBC λ

C ∧ dnxµ + ανdξAν ∧ dnxµ

)
+ TBC

∂l

∂ξAµ

∂ΞA

∂yB
ξCµ dxµ ∧ dnxµ +

∂l

∂ξAµ
[ξµ, β]Aω − ∂l

∂ξAµ
ανdξAµ ∧ dnxν

= d

(
ΞA

∂l

∂ξAµ
dnxµ

)
− ΞAd

(
∂l

∂ξAµ

)
∧ dnxµ + ΞATBA

∂l

∂yB
ω + ΞA

(
ad∗ξµ

∂l

∂ξµ

)
A

ω

+ TBC

(
∂l

∂ξAµ

∂ΞA

∂yB
(λC − ϑC)− ∂l

∂ξAµ

∂ΞA

∂yB
λC − ∂l

∂yB
ανϑC

)
∧ dnxµ

+
∂l

∂ξAµ
αν
(
dξAν ∧ dnxµ − dξAµ ∧ dnxν + [ξµ, ξν ]Aω

)
= d

(
ΞA

∂l

∂ξAµ
dnxµ

)
−
(

ΞA
(

d

(
∂l

∂ξAµ

)
∧ dnxµ −

(
ad∗ξν

∂l

∂ξν

)
A

ω − TBA
∂l

∂yB
ω

))
− TBC

(
∂l

∂ξAµ

∂ΞA

∂yB
+

∂l

∂yB
αµ
)
ϑC ∧ dnxµ

+
∂l

∂ξAµ
αν
(
dξAν ∧ dnxµ − dξAµ ∧ dnxν + [ξµ, ξν ]Aω

)
By construction, (j1φ)∗ϑC = 0, implying

(j1φ)∗
(
TBC

(
∂l

∂ξAµ

∂ΞA

∂yB
+

∂l

∂yB
αµ
)
ϑC ∧ dnxµ

)
= 0.

We also have

φ∗dλ(~∂µ, ~∂ν) = (j1φ)∗d(ξηdx
η)(~∂µ, ~∂ν) = d((j1φ)∗ξη) ∧ dxη(~∂µ, ~∂µ)

=
∂((j1φ)∗ξη)

∂xρ
dxρ ∧ dxη(~∂µ, ~∂ν) =

∂((j1φ)∗ξµ)

∂xµ
− ∂((j1φ)∗ξν

∂ξν

and, since by proposition (7) λ is solution of the Maurer-Cartan equation,

φ∗dλ(~∂µ, ~∂ν) = −[φ∗λ, φ∗λ](~∂µ, ~∂ν)

= −[(j1φ)∗ξµ, (j1φ)∗ξν ]

Therefore, the last term in the expression of j1Zyd` is cancelled when evaluated along (j1φ), that is

(j1φ)∗
(
dξAν ∧ dnxµ − dξAµ ∧ dnxν + [ξµ, ξν ]Aω

)
=
∂((j1φ)∗ξν)A

∂xµ
dxµ ∧ dnxµ −

∂((j1φ)∗ξµ)A

∂xν
dxν ∧ dnxν + [(j1φ)∗ξµ, (j1φ)∗ξν ]Aω

=

((
∂((j1φ)∗ξν)

∂xµ
− ∂((j1φ)∗ξµ)

∂xν

)
− [(j1φ)∗ξµ, (j1φ)∗ξν ]

)A
ω

= 0

Hence,

(j1φ)∗j1Zyd` = (j1φ)∗
(

d

(
ΞA

∂l

∂ξAµ
dnxµ

)
−
(

ΞA
(

d

(
∂l

∂ξAµ

)
∧ dnxµ −

(
ad∗ξν

∂l

∂ξν

)
A

ω − TBA
∂l

∂yB
ω

)))
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Applying the Stoke’s theorem again in the second integral of the variation of action, δA can now be
written

δA =

∫
∂U

(j1φ)∗
(
j1Zy`+ ΞA

∂l

∂ξAµ
dnxµ

)
−
∫
U

(j1φ)∗
(

ΞA
(

d

(
∂l

∂ξAµ

)
∧ dnxµ −

(
ad∗ξν

∂l

∂ξν

)
A

ω − TBA
∂l

∂yB
ω

))
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C Implementation of the Reissner beam integrator

C++ implementation A first implementation of the algorithms of part VII has been done in C++,
in order to take advantage of the object-oriented paradigm.

The main.cpp file implements the time and space resolution with the same level of abstraction as
the one of algorithm1. To do so, implementation of classes Group, Algebra and Operator must be pro-
vided. In the case of the Reissner beam, the template classes Lie::SE3::Group<T>, Lie::SE3::Algebra<T>
and Lie::SE3::Operator<T> have been implemented, where T is the template type of variables han-
dled by the group; here we use R, typically represented by float or double types. The solving of χ or
ε (depending on the type of integrator) has been done by using GSL (GNU Scientific Library) which
provides efficient general purpose solvers implemented in C.

The computation of the result is currently not fast enough to be done in real-time for a ”good
enough” time step (for example 44100Hz), however no particular optimisations has been done yet,
that could significantly improve the computation speed. Without going to much into details, one could
mention several ideas to improve the implementation :

– The group elements have been implemented using 3× 3 rotation matrices, but taking advantage
of the quaternion representation could diminish the number of stored coefficients from 9 to 4,
and get rid of the matrix products by replacing it by the faster quaternion multiplication.

– Some specific classes and representation of the Eigen C++ library, used to implement matrices
and their operations, could also improve the speed of computation, in particular in terms of
matrix products. The error order of the solving of χ or ε could also be a parameter on which
one could find a compromise between precision and speed.

– The re-usability of the main algorithm, achieved by using template classes, may be to some
extent heavier than a direct implementation of the main algorithm for each specific Lie group,
and thus slower.

Even if no use has been made of the re-usability of the main algorithm in the case of other group,
algebra and operators, one can imagine the interest of such a design to offer an easy implementation
of the same algorithm for other 2-dimensional base space problems. Instead of having to write the
entire algorithm for each problem, the user would only need to provide valid implementations of the
abstract classes related to the Lie group he intends to use the algorithm on, and change the following
type aliases :

using Group = Lie::SE3::Group<double>;

using Algebra = Lie::SE3::Algebra<double>;

using Operator = Lie::SE3::Operator<double>;

This implementation being a prototype used to check the validity of the numerical methods on a specific
case, here is of course not the place to discuss extensively of the problematic of the implementation
of a library; nonetheless, it gives a hint of a possible design of implementation of the methods that
could be pursued in the context of a more ambitious work.

Here is the help display of the reissner program implementing the algorithm :

NAME

reissner - Computes the position of a Reissner beam on the given 2D space-

time set

SYNOPSIS

reissner [OPTION]
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DESCRIPTION

-o, --output [FILE]

Output file in which to write. If none given, results are output on

standard output

-i, --time-integrator

Use a time integration algorithm to compute the result (default)

-I, --space-integrator

Use a space integration algorithm to compute the result

-T, --time-number [INTEGER]

Uses the given value as the number of time steps, default 6001

-S, --space-number [INTEGER]

Uses the given value as the number of space steps, default 11

-t, --time-step [FLOAT]

Uses the given value as a time step, default 0.0005

-s, --space-step [FLOAT]

Uses the given value as a space step, default 0.1

--time-resample [INTEGER]

Resamples the output in time with the given number of samples

--space-resample [INTEGER]

Resamples the output in space with the given number of samples

--young [FLOAT]

Young modulus value, default 5000

--poisson [FLOAT]

Poisson ratio value, default 0.35

--density [FLOAT]

Density of the material, default 1000

--radius [FLOAT]

Radius of the circular cross-section of the beam, default 0.1

-v, --verbose

Verbose output

-h, --help

Prints this message and exits

MATLAB implementation Since the solver used in the C++ implementation did not converge
(see remark 18.2), the algorithm has been reimplemented with MATLAB to use the larger and more
high-level library of solvers available. However, the resulting algorithm does not perform significantly
better to solve the non linear system, and runs much slower than the C++ implementation.
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[1] Joël Bensoam and Florie-Anne Baugé. Multisymplectic geometry and covariant formalism for
mechanical systems with a Lie group as configuration space: application to the Reissner beam.
2017.
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