
P I T C H S H I F T I N G : A M A C H I N E L E A R N I N G M E T H O D F O R
M U S I C T R A N S F O R M AT I O N

charles brazier

supervised by hendrik purwins

Sound and Music Computing Group
Aalborg University Copenhagen

Copenhagen

August 19, 2017

Charles Brazier: Pitch Shifting : a Machine Learning method for music
transformation,© August 19, 2017

A B S T R A C T

In music, sound transformations can be done thanks to signal pro-
cessing algorithms. However these handcrafted methods are very de-
pendent on their input. In a more general context, Machine Learning
algorithms propose to learn abstract mathematical functions which
reproduce a sound transformation. Autoregressive models have al-
ready shown their efficiency in the field of image generation and
are good candidates to automate sound transformations thanks to
a simple and stable training process. These end-to-end algorithms
allow to take raw audio as input and to give raw audio as output.
Among them Wavenet and SampleRNN are two good candidates for
this problematic. One of them, Wavenet, has recently been introduced
as a very successful methods in multitude of application domains :
text-to-speech dependent on individual f0 curves and speaker charac-
teristics, speech recognition, speech enhancement, and music genera-
tion. It has the particularity to be able to be conditioned by a global
bias which can represent a pitch shifting interval. Focused on this net-
work, a relevant training dataset is built step by step, from sine waves
to real sounds, to produce a pitch shifting transformation. Showing
difficulties to keep long term dependencies between samples due to
a small receptive field, a solution using an autoencoder is presented.

R É S U M É

En musique, les transformations sonores peuvent être réalisées au
moyen d’algorithmes de traitement de signal. Cependant ces tech-
niques artisanales sont trop dépendantes de leur entrée. Dans un
contexte plus général, des algorithmes de Machine Learning proposent
d’apprendre des fonctions mathématiques abstraites qui reproduisent
une transformation sonore. Les modèles autorégressifs ont déjà mon-
tré leur efficacité dans le domaine de la génération d’image et sont de
bons candidats pour automatiser des transformations sonores grâce
à un procédé d’entrainement simple mais surtout stable. Ces algo-
rithmes appelés bout-à-bout permettent de recevoir directement de
l’audio en entrée et de générer de l’audio. Parmi eux, les réseaux
Wavenet et SampleRNN font de bons candidats pour cette probléma-
tique. L’un d’entre eux, Wavenet, a été introduit récemment comme

iii

être une méthode brillante dans de nombreux domaines : la généra-
tion de voix à partir d’un texte en fonction de la fréquence fondamen-
tale et des caractéristiques du locuteur, la reconnaissance vocale, la gé-
nération de voix de qualité et la génération de musique. En se concen-
trant particulièrement sur ce réseau, un dataset d’entraînement perti-
nent est construit étape par étape, à partir de sinusoïdes jusqu’à des
sons réels, dans le but de produire des transformations de change-
ment de hauteur. Faisant apparaître des difficultées à conserver des
dépendances à long terme entre les échantillons à cause d’un champ
réceptif trop faible, une solution utilisant un autoencodeur est pré-
senté.

K E Y W O R D S

End-to-end algorithm, Machine Learning, Music transformation, Pitch
shifting, Wavenet.

iv

A C K N O W L E D G M E N T S

I want to thank Hendrik Purwins, my supervisor, and Stefania Serafin
for making me welcome in the Sound and Music Computing team.
They contributed to the good run of my internship.

I want also thank Andrea, Alex, Jose Luis, Jorge and Mattia for
these great discussions about work and other things at the university.
I thank warmly Lui for the same interest for music and for his MPC
he lends me during this six months. Thank you also to discover me
Denmark and its culture. Finally I want to thank Yassine to be with
me as a worker at the university during all the summer.

v

C O N T E N T S

1 introduction 7

i state of art 8

2 state of art 10

2.1 Presentation of the host organization 10

2.2 State of the art 10

2.2.1 Motivation 11

2.2.2 Learning automatically general sound transfor-
mation 13

2.2.3 Feature extraction with long range dependen-
cies 15

2.2.4 Wavenet : an end-to-end algorithm to create
music 16

ii methods 18

3 methods 20

3.1 End-to-end networks 20

3.1.1 Wavenet 20

3.1.2 SampleRNN 24

3.1.3 First experiences with existing networks 26

3.1.4 From PixelCNN to Wavenet 28

iii learning the pitch shifting function 34

4 learning the pitch shifting function 36

4.1 Dataset construction 36

4.1.1 Pitch shifting 36

4.1.2 Learning different amplitudes 38

4.1.3 Learning different frequencies 40

4.1.4 Dataset generalization 42

4.2 NSynth : a way to save several sound features 44

4.2.1 The network 45

4.2.2 Experiments 47

5 conclusion 50

Bibliography 51

6

1
I N T R O D U C T I O N

This work is the fruit of six months of working at Aalborg University
of Copenhagen. It represents the end-of-year internship of the MSc
ATIAM.

The goal of this internship is, by exploring Machine Learning meth-
ods, to be able to automate sound transformations and specially pitch-
shifting. Thus the network has to learn the mathematical function
allowing to have an overall point of view.

Firstly, a state of the art will be exposed to present different exist-
ing end-to-end algorithms which can be interesting to use for this
problematic. Then we will modify the Wavenet network to be able to
learn a pitch-shifting transformation. Finally we will show different
approaches to built a strong training dataset and we will expose a
recent method, NSynth, which could solve several difficulties.

7

Part I

S TAT E O F A RT

2
S TAT E O F A RT

2.1 presentation of the host organization

The Aalborg University (AAU) of Copenhagen is one of the three
universities in the AAU group with Aalborg and Esbjerg. It hosts
3.300 students into fourteen different research departments, propos-
ing 9 bachelor’s and 24 master’s programs. Among these depart-
ments, there is the Department of Architecture, Design, and Media
technology where I was into but there are many other fields such
as building research, business and management, chemistry and bio-
science, clinical medicine, communication and psychology, culture
and global studies, development and planning, electronic systems,
learning and philosophy, materials and production, mathematical sci-
ences, political science, and sociology and social work.

The Department of Architecture, Design, and Media technology
holds 140 researchers and PhD students and participates in a long
range of national and international projects. At Media Technology,
projects are focused on a mix between technology and creativity, try-
ing to understand how these technologies influence human percep-
tion and interaction by applying them in solving real world prob-
lems. Interactive sound and audio technology are two research fields
present into this department, combining in the Sound and Music
Computing team.

The Sound and Music Computing (SMC) research group addresses
challenges in the current generation of audio and music technologies
such as sound synthesis, analysis and processing, music perception
and cognition, music expression, music informatics and intelligence.
The issue of this group is to develop technologies for users and also a
wide variety of industries, from entertainment to education to social
services. With me, there were four other master thesis students work-
ing in their projects, two also in Machine Learning applied to music,
one in sound synthesis for games and one in sound design.

2.2 state of the art

Among the different Machine Learning subjects of other students at
the university, there is a subject concerning timbre modification using
Variational AutoEncoders (VAE), a subject concerning sound genera-
tion with a Generative Adversarial Network (GAN), and my subject
concerning music transformation. These problematics introduce dif-

10

2.2 state of the art 11

ferent approaches which currently dominate the field of image gener-
ation and which can be applied for music generation.

VAEs are generative models which allow to learn a representation
of data which is sufficient to reproduce inputs. The network is com-
posed of a bottleneck to reduce the dimensionality of the input to
an encoding vector. Then this vector is decoded to reconstruct the in-
put. A trained autoencoder is able to decode only vectors which were
trained before. To be more general, a constraint can be added to the
network which forces to generate an encoding which follows a unit
gaussian distribution. The network is then a variational autoencoder.
It allows to have an efficient inference with approximate latent vari-
ables. However the network is often trained with a mean square error
function which consequently gives blurry results.

GANs were introduced by Ian Goodfellow et al. in 2014 and pre-
sented a new unsupervised method used in picture generation. Each
GAN is composed of one network to generate candidates, the gener-
ator, and one network to evaluate them, the discriminator. His role
is to progress towards a good discrimination between input datas
and what is created by the generator. For the generator, the aim is to
progress towards the generation of efficient false examples which can
be interpreted by the discriminator as right datas. Thus the training
can be seen as a game between the discriminator and the generator
that aims to converge towards his Nash Equilibrium.

Concerning Wavenets, these models were announced by Google’s
Deepmind team in September 2016 and allow to get good audio gen-
eration results. Firstly developed for speech synthesis, this network
was able to learn the architecture of a natural pronunciation to gen-
erate good speech results as a human can pronounce. Taking audio
in input and giving audio in output, this end-to-end algorithm was
extended to music to generate pieces of piano which have a good
consistency.

Focused on music transformation with machine learning methods,
Wavenets seem to be well appropriate to generate song in learning
sound constructions. These networks can be conditioned with a local
or a global conditioning which could permit to learn transformations.

2.2.1 Motivation

With actual technologies, deaf people who have a Cochlear Implant
(CI) are able to recognize very well the speech thanks to a group
of electrodes put in the cochlea. This device allows to transform the
sound from outside into electrical impulses permitting to stimulate
the cochlea and thus creating the stimulation of the audio nerve. CI
users can perceive rhythm or relearn speech understanding but they
cannot enjoy music, due to the fact that the musical signal is more
complex and impose to have a better spectral resolution [1]. The diffi-

12 state of art

culty with music is there is a lot of problems like inadequate spectral,
fine-temporal, and dynamic range representation.

Music is seen as the most complex auditory stimulus in existence.
The mechanism which encodes the music is composed of many band-
pass filters where each extract the envelope, low frequencies corre-
spond to the apex and high frequencies correspond to the base. To re-
place the role of 3500 inner hair cells, we use electrodes placed along
the cochlea not by hazard but along the Greenwood’s frequency-
position function to find ideal positions, and where each electrode
stimulates a large band of nerve fibers. When the speech spectral res-
olution needs four channels, the music spectral resolution needs 64

channels [2]. The first idea is to increase the number of channels with
intermediate electrodes into the cochlear. But the spatial channel in-
teraction limits this maximum number of channels. If we increase the
number of channels, CI users perform as if they have only eight to
ten effective channels.

CI devices have also a problem concerning dynamics which repre-
sent the variation in loudness. Dynamics are essential to share exci-
tation, expression and meaning. Contrary to a Normal Hearing (NH)
listener who has a dynamic range of 120 dB with 60 to 100 discern-
able steps, CI users are able to distinguish 6-30 dB with 20 discern-
able steps. This reduction has an impact on sound quality and thus
decreases the ability to detect spectral shape differences.

If the rhythm and the tempo are detected without problem by a CI
user, it exists several difficulties to faithfully adapt the pitch and the
melody. Whereas NH listeners can easily detect a one semitone pitch
direction change, pitch direction thresholds for CI users range any-
where from one to eight semitones or more. Concerning the melody, it
is defined as a sequential series of pitches. If the melody is composed
of pure tones instead of complex harmonic tones typically found in
music, CI users have no difficulty to identify the melody. Indeed pure
tones can activate a single electrode to provide clearer pitch contours.
Otherwise they have some difficulties to perceive contour shape, inter-
val difference, scale and this difficulty increases if chords are played.

When spectral features of music are not really well translated to
a CI user, the combination of spectral and temporal features to rec-
ognize the timbre is also problematic. Timbre is a multidimensional
percept that depends both on the frequency spectrum and temporal
envelope of the incoming sound wave. Normal hearing listeners are
able to use both envelope and fine-structure cues interchangeably to
identify instruments whereas CI users rely entirely on temporal en-
velope cues to make instrument judgments, and are unable to use
fine structure information to make any judgments of timbre. Timbre
can be resumed as a three dimensional space where each dimension
is correlated to temporal envelope (log-attack time), spectral enve-
lope (spectral centroid where the amplitude weighted mean of the

2.2 state of the art 13

harmonic peaks) or spectral fine structure (difference in amplitude
between adjacent harmonics). For CI users, this timbre space is repre-
sented by only two dimensions which are temporal envelope features
and spectral envelope features.

Music perception in CI users can be improved with training ses-
sions. Indeed this allows to be better in pitch contour and familiar
melody identification. It also works in timbre recognition tasks. How-
ever all of these problems and without speaking about auditory ner-
vous system limitations for deaf people, enjoying music seems to be
a hard work. To get around this problem we propose a different ap-
proach to explore music by transforming it in order to make it more
enjoyable and comprehensible.

2.2.2 Learning automatically general sound transformation

Before learning transformations applied to music, composers created
them by hand to enlarge the scope of feasibility. From a composi-
tional point of view, the musical variety can be multiply to infinity
in adding general transformations into each song. Considering a mu-
sic sheet, each note can be moved from a position to an other with
a constant translation or they can also be transformed in changing
their duration. Globally all kind of geometric similitudes can pro-
pose a new song transformed from a previous one. The Hungarian
composer György Ligeti proposed natural timbral metamorphoses in
different works and specially in Cello Concerto, 1996 where the timbre
goes continuously from an instrument to an other. Recently the french
composer Yann Tiersen underlines a pitch shift in Comptine d’un autre
été : l’après midi where the melody starts from an octave to one octave
higher.

With the coming of electroacoustic music, the potential of sound
transformation has grown enormously. All of these modifications nat-
urally used by composers were the work of scientist to automate them.
Each instrument can be modeled [3] by a representation with masses,
springs and dampers which recreates the same wave propagation un-
til a same sound radiation to hear the proper timbre of an instrument.
Passing models from one to an other allows to simulate a timbre mod-
ification.

If now modifications are applied directly to the sound wave, a new
sound can be expected. Signal processing algorithms are efficient in
filtering and audio quality increasing but they can also be used as au-
dio transformers such as echo addition, pitch shifting time stretching
and many other applications. The modification of frequency and tem-
poral clues can be concatenate into one tool, the phase vocoder, which
has been well described by Dolson in 1986 [4]. This analysis-synthesis
technique allows to take an input signal and to give an output signal
which is a modified version of the input. These modifications are

14 state of art

done in the Fourier area allowing to separate temporal and spectral
information. For a time stretching transformation, the idea is to cut
the input spectrogram into frames which are overlapped. This ratio
of overlapping is now modified before the reconstruction to extend
or shorten the input song. Complex datas do not present any prob-
lem concerning the amplitude which is preserved but concerning the
phase, it linearly changes with the time. Thus frames of the desired
output which are not at the same position as the input ones because of
this new synthesis scale show phase jumps. Adding this phase incre-
mentation at each frame, the reconstructed sound has a high fidelity.
If the phase vocoder can be used to modify temporal clues without
changing frequency clues, it is easily to understand that the contrary
is conceivable. Pitching a sound by a pitch-change factor corresponds
to time-stretch the sound by this factor and listen to the result with a
modified sample rate. This new sample rate is equal to the previous
one times the pitch-change factor.

Figure 1: Pitch shifting using Dolson’s phase vocoder obtained applying a
short-time Fourier transform (window size of 1024 and hop length
of 256) into a four second flute note.

The phase vocoder is one of the best methods which exist for the
analysis and for sound transformations. Despite the artifacts which
are present inside the spectrogram, a signal processing algorithm is
handcrafted for each input and requires details to control the value

2.2 state of the art 15

of frequencies and their phase. Learning mathematical functions al-
lows to have a greater abstraction and not to be dependent on in-
puts. A deep learning approach allows to learn implicit functions of
transformation with a high level of abstraction into datas. This do-
main has already succeed in a lot of different topics [5] such as facial
recognition, speech recognition, computer vision, natural language
processing, audio recognition, social network filtering, machine trans-
lation and bioinformatics. Deep learning is actually an acknowledged
method which is also applied in the music field where applications
are led by two main studies which are the music information retrieval
and the music signal processing.

2.2.3 Feature extraction with long range dependencies

Audio applications in deep learning follow previous work in speech
recognition where a great interest appeared in the last decade. Since
the first major study in speech recognition in 2009, improvements did
not stop to progress until the first study for audio and music process-
ing proposed in the paper of Huang et al [6]. For the first time, the
aim was not to be focused on creating a single melody but more on
creating music which includes harmony and melody, as if a composer
created it. Their approach in performing an end-to-end LSTM algo-
rithm with deep neural networks allows to learn and generate music
taking into account global structure in the music.

To capture rich features in the frequency domain and increase the
quality of music generated, the most common method presented in
the literature is the use of fully connected layers, convolutional lay-
ers and LSTMs. There was a lot of work concerning a training with
musical features such as notes, chords, rhythm, or other information
which describes the audio. The Google brain team performed into this
way, proposing their project Magenta [7]. This machine learning plat-
form is used for generating art in general. It proposes to mix art and
music, allowing to increase music generation by putting some into-
nation, emotion, attention or surprise into music. During the training
each song is labelled with an instrument, a pitch, a velocity, and a
rate to describe the sonic quality. All these metadata allow to gener-
ate music with high quality. Music has to not to be differentiated with
the music created by a composer or played by a musician.

However these informations restrict drastically the field of music
which can be generated. Each generated song must be matched with
a vector which represents all different metadata. To remove these re-
strictions these different networks must learn how to generate music
by taking directly raw audio. They must learn how to create a logical
succession of samples to finally have a melodic and harmonic result
which is pleasant to hear. The input of this training is then audio
waveforms. They are one dimensional signals and composed of a set

16 state of art

of samples where the amplitude of these samples varies with time.
The variation is not hazardous but underlines a smooth transition
from a sample to the next one. Thus a network which can propose
music generation sample by sample must memorize samples which
allow him to predict the next one with a good succession.

2.2.4 Wavenet : an end-to-end algorithm to create music

In end-to-end algorithms, the model takes raw audio as input and
gives also raw audio as output. These networks are trained in learn-
ing probabilities of sample succession seeing a frame of a song. Re-
cently the Google Deepmind team developed Wavenet [8] to obtain
good audio generation results. It allows to be fed by raw audio and
to generate raw audio sample by sample. Building up samples one
step at a time is computationally expensive but it is essential for gen-
erating complex and realistic-sounding audio. This end-to-end neural
network was created at the beginning for speech generation captur-
ing characteristics of many different speakers and returning at the
end phoneme recognition. It became a very successful method in mul-
titude of application domains : text-to-speech dependent on individ-
ual f0 curves and speaker characteristics, speech recognition, speech
enhancement, and music generation. Therefore it seems that it could
serve as a new paradigm for music transformation as well.

This Convolutional Neural Network is composed of several convo-
lutional layers. It uses dilated convolutions instead of convolutions
which allow to capture long-term dependency in taking convolutions
that initially far from in the time space. In order to extract useful in-
formation from audio waveform, the input raw audio has to be quan-
tify thanks to the µ-law algorithm, transforming the problem into a
classification task. This network has proven to be an efficient tool in
speech generation, learning how to gather different phonemes to cre-
ate good quality words. It is then realistic to do the same with music.
The Google Deepmind team obtained great results in training their
network on a dataset of classical piano music. The generation gave
fascinating samples with the same sample rate as the input training
dataset.

Wavenet has also shown conditioning possibility in speech process-
ing, being able to choose the identity of the speaker such as the sex,
the nationality or the age. Choosing these parameters can be trans-
posed into a pitch shifting problem where the pitch shifting can be
selected. Thus conditioning answers perfectly the problematic of this
subject. The aim of this neural network is now to be able to transform
sound. If the dataset is labeled with spectral and temporal features,
the algorithm could be able to generate sound imposing a specific
transformation. It is actually possible to impose the instrument which
must play the generated output audio. With a dataset labeled with ei-

2.2 state of the art 17

ther piano or guitar or classical music, the output can be conditioned
according to what we want. Thus with a dataset labeled in tempo, we
may impose the tempo of the output and thus doing time stretching
or labeled in frequencies, we may do pitch shifting. Finally Wavenet
can be an excellent candidate for this work where it will learn spectral
or temporal transformations or even more complex transformations
can be thought like timbre modification or other creative modifica-
tion.

Part II

M E T H O D S

3
M E T H O D S

Developing an end-to-end for audio is not an easy task. Output song
must be produced timestep by timestep with deep neural networks
works keeping the same sample rate. So the network has to work with
a very small timescale, requiring to its architecture to be ingenious to
take into account a memory cell helping to predict the next sample.
Different end-to-end algorithms applied to music have already been
developed such as the Google Deepmind Wavenet network or Sam-
pleRNN which proposes a new solution to implement an end-to-end
network. For a better understanding of how the song is processed,
these architectures will be developed

3.1 end-to-end networks

As said before, end-to-end algorithms have the particularity to pro-
cess directly raw audio without extracting any features. It allows to
expect a better quality in results.

3.1.1 Wavenet

Wavenet is a deep neural network, trained on a dataset of classical
piano music by the Google team to be able to generate one second of
audio on their GPUs.

Increase of the receptive field size by dilated convolutions

This model is fully probabilistic, that means it tries to learn the prob-
ability of a sample given a list of previous ones, as an autoregressive
model. Each sample is then reliant on previous samples representing
the receptive field which has a role of memory. This receptive field
allows to create the new sample. To control the size of the receptive
field, this network uses deep dilated causal convolutions. Each layer
of dilated causal convolutions are causal convolutional layers present
in the network but with holes to increase faster the receptive field.
Mathematically, a dilated convolution between a signal f and a ker-
nel k and with a dilated factor l can be defined as :

(k ∗l f)t =
∞∑

τ=−∞kτ · ft−lτ (1)

For l=1 we find the equation for a standard convolution. For a kernel
size equal to two, the convolution takes into account two neighbor

20

3.1 end-to-end networks 21

samples of the signal. But for a dilated convolution l, it takes two sam-
ples away from (l-1) samples between them. In this way the receptive
field grew from 2 for a standard convolution to l with a dilated factor
equal to l. In a whole network, using just causal convolutions imposes
to have a receptive field equal to the number of layers present in the
network (precisely equal to the number of layers without the input
layer plus the size of the kernel -1) whereas with dilated convolutions
the receptive field is equal to 2nbLayers−1, skipping one convolution
out of two at each layer. Figure 2 illustrates the phenomenon. Thus
the number of layers present into the network can be reduced to reach
a precise receptive field size.

Figure 2: Picture from the Wavenet paper illustrating the comparison of the
receptive field size between a stack of causal convolutional layers
(top) and a stack of dilated causal convolutional layers (bottom).
The receptive field of the orange sample in the output layer corre-
sponds to the number of blue samples present in the input layer
which take part in the creation of the output sample.

With a bigger receptive field, the prediction of a sample depends
on more input samples. Thus the prediction is less sensitive to fast
variations which appear when it depends on the previous two or
three samples but the prediction takes into account a larger number
of samples, increasing the quality of the result.

To increase again more the receptive field size, the network can
be built with several stacks which are on top of each other. A stack
is composed of a same number of dilated convolutional layers which
can be repeated, increasing the complexity of the network. It allows to
have now a very large receptive field with just a few layers, reaching
nbStacks× 2nbLayers−1.

22 methods

A classification problem

Comparing raw audio between the output of the model and the de-
sired output seems not to be an easy task. Values are random integers
between − 32768 and 32767, coding in 16 bits. In order to decrease
computational cost, it is relevant to reduce the number of categories.
Works on speech recognition showed a good reconstitution when the
audio is coded in 8 bits, ordering to have 256 classes. These sepa-
rations could be linear but in audio processing, the information is
more compacted near the amplitude zero. Consequently classes are
built thanks to the µ-law. For each sample, the transformation with
µ = 255 is given by :

f(xi) = sgn(xi)×
ln(1+ µ|xi|)

ln(1+ µ)
(2)

This function is like a logarithmic function which allows to be more
accurate with low amplitudes and less accurate with high amplitudes
(with absolute values). The network finally generates a list of samples
which can be converted into an audio value thanks to the inverse µ-
law :

F−1(y) = sgn(y)× (1+ µ)|y| − 1

µ
(3)

Answering to this classification problem requires to have the soft-
max function as loss function.

Two activation functions : tanh and σ

Each layer present in each stack has a role to do a dilated causal
convolution. Before going to the next layer, two activation functions
are used as gated activation units. It allows to combine different non-
linearities into the model, thanks to a tanh activation and also a sig-
moid activation working as a gate for the tanh function. These two
functions are vital for complex problems where the built network is
very deep. Then half of the result of the dilated convolution goes
to the tanh activation function and the other half goes to the σ acti-
vation function. The results of these activation functions are finally
multiplied together to give the result of this layer.

Deep residual learning for a deep neural network

It is true that deeper neural networks are very difficult to train see-
ing the high number of weights and bias present in these networks.
Having a very deep network allows to have an excellent learning con-
cerning general clues but experiments show a degradation of results
in a deeper network with a higher training error [9] compared to the
same network with less layers. Consequently it is relevant to build a
building block, called deep residual learning, to improve the training.

3.1 end-to-end networks 23

The residual learning can be seen as a preconditioned solution. If
the function that the network has to learn is closer to the identity
function (in the case where the input is quite the same as the output),
it is easier for the network to learn a function which is almost a zero
mapping than to learn a new function to transform the input into a
desired output. In the case of a pitch shifting problem, it is obviously
not the identity function that we want to learn but more a function
like what the phase vocoder algorithm does. However the input and
the desired output have the same nature and therefore is closer to the
identity function than a completely random function. Adding this
residual learning at each layer allows to have finally a good training,
keeping the fact that this network can be trained end-to-end with
backpropagation.

Each layer can be then schematized with two trees, a residual tree
and a skip tree, as shown in Figure 3. The residual tree allows to
conserve the input as the identity function and so the other part has
to learn the function h where h = f − id with f the function that
the network has to reproduce. The layer does the dilated convolution
and pass the result into two activated functions. The result is then
convoluted by a 1× 1 convolution which is a feature pooling method.
Several feature maps go to the skip tree and the rest come back to the
residual tree before going to the next layer.

Figure 3: Architecture of a layer doing a dilated causal convolution and ap-
plying activation functions.

When finally the input receptive field is passed into the whole net-
work, all results piled into the skip tree are added to become the
result h(x) given by the network. To find the desired result, the in-

24 methods

put is added to this intermediate result. The final result goes to a
post-processing task which is composed of steps of ReLU, 1× 1 con-
volution, ReLU, 1× 1 convolution and then the Softmax loss function
to create the final output.

Conditioning

Conditioning has the role to impose a particular aspect to the result.
It was used by Google Deepmind to be flexible regarding the genre
(male or female) of the voice or the nationality of the speaker. In the
case of a pitch shifting method, conditioning can represent a partic-
ular interval of pitch shifting. It can have the role of a fader which
allows to choose which pitch the user want.

A probabilistic view of this problem shows the impact of an added
condition in the result. In this way a waveform x = (x1, ..., xN) of N
samples can be written as a product of conditional probabilities :

p(x) =
N∏
t=1

p(xt|x1, ..., xt−1) (4)

If now we want to condition x by a bias h, the conditional distribu-
tion becomes :

p(x|h) =
N∏
t=1

p(xt|x1, ..., xt−1, h) (5)

The network can be modified to introduce this condition h inside
both activated functions present at each layer. If this condition is the
same with the time, we talk about global conditioning. If the condi-
tion is also a timeseries, we call it local conditioning.

3.1.2 SampleRNN

In finding other possibilities to implement an end-to-end algorithm,
there is also SampleRNN [10] which proposes even best results than
Wavenet. Still creating music sample by sample, SampleRNN tries
to reduce the complexity of the network compared to the Wavenet
architecture.

SampleRNN is a parametric model which can model long term de-
pendencies. Contrary to Wavenet which uses dilated convolutions to
create a receptive field size, SampleRNN uses a classical method with
Recurrent Neural Networks. A RNN is a network where recurrent
connexions are present. These networks are very powerful thanks to
their compact, shared parametrization of a series of conditional distri-
butions. It is adapted for timeseries and allows to save in memory the
effect of the past. An unfolded unity of RNN corresponds to a classic
neural network with equality conditions between weights. The out-
put sample at a time t is then linked with the input sample at the

3.1 end-to-end networks 25

time t but also with previous ones. The main problem with a RNN
is that after many time steps, the sensibility of the previous samples
decreases exponentially with the time until to cannot depend on the
first ones. Long Short-Term Memory networks, new RNN architec-
tures, were developed to answer this problem with a cell state which
has the role of memory. After that Gated Recurrent Units, varieties of
LSTMs, were developed without this cell state. It is particularly these
GRUs which are used in this network.

The SampleRNN network is created with several tiers where each
tier is built with RNNs allowing to save memory at different scale.
The first one is transformed into a serie of Multi Layer Perceptrons.
Each MLP takes several samples as input (in the Figure 4, four sam-
ples are taken) and also the upsampled output from the second tier
seeing as a temporal condition with a wider scale. The second tier is
built as a GRU where each iteration takes several generated samples
(four in the example) and also the upsampled output from the third
tier to enlarge again the temporal scale. Finally the third and last tier
is also a GRU where each iteration takes several generated samples
(16 in the example) to enlarge again the temporal scale.

Figure 4: Architecture of the SampleRNN algorithm with three tiers. It
shows the number of input samples that each tiers takes as in-
put and also the direction of the conditioning, from the top to the
bottom allowing to have different time scales.

The network proposes a construction with different modules where
each operates at a different temporal resolution. The first one con-
cerns short resolution, links between neighbors, and the other ones
increase this resolution. Seeing raw audio contains correlation at dif-
ferent scale, this network can have a good efficiency. RNNs can be
trained with a backpropagation. Indeed if the RNN is unrolled, the
network is seen as successive layers. However it is computationally ex-
pensive because the gradient has to be computed until the beginning
of the sequence. To increase the training speed a method called Trun-
cated Backpropagation Through Time [11] is presented. It imposes a
limit on the number of steps to run backwards without altering long
term dependencies.

26 methods

As said in the title of the paper, this new network seems to be
“unconditional”, forbidding to put some conditions concerning which
pitch shifting we want to have. A first solution is evoked by the same
team in a speech synthesis problematic [12]. It proposes to add an
extra input as a condition to a particular time step.

3.1.3 First experiences with existing networks

The first tests were to test both networks Wavenet and SampleRNN
with sine waves as input, thanks to codes given respectively on GitHub.
Concerning Wavenet, the code is written in TensorFlow, an open
source library developed by the Google Brain team allowing to use
Machine Learning functions. Simulations started with a very small
network, composed of two dilation stacks of three different dilations
(1, 2 and 4). This configuration imposes a receptive field equal to
2× 23 = 16 samples. The learning signal is a sine wave of 440 Hz
during one second with a sample rate equal to 16000 Hz. Thus one
period is equal to 36 samples which indicates that the receptive field
corresponds to a few less that half a period. The network was trained
during 100 epochs and results generation were extracted after 30, 60

and 100 training epochs.

Figure 5: Wavenet trained with a sine wave of 440 Hz (top) and results gen-
eration after 30 (2nd), 60 (3rd) and 100 (4th) training epochs.

3.1 end-to-end networks 27

The final result shown in Figure 5 gives a good audio result even if
some artifacts are still present. They can be deleted in increasing the
training by doing more training epochs. The network is already able
to generate one frequency. The next step is to learn two frequencies
in a row. The training song is now 150 ms of a 440 Hz sine wave
joined with 150 ms of a 1 kHz sine wave. The result shown in Fig-
ure 6 underlines that the network learns just the last frequency with
regular transition moments present between samples 500 and 1500

and starting again at sample 3900.

Figure 6: Wavenet trained with a 440 Hz sine wave with a 1 kHz sine wave
(top) and results generation after 500 training epochs (bottom).

Learning two frequencies is impossible using this method. A dif-
ferent way to learn different frequencies is to label them thanks to
the possibility of conditioning. However the code given by Google is
really complex to be modified as I want and that is the occasion to
test the second one SampleRNN.

The code of SampleRNN given on GitHub is written in Theano, an
other Python library for Machine Learning. Contrary to the Wavenet
code, the SampleRNN code is more flexible and easier to understand.
The same method is applied to this new algorithm, testing with sim-
ple examples.

Results are shown in Figure 7. After few iterations, we obtained the
right sine wave. Concerning the learning of several frequencies, it suc-
ceeds. There is a transitional mode of around 150 samples, between
sample 1450 and sample 1600, to go from the first frequency to the
second one but this time could decease with a longer training.

28 methods

Figure 7: SampleRNN trained with two tiers where each RNN as a dimen-
sionality of 1024, 64 frames in each TBTT with 16 samples per
frame. Results are obtained after 80 epochs.

Adding conditioning in SampleRNN is not an easy task. Indeed
conditioning is an abstract data, evoked sometimes as a bias, and
which must modify the probability of a waveform. In SampleRNN,
the different time scales impose to master the timescale of the condi-
tioning. In a pitch shifting point of view, conditioning represents the
pitch interval we want to apply to our input song. Therefore it has to
take action in the upper tier in the network.

Despite finding a successful way to implement it, I decided to cre-
ate my own network to be able to modify it as I want. The network I
focused is Wavenet which has already shown good applications with
conditioning.

3.1.4 From PixelCNN to Wavenet

As a lot of Machine Learning networks applied to music, Wavenet
comes from a network of picture generation. When Wavenet produces
a new song sample by sample, the previous network PixelCNN [13]
produces a new image pixel by pixel. In a way a song can be seen as
an image in one dimension. To implement the Wavenet network, it is
interesting to look at how to implement PixelCNN.

3.1 end-to-end networks 29

PixelCNN is a deep neural network which allows to predict the
pixel values with an unsupervised probability learning. The problem
is seen as a sequence problem where each sequence learns to pre-
dict the next pixel given all the previous generated pixels. Basically
inspired by PixelRNN using LSTM layers, it was observed that Con-
volutional Neural Networks (CNN) can also be used as a sequence
problem offering the best results. Then LSTMs layers are replaced by
a fully convolutional network given a conditional distribution at each
location.

For the same reasons as Wavenet, values of pixels are rounded into
256 discrete values to answer to a classification problem. The joint
distribution p(x) of an image x = n×n pixels can be represented like
in the Wavenet model :

p(x) =
n2∏
i=1

p(xi|x1, ..., xi−1) (6)

This joint distribution gather all local probabilities of pixels present in
the image. The probability p(xi|x1, ..., xi−1) can be translated by what
is the probability of the ith pixel given the (i-1) previous ones. Adding
them to the product step by step, the generation of an image is finally
solved by recurrence from the top left hand corner pixel to the bottom
right hand corner, row by row and pixel by pixel. Thus the generation
costs time because each pixel requests a forward pass. For training, it
is not necessary to wait the value of a pixel to predict the next one
because the network has initially access to all pixels in the training
images. Thus the distributions over the pixel values can be computed
in parallel. Also each pixel is composed of three values in the RGB
representation. The model presented in the Wavenet paper links these
values by an internal probability which will not be developed because
this complication does not affect raw audio. Finally to simplify this
model, each pictures will be rounded in two discrete values, 0 or 1,
seeing images in black and white.

Chainer framework

Finding helpful explications in the blog of Sergei Turukin [14] and
an already well explained implementation of this PixelCNN [15], all
codes which will contribute to this project will be coded in Chainer.
Chainer is a “flexible deep learning framework” for neural network
which works with Python. The difference from other famous deep
learning frameworks like Tensorflow or Torch is that Chainer con-
structs neural networks dynamically, which enables to write a neural
network in more flexible way. Thus the network can be extended step-
by-step into the forward pass and not be prepared before. It can be
adapted to GPU computation.

The particularity of Chainer is to put all data into a Variable object
where are put shape, type, data or gradient. All steps of a network

30 methods

such as Linear, Convolution, LSTM are stored in Links where weights
and bias are automatically computed. All functions such as activa-
tion functions, loss functions or mathematical functions are stored in
Functions.

Model

The model is constructed similarly to Wavenet. It is composed of
many identical layers (the paper proposes to fix it at 15) on top of
each others. These layers are used to calculate the probability of a
pixel given the previous ones. To be sure that the model is causal,
the filters of the convolution need to be masked to not to use future
pixels. These masks are binary masks which allow to deactivate the
influence of future pixels. Unfortunately applying that in a 2D case
creates a blind spot. A blind spot is a group of pixels which are situ-
ated before the target pixel but which are not taken into account in the
calculation of the target pixel prediction. This missing information ap-
pears because of the convolution in two dimensions but this problem
can be solved in changing the way of considering the receptive field.
The network is then transformed into a Gated PixelCNN where the
receptive field is divided into an horizontal stack and a vertical stack
and combining them. The vertical stack conditions on all rows above
the current row and the horizontal stack conditions on the current
row. Figure 8 shows the layer architecture. Each layer is then com-
posed of two trees : a vertical tree on the left and a horizontal tree on
the right. To calculate vertical feature maps, n× n convolutions are
applied allowing to take into account all pixels above the target pixel.
And then to calculate horizontal feature maps, 1×n convolutions are
applied to take into account just pixels before the target in the same
row. Horizontal feature maps are calculated seeing the value of ver-
tical feature maps. Finally both vertical and horizontal feature maps
are given to the next layer.

Figure 8: A PixelCNN layer composed of tow trees : the vertical tree on right
and the horizontal tree on left.

3.1 end-to-end networks 31

At the end of these layers is present a post processing step. It is
composed of a ReLU function, a 1× 1 convolution, a ReLU, a 1× 1
convolution and the softmax loss function.

Pre processing

Data can initially take random values. They are transformed from
values in zero-one range to categories between 0 and 255, as a classi-
fication problem. That means that input values are rounded into the
nearest label value.

Generation

The generation is done pixel by pixel. The network is at the beginning
fed with a white image and it calculates the first pixel, modifying the
input. Given this modification the network is now fed with the new
input to calculate the second pixel and so forth, costing a lot of time
because of the sequential but non parallel problem.

Conditioning

Conditioning allows to guide the result to a hoped prediction. As
the same idea as Wavenet, the condition takes place inside the two
activation functions. The condition is multiplied by an embedding
matrix and put inside the sigmoid and the tanh function. To generate
an example, the network can be trained with the MNIST dataset, a
database of images where each image is a digit from 0 to 9 written by
hand. This dataset is composed of 60000 training images and 10000

testing images. Each image has 28× 28 pixels. To simplify the prob-
lem these images are transformed into binary images, composed of
0 and 1 and limiting the problem classification in two classes. Each
image is labeled with the matching digit and the label is put in the
network as a condition, allowing to learn the bias corresponding to
each digit. Figure 9 shows the result obtained in conditioning the
network to generate a 0.

Figure 9: Image generation conditioned to generate a zero digit. The model
is composed of 15 stacks, 128 hidden feature maps and 2 levels. It
was trained on the MNIST dataset with 20 epochs.

Modifications for Wavenet

With PixelXNN, images which are fed to the network are matrices
of integers between 0 and 255. Now with Wavenet, songs are one

32 methods

dimensional vectors with also the same type of values. Converting
PixelCNN into Wavenet ask to apply 1D convolutions rather than 2D
convolutions, causing the ending of the blind spot problem and the
modification of masks. The receptive field is now a vector of samples
helping to calculate the prediction of the next one. Masked convo-
lutions are replaced by dilated convolutions, increasing the dilation
layer after layer.

The PixelCNN algorithm was used to learn how to generate a song
or a picture, conditioned on the number of a digit. The condition was
the ten digits and choosing one causes the generation of this digit
thanks to learned probabilities. Concerning Wavenets, Google Deep-
mind proposes to condition it to choose the features of the voice such
as the sex or the nationality. Transposing the problem into music,
digits can be replaced by frequencies. Thus each label can be used
to learn different frequencies. Then the network learns different fre-
quencies which can be generated separately.

Figure 10: Wavenet generation with a receptive field of 4 samples
(1 stack × 22 layers). The network was trained during 1000

epochs with 5 seconds of each frequency with a sample rate of
44100.

Figure 10 shows the generation of two different frequencies which
were learnt during the training. Several artifacts can be seen in the
sine waves. This is not linked with an insufficient training because
after 15 epochs, the best loss value was reached (see Figure 11). A
solution at this problem can be to increase the receptive field implying
that each sample is dependent on more previous samples. It allows
to gain in stability but the network becomes more complex.

3.1 end-to-end networks 33

Figure 11: Softmax loss function applied

To generate two different sine waves, each frequency was labeled
with a different number. The first sine wave at the top was gener-
ated asking the label named “0” and the second sine wave at the bot-
tom was generated asking the label “1”. The network has correctly
associated the label with the frequency. But to shift the pitch of an
entire song with this method, it implies at the end a Fourier series
decomposition to have access to the sine wave decomposition which
is inappropriate.

A good way of training is to consider these labels as a different
pitch shifting interval. For each label, the network does not have to
learn predictions to generate the same output than the input. The
network has to learn the pitch shifting function which corresponds to
a particular pitch shifting. The input of the network is a song and the
desired output is this same song but pitched.

Part III

L E A R N I N G T H E P I T C H S H I F T I N G F U N C T I O N

4
L E A R N I N G T H E P I T C H S H I F T I N G F U N C T I O N

Wavenet has shown good capacities to reproduce sine waves. If now
the output is modified to become a low or high-pitched version of the
input, the learning of a pitch shifting function can be expected.

4.1 dataset construction

As a step by step learning, first works concern sine waves. The aim
is to modify the pitch of one sine wave, then multiple sine waves
with different frequencies and different amplitudes. Finally tests will
concern a real sound of a flute.

4.1.1 Pitch shifting

Learning the pitch shifting function consists on putting the pitched
song at the desired output of the network. The chosen transformation
is to increase the pitch to one octave. Working with a doubled fre-
quency allows to avoid phase problems. It forces the network to just
have two amplitude solutions for the high-pitched frequency seeing
an initial frequency. The training dataset is composed of one 400 Hz
sine wave labeled “0” and one 600 Hz sine wave labeled “1”. Each
frequency has a duration of one second with a sampling frequency of
44100 Hz. Then the desired output for the label “0” is a 800 Hz sine
wave and for the label “1” a 1200 Hz sine wave. To obtain fast results,
the network is limited to one stack and two layers, given a receptive
field of four samples.

The generation of these two labels can be shown in Figure 12. The
400 Hz frequency is well transformed into a 800 Hz frequency and the
600 Hz frequency is well transformed into a 1200 Hz frequency. Some
artifacts are present, always in the same place, just behind the zero
amplitude line. For example, the sample 250 on the generated sine
wave of 400 Hz is higher than expected. It is where the derivative
is the highest. To generate a sample knowing the previous one, it
exists two possibilities (if we except peaks). Either the amplitude is
higher if the derivative is positive or the amplitude is lower if the
derivative is negative. Knowing that the size of the receptive field is
very small, the prediction is based on the value of four samples. Then
the prediction can fail, believing the wrong derivative. Increasing the
size of the receptive field will cause a bigger temporal memory and
could erase this problem.

36

4.1 dataset construction 37

Figure 12: High-pitched transformation learned on a 400 Hz (top) and a
600 Hz (bottom) sine waves.

The pitch transformation can be learned by the network. When the
network is fed by a 400 Hz sine wave labeled with 0, it gives a 800 Hz
sine wave and when it is fed by a 600 Hz sine wave labeled with 1,
it gives a 1200 Hz sine wave. If we expect to shift all frequencies of a
sound, the different frequencies do not have to be at different labels
but it needs to be in the same, considering labels as pitch shifting
intervals. The idea to learn several frequencies is to join them in the
input. Thus the learning of the 400 Hz sine wave and the 600 Hz sine
wave in the same label is done with a dataset composed of these two
joined frequencies where each lasts half a second. The desired output
is then composed of two joined frequencies, a 800 Hz and a 1200 Hz
sine waves with the same sample rate and the same duration.

Figure 13: Loss function of the learning of two frequencies in the same time.

38 learning the pitch shifting function

The generation consists on modifying the pitch of the two joined
frequencies, 400 Hz and then 600 Hz.

Figure 14: High-pitched transformation of two sine waves learned in the
same label.

The result shown in Figure 14 gives a 800 Hz frequency followed
by a 1200 Hz frequency which what was expected. Frequencies given
during the training had always a constant amplitude. If we try to
modify the amplitude, the network does not learn by itself how to
generate the high-pitched signal at this new amplitude. The dataset
has to be modified to learn all different amplitudes.

4.1.2 Learning different amplitudes

In the case of learning different amplitudes, the frequency is fixed at
the two previous values, 400 Hz and 600 Hz. The first idea to learn
several amplitudes is to transform the training dataset into an ampli-
tude sweep. The sweep can be linear or logarithmic in the amplitude
domain and can goes from 0 to 215 − 1 in amplitude. However the
network does not succeed to generate a constant sine wave at a par-
ticular amplitude. This is due to the fact that the network has to see at
least one period at each amplitude we want to generate. Without that
it is impossible to generate expected outputs. Seeing that the ampli-
tude is not linearly quantized by the network but follows the µ-law,
a sweep was applied after applying the µ-law at the audio signal but
this method did not give good results.

A new idea consists on the creation of steps of amplitudes where
at each step is present more that one period of the frequency. To force
the network to well understand that it is at a particular step of am-
plitude, it is important to increase the receptive field. For that, the
network is now composed of two stacks and five layers at each stack.
It corresponds to a total of 2 ∗ 25 = 64 samples which assures to have

4.1 dataset construction 39

more that half a period of the frequency in the receptive field. The
number of amplitude steps must be chosen. If this number of steps
is too low, the network does not learn amplitudes which are present
between two successive amplitudes and generates a noisy signal. Fig-
ure 15 shows that for 10 amplitude steps, it is not enough to generate
a random amplitude which can be situated in the middle of two steps.

Figure 15: High-pitched transformation of a 600 Hz sine wave with an am-
plitude in the middle of the 5th and the 6th step and then of a
400 Hz sine wave with the last amplitude step. The learning was
done with 10 amplitude steps where each step was composed of
5 periods.

After experiments it was shown that 40 amplitude steps allow to
have a good generation even if the desired amplitude is situated in
the middle of two steps. The number of periods at each step must be
also fixed. I explained that we must have at least one period at each
amplitude step but as shown in Figure 16 it seems to be not enough to
expect having a good audio generation. A good learning was found
for 7 periods.

The dataset to learn the generation of a random amplitude is finally
composed of 40 steps where each is composed of 7 periods of the
frequency (see Figure 17). For the two training frequencies, 400 Hz
and 600 Hz, it is equal to 51400 training samples so a few more than
one second.

As shown in Figure 19, the output gives the desired frequencies. We
can see in the first one the amplitude is oscillating because the asked
amplitude is between two steps but it has not generated noise. How-
ever the transition between frequencies is noisy. Samples between 600

and 620 are not well transformed because the associate receptive field
composed of 64 samples takes into account more than the half of its
samples in the first frequency. Then the network is lost when the re-
ceptive field is in the middle of both because it never saw this signal
during the training. The problem can be lowered by reducing the size
of the receptive field but yet this operation gives a noisy sound.

40 learning the pitch shifting function

Figure 16: High-pitched transformation of a 600 Hz sine wave with the am-
plitude of the 23th step and then of a 400 Hz sine wave with the
38th amplitude step. The learning was done with 40 amplitude
steps where each step was composed of 1 period.

Figure 17: Dataset to learn amplitudes. Il is composed of 40 increasing am-
plitudes steps in the 400 Hz sine wave and then 40 decreasing
amplitude steps in the 600 Hz step.

We now have a dataset allowing to generate a random amplitude
in the two studied frequencies. The next step concerns the learning
of audible frequencies.

4.1.3 Learning different frequencies

Keeping the same approach as for the amplitude learning, the dataset
was transformed into a frequency sweep. At constant amplitude, the

4.1 dataset construction 41

Figure 18: Loss function for the amplitude training.

Figure 19: High-pitched transformation of a 600 Hz sine wave with an am-
plitude in the middle of the 32th and the 33th step and then of a
400 Hz sine wave with the last amplitude step. The learning was
done with 40 amplitude steps where each step was composed of
7 periods.

sweep linearly goes from 200 Hz to 800 Hz for the input and so from
400 Hz to 1600 Hz for the desired output. Asking to transform a
400 Hz sine wave joined with a 450 Hz sine wave, the result shown
in Figure 20 a good resolution.

42 learning the pitch shifting function

Figure 20: High-pitched transformation of a 400 Hz sine wave and then of
a 450 Hz sine wave with the last amplitude step taken into a
frequency sweep with a range of 200-800 Hz.

4.1.4 Dataset generalization

To generalize sine wave transformations, both ideas of amplitude and
frequency can be mixed together. The aim is to be able to transform a
sine wave whatever the amplitude and whatever the frequency. Thus
the dataset is transformed into 40 steps of amplitudes where in each
step there is a frequency sweep from 200 Hz to 800 Hz with a dura-
tion of one second (see Figure 21). The input is then composed of 40

seconds of audio. The desired output is composed of 40 steps of am-
plitudes where in each step there is a frequency sweep from 400 Hz
to 1600 Hz.

The training lasts more than five hours on GPU to compute 3000

epochs. The loss function shown in Figure 22 seems to be at the limit
of convergence even if the value is still high compared to previous
examples.

The result shown in Figure 23 was obtained in asking to transform
a 400 Hz sine wave at the 32th amplitude step stuck with a 450 Hz
sine wave at the 23th amplitude step. Sometimes the maximal am-
plitude of the sine wave is higher than normally, as if the network
generates the next step of amplitude.

Having good results with sine waves, it is conceivable to test with
real sounds. The aim is to transform a note of a flute at 440 Hz into a
one octave higher note. As seen in Figure 24, the given result is noisy.
We can see that the network has a lot of difficulties to save the shape.
The frequencies are quite doubled inside (see Figure 25) but there are
always erratic points.

4.1 dataset construction 43

Figure 21: Dataset fed to the network to learn all transformations.

Figure 22: Loss function value.

The noise comes from the fact that all harmonics of a flute placed
on top of each other give a non sinusoidal wave. Thus the network
does not succeed to link the input with a already learned sine wave.
To answer the fact that the network does not succeed to keep the
envelope of the input signal, this envelope can be extracted thanks to
a Hilbert transform.

The used method illustrated in Figure 26 is to divide the signal by
its envelope. It produces a signal which has quite the same ampli-
tude and where harmonics are less visible. Thus the created signal is
nearer a sine wave than before. The fact that the amplitude is quite
constant gives the possibility to not to be affected by a transition be-
tween amplitude steps. This signal is transformed by the network
and the output is multiplied by the initial envelope. As shown in Fig-
ure 27, we can see that the frequency is quite well doubled inside but
it is still noisy.

44 learning the pitch shifting function

Figure 23: High-pitched transformation of a 400 Hz sine wave at the 32th

amplitude step and then of a 450 Hz sine wave at the 23th ampli-
tude step.

Figure 24: High-pitched transformation of a A note of flute. Top : input,
bottom : output.

4.2 nsynth : a way to save several sound features

Recently the Google Brain team presented a project in audio synthesis
named NSynth [16]. This algorithm has the role to generate music
copying human expressions, as a musician could do when he plays a
song. One of the goals of Magenta is to use Machine Learning to learn
these human expressions. Thus they created NSynth (abbreviation of
Neural Synthesizer) to propose a new tool for artists to control timbre

4.2 nsynth : a way to save several sound features 45

Figure 25: Zoom inside the result. Input in blue and output in orange.

Figure 26: High-pitched transformation using Hilbert transformation to
keep the temporal envelope.

and dynamics. With Wavenet it was not possible to do it because
the memory of the network was limited to several thousand samples
which correspond to the size of the receptive field. In that way this
new end-to-end algorithm allows to keep long-term structure.

4.2.1 The network

The network is a Wavenet-style autoencoder which allows to gener-
ate a song sample-by-sample keeping long term structure. For that,
a Wavenet network which was explained before is linked with an

46 learning the pitch shifting function

Figure 27: Zoom inside the result. Input in blue and output in orange.

autoencoder. The audio encoding allows to keep long term structure
and insert itself in the Wavenet as a global conditioning. The temporal
encoder model is composed of 30 layers. Each layer is composed of a
dilated convolution, a ReLU activation function to insert non-linearity
and a 1 × 1 convolution to increase the number of feature maps. At
the end there is an average pooling layer which allows to reduce the
temporal dimensionality.

This association which has already proven its efficiency in image
generation [17] is a good way to save global features that our transfor-
mation function does not have to modify. This encoding can be made
thanks to non causal dilated convolutions which were not present in
Wavenet. This network was trained with a large database of musical
notes which are labeled with a unique couple of pitch, timbre and
envelope.

As an end-to-end algorithm, the network is fed by raw audio and
gives raw audio. The raw audio is encoded into a reduce form where
the principal features are stored. The encoding is then decoded to
generate the output raw audio. The encoder applied by NSynth gives
at all 16 channels put in a matrix which have quite the same shape
as the envelope of the raw audio, as shown in Figure 28. This matrix
can be seen as a picture which can be stretched. If we resize the time
axis of this picture and we decode this new picture, it finally causes a
time stretching modification into the raw audio during the generation.
The algorithm proves that keeping global features could be a solution
to learn time stretching and so pitch shifting modification. The pitch
shifting result on the note of a flute can be seen in Figure 29.

4.2 nsynth : a way to save several sound features 47

Figure 28: Encoding of a note of flute.

Figure 29: High-pitched transformation of a note of flute. Input in blue and
output in orange.

4.2.2 Experiments

The previous network used to learn a pitch shifting function is com-
pleted by an autoencoder which has the role to keep long term de-
pendencies which were lost before. As explained in the NSynth pa-
per, the Wavenet encoder can be schematize by a convolutional au-
toencoder. An architecture called Baseline Spectral Autoencoder and
shown in Figure 30 was also tested by the team to reproduce the en-
coding. It is fed by spectrograms which are calculated using a large
FFT size of 1024 samples relative to the hop size of 256 samples. Then

48 learning the pitch shifting function

the network encodes them and decodes the encoding to gives a new
spectrogram which must converge to an input copy. The encoder is
composed of 10 2D convolutional layers and the decoder is composed
of 10 2D deconvolution layers. Deconvolution layers are transposed
convolutional layers. To apply this type of convolution, the input is
padded by inserting (s-1) zeroes between each samples and doing
normal convolutions. The spectrograms dimensions are reduced and
then increased thanks to a kernel stride. The loss function is the mean-
squared error learned with a learning rate fixed at 10−4.

Figure 30: Autoencoder : encoding and decoding are made with 2D convo-
lutions with stride s, kernel size k and channels. Between them,
three fully connected layers allow to have a vector of 32 values to
encode each input.

This architecture was reproduced and trained with a dataset of
flutes. It is composed of 6362 sound files of 4 seconds each. Each
spectrogram representing a 512 × 256 matrix is fed to the network,
giving an encoding vector with a length of 32, as shown in Figure 31.
The training lasts 56 hours in one GPU, given a loss function value
equal to 0.035 (see Figure 32).

The encoding is a short representation of each song. It can be insert
as a global conditioning into the previous Wavenet to keep long term
structure. This experiment should be the next step of this project.

4.2 nsynth : a way to save several sound features 49

Figure 31: Encoding vector of a note of a flute.

Figure 32: Loss function of the autoencoder.

5
C O N C L U S I O N

The goal of this project was to succeed to build a neural network
which was able to learn high pitched transformation. For that the ar-
chitecture was inspired by Wavenet and transformed to answer the
problematic by inserting global conditioning. The training dataset
was constructed step by step to learn first how to transform sine
waves, being careful about the length of the receptive field.

The receptive field which has the role of memory inside the net-
work is most important variable. It is linked directly to the number
of stacks and layers, showing the complexity of the network. But it
shows also the number of samples taken in memory to predict the
next one. Having causal convolutions inside layers, it forbids keeping
long term structure which is important in a high pitched transforma-
tion to still have the same input features except the pitch. Indeed each
prediction is the result based on the few previous samples.

NSynth allows to keep these temporal features by encoding each
input as a bias and putting this bias as a global condition inside the
Wavenet. This technic did not have time to be developed at the end
and should be a good trail for future work.

This internship was very interesting and was seen as a new Ma-
chine Learning application. My previous project on playlist genera-
tion was very helpful to build and train a new neural network. It was
also the opportunity to use the ssh protocol to launch simulations
and to compute these simulations on the GPU Nvidia Titan X.

50

B I B L I O G R A P H Y

[1] Takayuki Nakata. Cochlear implants and music. Cholesteatoma
and Ear Surgery: An Update, page 155, 2013.

[2] Charles J Limb and Alexis T Roy. Technological, biological, and
acoustical constraints to music perception in cochlear implant
users. Hearing research, 308:13–26, 2014.

[3] Antoine Chaigne and Jean Kergomard. Acoustique des instruments
de musique. Collection Echelles. Belin, 2008.

[4] Mark Dolson. The phase vocoder: A tutorial. Computer Music
Journal, 10(4):14–27, 1986.

[5] Li Deng, Dong Yu, et al. Deep learning: methods and applica-
tions. Foundations and Trends® in Signal Processing, 7(3–4):197–
387, 2014.

[6] Allen Huang and Raymond Wu. Deep learning for music. arXiv
preprint arXiv:1606.04930, 2016.

[7] Google magenta. https://magenta.tensorflow.org/.

[8] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew
Senior, and Koray Kavukcuoglu. Wavenet: A generative model
for raw audio. CoRR abs/1609.03499, 2016.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385,
2015.

[10] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Ku-
mar, Shubham Jain, Jose Sotelo, Aaron Courville, and Yoshua
Bengio. Samplernn: An unconditional end-to-end neural audio
generation model. arXiv preprint arXiv:1612.07837, 2016.

[11] Waybackprop. https://magenta.tensorflow.org/blog/2017/

06/01/waybackprop/.

[12] Jose Sotelo, Soroush Mehri, Kundan Kumar, Joao Felipe Santos,
Kyle Kastner, Aaron Courville, and Yoshua Bengio. Char2wav :
End-to-end speech synthesis. Workshop track - ICLR 2017, 2017.

[13] Aäron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. CoRR,
abs/1601.06759, 2016.

51

https://magenta.tensorflow.org/
https://magenta.tensorflow.org/blog/2017/06/01/waybackprop/
https://magenta.tensorflow.org/blog/2017/06/01/waybackprop/

52 Bibliography

[14] Sergei Turukin. Pixelcnn. http://sergeiturukin.com/2017/02/
22/pixelcnn.html.

[15] Kundan Kumar. Pixelcnn code. https://github.com/

kundan2510/pixelCNN.

[16] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman,
Douglas Eck, Karen Simonyan, and Mohammad Norouzi. Neu-
ral audio synthesis of musical notes with wavenet autoencoders.
CoRR, abs/1704.01279, 2017.

[17] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Es-
peholt, Alex Graves, and Koray Kavukcuoglu. Conditional im-
age generation with pixelcnn decoders. CoRR, abs/1606.05328,
2016.

http://sergeiturukin.com/2017/02/22/pixelcnn.html
http://sergeiturukin.com/2017/02/22/pixelcnn.html
https://github.com/kundan2510/pixelCNN
https://github.com/kundan2510/pixelCNN

	Abstract
	Résumé
	Keywords
	Acknowledgments
	1 Introduction
	State of art
	2 State of art
	2.1 Presentation of the host organization
	2.2 State of the art
	2.2.1 Motivation
	2.2.2 Learning automatically general sound transformation
	2.2.3 Feature extraction with long range dependencies
	2.2.4 Wavenet : an end-to-end algorithm to create music

	Methods
	3 Methods
	3.1 End-to-end networks
	3.1.1 Wavenet
	3.1.2 SampleRNN
	3.1.3 First experiences with existing networks
	3.1.4 From PixelCNN to Wavenet

	Learning the pitch shifting function
	4 Learning the pitch shifting function
	4.1 Dataset construction
	4.1.1 Pitch shifting
	4.1.2 Learning different amplitudes
	4.1.3 Learning different frequencies
	4.1.4 Dataset generalization

	4.2 NSynth : a way to save several sound features
	4.2.1 The network
	4.2.2 Experiments

	5 Conclusion
	Bibliography

