
D E E P L E A R N I N G F O R M U S I C A L S C E N A R I O I N F E R E N C E A N D
P R E D I C T I O N

Application to structured co-improvisation

théis bazin

ENS Cachan, Université Paris Saclay

Under the supervision of
philippe and jérôme

IRCAM, UMR STMS 9912

Paris 75004, France
Équipe Représentations Musicales

Master’s degree
SAR/ATIAM

Faculty of Computer Science
Université Pierre-et-Marie Curie / IRCAM / Télécom ParisTech

March–July 2016

Théis Bazin: Deep learning for musical scenario inference and prediction,
Application to structured co-improvisation, © March–July 2016

A B S T R A C T

The field of musical scenario inference aims at developing systems and
algorithms to automatically extract abstract temporal scenarios in music.
We call scenario any underlying symbolic sequence that constitutes
a higher-level abstraction of an original input sequence. Such an un-
derlying sequence implicitly encodes the temporal relations between
events in a musical piece by producing an ordered series of symbols.
Musical works exhibit temporal dependencies at multiple time-scales,
from local melodic events to long-term harmonic progressions.

Multiple systems have been introduced in order to capture short or
long term dependencies between musical events. Nonetheless, exist-
ing systems fail at taking into account the interactions between these
various time scales.

In this research project, we propose a method to tackle this issue
and infer abstract scenarios through the use of deep recurrent neural
networks. We introduce a system that is able to extract an abstract
sequence of symbols from an input musical sequence, as well as per-
form predictions on the probable continuations of this sequence.

A theoretical application to the co-improvisation problem is intro-
duced. Co-improvisation engines seek to generate new sequences re-
sembling some example input sequence. A crucial aspect of such co-
improvisation systems is the ability to introduce anticipations, so as
to generate transitions between different parts. This requires knowl-
edge of some underlying scenario to the generation. Existing systems
that offer prediction capacities rely on a pre-defined abstract scenario.
The architecture we propose would improve on this by replacing this
pre-defined scenario with one automatically inferred in real-time by our
scenario inference and prediction tool, incorporating dynamically re-
fined short-term predictions over the future. Through dynamic training
via adversarial training, this system can furthermore improve the accu-
racy of its predictions in real-time.

Keywords— musical scenario inference, machine learning, neural
networks, deep learning, recurrent networks, co-improvisation, style
modeling

iv

A C K N O W L E D G E M E N T S

First and foremost, many thanks to my advisors for tutoring me dur-
ing this internship.

To Philippe, thank you for your fine insights into deep learning,
which I’m sure will benefit me in the years to come – and for the
nice cat T-Shirts whose pictures brought me a decent share of likes
on Facebook ©.

To Jérôme, I am grateful for your continuous efforts in helping not
lose focus of the musical task at hand and keep the concepts clear
and precise. Thank you, too, for the occasional wise word on keeping
a cool head in the (at times) stressful world of academia – and for
the nice dance animation, though I’m not really sure if you are to be
thanked on that one.

Thanks to the ATIAM pedagogical team for the large overview of
the field of musical sciences you offered us during this semester.

A very special thank you to Cyrielle for allowing us to grab food
from the delicious buffets so many times.

Thanks to my tutor at ENS Cachan, Hubert Comon, for his most
helpful and reassuring availability.

Many thanks also to Jonathan Laurent for partially proofreading
this report as well as very helpfully proofreading many of my life
choices. I wish you all the best at CMU!

Thanks at last to my mother, without whom I would not be where
am I now. (Or anywhere else, for the matter.)

v

C O N T E N T S

i introduction 1

1 context 2

2 deep learning for musical scenario inference 5

2.1 Existing approaches . 5

3 machine learning 8

3.1 General notions . 8

3.2 Neural networks . 11

3.3 Deep neural networks 16

3.4 Convnets and high-level representations 19

4 recurrent neural networks 22

4.1 Generic RNN . 22

4.2 Long Short-Term Memory 23

ii prediction and abstract scenario inference 26

5 chroma prediction 27

5.1 Data . 27

5.1.1 Dataset split . 27

5.2 Model . 28

5.2.1 Slicing the examples 28

5.2.2 Temporal horizon of prediction 28

5.3 Metrics on chromas . 29

5.4 Implementation and hyper-parameters optimization . 30

5.5 Results . 31

6 chroma symbolization 32

6.1 Clustering . 32

6.2 Evaluation . 33

iii co-improvisation and style-adaptation 34

7 a structured co-improvisation architecture 35

7.1 On co-improvisation systems 35

7.2 Structured co-improvisation with inferred short-term
scenario . 37

7.3 Software architecture . 37

8 style-adaptation 39

8.1 Naive finetuning . 39

8.2 Adversarial training . 40

8.2.1 Variational autoencoders 40

8.2.2 Adversarial networks 41

8.2.3 Style adaptation via adversarial training 42

8.3 Evaluation . 42

vi

contents vii

Conclusion 43

bibliography 45

L I S T O F F I G U R E S

Figure 1 Definition of an artificial neuron 12

Figure 2 Transformation of the input space learned by a
neural network (via [41]) 15

Figure 3 Three layers of a Multi-Layer Perceptron 17

Figure 4 Rectified Linear Unit activation functions . . . 20

Figure 5 Sample (left) and features (right) from the MNIST
dataset (via [1]) 21

Figure 6 Unfolding an RNN through time (via [40]) . . 23

Figure 7 Long Short-Term Memory unit 24

Figure 8 Proposed prediction and symbolization archite-
cure . 26

Figure 9 Clusters computed by k-means, k = 3 33

Figure 10 Proposed co-improvisation architecture 38

Figure 11 Autoencoder . 41

viii

A C R O N Y M S

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NN Neural Network

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

VAE Variational Autoencoder

ix

Part I

I N T R O D U C T I O N

In this introduction, we first present the general problem
of musical underlying abstract sequence inference. We then
present an overview of this field of research, from formal
methods to statistical approaches.

Finally, we focus on the techniques applied in this research
project and propose an introduction to the key machine
learning concepts at stake.

1
C O N T E X T

Computational music analysis aims at offering ways of extracting
semantical information from either symbolic or signal-level music.

Various approaches to this analysis exist [45], with varying goals.
These range from the study of the instantaneous evolution of concrete
sound properties such as timbre, e. g. via Fourier transforms or, more
generally, audio features, to more formal approaches, focusing on the
extraction of underlying high-level representations which represent an
abstraction of the analyzed music.

In the context of the present research project, we focus on this
second group of approaches and seek to provide methods to extract
abstractions from raw music. We will therefore consider musical struc-
ture as being any sequence of symbolic labels which constitutes a higher-
level representation of an input musical sequence: we call such a de-
scriptive sequence a scenario. Thus, a given abstract scenario can be
(though potentially not in a unique way) instantiated back into its
original sequence. Examples of such musical scenarios include har-
monic progressions (e. g. the Blues grid) or, at a more semantical level,
functional analysis of chords (e. g. Schenkerian anaylsis [16]).

The extraction of abstract sequential representations can thus be
seen first as a musicological tool, offering musical representations [45].
It can also be used to perform structured predictions, by proposing
some potential continuation(s) to a given sequence based on the com-
puted scenario. Furthermore, it can be used in conjunction with other
tools to enhance them with knowledge automatically inferred from
this analysis.

These approaches are closely related to those applied in the con-
text of natural language processing (NLP) [12], which aims at extracting
meaning from syntactic textual information. The computational advan-
tages of both disciplines are the same: they help machines put some
meaning and sense into syntactic data. Algorithms can then reason and
make structured computations on those high-level abstractions.

Applications in NLP include for instance sentiment analysis (also
called opinion mining), which aims at inferring the opinions (either
positive or negative) associated with text fragments, e. g. for market
analysis of user reviews on Amazon products or trend analysis on
Twitter topics. NLP language models and algorithms also drive the
speech recognition methods used in systems such as Apple’s Siri or
Google’s Google Now, as discussed in the review by Henderson [23].

2

context 3

In effect, techniques applied in NLP can often be applied to the in-
ference of musical scenarios, since both operate on abstract sequences
of symbols. This is the case for instance for the tools (deep recurrent
neural networks) we apply in our project, which were applied with
success to text analysis [49].

Systems for the inference of underlying scenarios in music exist in
various forms, some of which are aimed at capturing arbitrary long-
term dependencies in music. Yet, they fail at properly structuring
and disentangling the various time-scales at which a music piece can
unfold.

This is the problem of multiscale music analysis for scenario inference,
which we propose to tackle through the use of deep recurrent artificial
neural networks (deep RNNs). These machine learning systems have
proved successful at learning temporal pattern hierarchies at multiple
scales in the context of NLP [49].

In this respect, we train deep recurrent neural networks (deep
lstms) to perform sequence prediction and symbolization on musical se-
quences. Our system takes as input a sequence of chroma vectors and
both:

• Predicts (one or more) probable subsequent chroma vectors,

• Symbolizes the chroma via clustering.

This indeed infers a representative abstract sequence from a concrete
musical sequence, incorporating short-term lookahead into the fu-
ture.

Then, applying this tool, we imagine the prototype for an archi-
tecture for co-improvisation. Co-improvisation seeks to learn some
notion of sequential structure from a corpus of musical examples
and synthesize new musical sequences compatible under some cho-
sen criterion with the input corpus and can be used for instance in
a live accompaniment context, generating some backing music for a
human improviser.

In a co-improvisation context with a live human improviser, two
key features of a good system arise:

• The ability to adapt reactively adapt to the musician’s dynamic
parameters, e. g. pitch, volume or note density,

• The ability to perform anticipations on the music played by the
musician, which allows the systems to introduce smooth tran-
sitions, e. g. cadences or modulations, in synchronization with
the human improviser.

Existing reactive co-improvisation architectures [3, 37] do not allow
the introduction of additional temporal constraints, either short-term

context 4

or long-term: they operate at a completely local scale. Existing systems
for guided co-improvisation with anticipations [39] require some pre-
defined scenario that both the musician and the machine are expected
to follow. Thus they cannot provide anticipations for an completely
free improviser, for which no a priori temporal scenario has been
defined.

The system we outline would thus bridge the gap in existing co-
improvisation systems with an architecture able to both reactively
adapt to a musician and provide anticipations without any prior knowl-
edge about the music played by the musician, thanks to the notions of
musical structure learned by our prediction systems on a vast corpus
of musical works. Such a behaviour would be more in par with that
of a real improviser, who continuously listens to the music played by
his fellow improvisers to estimate the current direction of the impro-
visation and play accordingly.

We also envision an original way of further adapting this to a par-
ticular musician’s style, using adversarial networks, a means of training
networks to generate examples indistinguishable from a provided dis-
tribution of example data. A brief review of generative networks and
adversarial training is proposed.

Note that these applications are still under work and remain some-
what prospective.

We first present a review of the field of computational musical
scenario inference. We then introduce the tools applied specifically for
this research project. To that end, an introduction to the key machine-
learning concepts used is proposed.

After this introduction, we present the chroma prediction network we
propose. This model allows to infer a sequence of symbols from a
sequence of chroma vectors and predict (one or more) probable sub-
sequent chroma vectors. Using it in real-time allows to analyze the
music played by a live musician and anticipate his playing through
prediction. We also present the techniques applied for the symboliza-
tion step of our proposed scenario inference system.

Finally we introduce the prototype for hybrid reactive/structured
musical co-improvisation we envision, making direct use of the sce-
nario inference technique we propose. We also present the theoretical
style modeling framework we will be developing. To this end, a re-
view of adversarial training is proposed.

2
D E E P L E A R N I N G F O R M U S I C A L S C E N A R I O
I N F E R E N C E

The field of musical scenario inference focuses on both the processing
of symbolic or signal representations of music. It aims at extracting ab-
stract underlying temporal representation(s) from given music pieces [45].
These abstract representations can take various forms, as will be seen
in the different approaches presented below. Their binding trait is
that these representations are expected to encode in a computational
form some high-level temporal properties of the musical sequences
considered.

2.1 existing approaches

A variety of approaches have been proposed for the inference
of musical scenarios. These can be roughly divided into two main
groups: approaches based on formal methods on one side and statis-
tical models on the other side.

formal methods The first group of approaches entails models
and representations which require to some extent a formal model of
music. As such, these might prove more capable of providing inter-
pretable insights on the structure of the analyzed music.

Within this field, the work on grammatic structures in music by
Lerdahl and Jackendoff [34] is significant. Their Generative Theory of
Tonal Music develops a generative musical grammar incorporating el-
ements of cognitive science. It aims at reproducing the way a listener
unfolds and understands the temporal structure of a musical work.

A similar grammatic approach has been proposed for the automatic
extraction of harmonic content, by classifying series of chords in a
piece based on a structural and sequential hierarchy. This has been
developed in the strongly typed functional programming language
Haskell by De Haas et al. [14] and draws on works on context-free
grammars for the modeling of Western tonal harmony by Rohrmeier
[47].

Even though these methods provide a form of high-level seman-
tics for music generation, they remain inherently limited by the fact
that they require strong assumptions on the structure of music itself.
Indeed, in the context of Rohrmeier’s study for instance, constraining
music to follow a generative grammar structure might be too limiting.

5

2.1 existing approaches 6

statistical models The second group of approaches is defined
by techniques based on statistical models. These are radically differ-
ent from formal approaches in that they attempt to extract sequential
evolutions by analyzing musical examples rather than by fixing a pri-
ori rules on the music. Statistical approaches thus trade the insights
offered by strict formal methods for greater flexibility. By imposing
less a priori assumptions on the structure of music, those methods
are, therefore, more able to extract unexpected structure as opposed to
methods which are constructed to extract musical scenarios that one
specifically looks for.

Nowadays, musical scenario inference is also commonly used as an
application example in general machine learning papers, even by au-
thors not originally from the field of music informatics (e.g. the recent
paper by Paiement, Bengio, and Eck [43]). Audio or symbolic music
time-series are sequences of n-dimensional vectors, with a large quan-
tity of data available in the form of MIDI or audio files.

Amongst methods of underlying sequence uncovering using clas-
sical statistical approaches, Hidden Markov Models (HMMs) have been
widely popular for their ability to automatically develop a structured
(though necessarily finite) memory of their input data. One can men-
tion the work of Paiement, Bengio, and Eck [43], in which they apply
HMMs to the problems of chord instantiation (the choice of notes for
a given chord) and melodic prediction. Another example is the study
by Raphael and Stoddard [46] of the use of HMMs for functional
harmonic analysis.

Moving on to more recent methods, a wide number of approaches
– including the one presented in this report – leverage deep learning
techniques. We present an overview of the key concepts in deep learn-
ing in Chapter 3. Briefly put, deep neural networks have the advan-
tage, compared to other machine learning techniques, of being very
flexible in terms of learning [5].

Indeed, they are built around hierarchical successions of several linear
and non-linear operations and as such are capable of computing highly
non-linear functions through successive non-linear transformations of
their input data. In comparison, Support-Vector Machines rely on a
single non-linear kernel and therefore have a more limited capacity
in handling complex data.

As a first example of symbolic scenario inference systems leverag-
ing deep learning, we mention the work of Soltau et al. [53]. They use
standard neural networks with an ad-hod, hardcoded notion of time
to perform temporal structure analysis on music for style inference.

Seemingly even more adapted to the analysis of musical time-series
are recurrent neural networks (RNNs). These neural networks are built

2.1 existing approaches 7

specifically for the analysis of time-series and try to capture temporal
dependencies in the sequences they analyze. (More details on these
techniques are given in Chapter 4.)

Using recurrent neural networks has the advantage of involving
very few assumptions on the analyzed music: the only assumption
is that the music should embed some form of underlying temporal
structure that can be witnessed through statistical regularities. Hence,
a system that defines a mechanism for memory will be able to extract
temporal knowledge and, then, perform inference and predictions on
the music.

An example of such work is the paper by Boulanger-Lewandowski,
Bengio, and Vincent [10], which makes use of the RNN-RBM model
(a kind of deep generative graphical model) to tackle the task of melodic
prediction: “given a sequence of symbolic music, predict the next mu-
sic vector in the melody”.

RNNs give promising results in capturing long-term dependencies
in music. However they still do not address the issue of multi-scale
evolutions, which is a crucial issue for the proper analysis of musical
scenarios.

This research project is aimed at tackling this issue through the use
of deep recurrent networks.

Lastly, promising current results blend statistical approaches with
the formal methods described previously: the project MorpheuS1 [24]
aims at mixing traditional machine-learning (iterative optimization
algorithms) with elements of formal harmony theory. This goes to
show that the two groups of approaches described are not completely
disconnected from one another but can benefit from one another.

The approach to scenario inference we propose thus falls within
the scope of statistical methods. It makes use of deep recurrent neural
networks, namely deep lstms.

1 Hybrid machine learning - optimization techniques to generate structured music
through morphing and fusion.

3
M A C H I N E L E A R N I N G

We now propose a selective review of the field of machine learning,
by introducing its required general notions.

Then, we focus on the tools applied in our research project, namely
neural networks and their more modern evolution, deep neural networks.
First, we present the basic blocks of neural networks, artificial neu-
rons. Then we show how standard neural networks by combining
such neurons. Finally, in order to better understand the inner work-
ings of neural networks, we present the example of convolutional neu-
ral networks, which compute high-level features over the data they are
fed with.

3.1 general notions

In this preliminary section, we introduce the generic notions required
for machine learning approaches, from the definition of the problems
considered to the general gradient-based training techniques.

function approximation Most machine learning techniques
can be formally seen as a means of estimating a function.

That is, given an unknown function f : F → G between two (of-
ten high-dimensional) spaces F (the input space) and G (the output
space), find an estimate f̃Θ of f dependent on a set of parameters Θ.

The parameters Θ can be chosen to be a multi-dimensional vector
storing the values of each parameter in the machine learning system,
for instance the positions of the centroids in the k-means method or
the connexion weights in a neural network.

problem definition One often has a high-dimensional input
space F = Rn and seeks to obtain output values in either G = Rm or
G = {g1, ...,gm}, a finite set of abstract labels.

Canonical examples for G = Rm are regression problems, where one
tries to approximate a vector function between two high-dimensional
real spaces, that is, a transformation of the input data. A popular exam-
ple of regression is polynomial regression, a very simple model which
attempts to fit a polynomial to a set of values, thus allowing to de-
scribe them with a limited set of polynomial coefficients as well as
perform interpolation on the values of the unknown function under-
lying the data.

Traditional examples of problems where the output space G is finite
are classification problems: given some distribution of data, partition

8

3.1 general notions 9

the distribution into a set of classes. A popular classification prob-
lem is the problem of mapping handwritten digits to the integer they
represent. This problem has been well studied within the machine
learning community [32], as will be presented in Section 3.4.

metric and error To define and quantitatively evaluate the qual-
ity of the approximate function f̃Θ, one needs a metric on the output
space, i.e. a function d : G× G→ R.

Given the metric d on G and a current value of the parameters Θ,
the point-wise error on a single data point x in F is defined as

d(f(x), f̃Θ(x))

Note that, ideally, one would use a norm ‖ . ‖ on the functional
space F → G and try to minimize the quantity ‖f− f̃Θ‖. This would
ideally lead to a perfect estimation, with optimal parameters Θ∗ such
that ‖f− f̃Θ∗‖ = 0, i.e. f̃Θ∗ = f. But performing the optimization on
the functional space as a whole is impossible, since one does not have
knowledge of f. This inherent limitation is the reason behind the intro-
duction of the core principle of machine learning, which is defined as
training by examples.

training by examples , error minimization Approximat-
ing the function f (learning it) is done by an iterative process of error
minimization on a given set of training examples, for which the value of
the input function f is known.

Formally, the training examples are provided as a set of N pairs
(xi, f(xi))i with i = 1 . . .N and xi ∈ F for all i.

The total error, or loss, L over the dataset is then defined as

L(Θ) :=

N∑
i=1

d (f(xi), f̃Θ(xi))

The goal of the training process is therefore to minimize the loss L,
i.e. trying to find the optimal value Θ∗ of the parameters such that

Θ∗ = arg min
Θ

(L(Θ))

gradient descent and learning rate A standard way of
performing this error minimization is through gradient descent.

Informally, gradient descent amounts to blindly looking for the low-
est point in a mountains field: because of the absence of visibility, one
can only make decisions on which path to follow based on local in-
formation. Then, gradient descent consists in repeatedly picking the
direction of steepest descent as the best direction available. In that sense,
gradient descent is a greedy algorithm [9].

The main issue with gradient descent is the fact that a mountains
field can very well have numerous valleys, that is, several local minima.

3.1 general notions 10

Furthermore, based solely on local information, one is unable to assess
whether a given local minimum is a global minimum. Local minima may
thus hinder the algorithm from finding a global optimum.

In mathematical terms: provided that the error function L is differ-
entiable with respect to the parameters Θ (providing, for any Θ the
gradient ∇ΘL(Θ)), looking for the optimum Θ∗ can be done in an
iterative fashion with elementary parameter updates of the form

Θt+1 ← Θt −α ∗∇ΘL(Θt)

In this formula, α, an external parameter (or hyper-parameter) of the
training algorithm, is called the learning rate. If gradient descent is
seen as a means of taking successive steps in the direction of greatest
decrease of the loss function with respect to the parameters, then α
controls the size of those steps.

This method does not necessarily yield the optimal Θ for error func-
tions which have multiple local minima. However it has been shown
to converge to a local minimum, provided that α be small enough [52].
Indeed, big values of α will often yield faster convergence but can
also lead to a slower or even divergent training, by causing the error
function to “jump” over the minima as the update steps are too large.

optimized learning rate Advanced versions of gradient de-
scent exist, which involve automatic adjustments to the learning-rate.

For instance, the method ADAGRAD [15] uses parameter-specific
updates of the form

Θkt+1 = Θ
k
t −

α0√
Gk + ε

∇L(Θkt)

for each parameter Θk, where α0 is the initial learning rate and Gk
is proportional to the square root of the sum of the squares of the previous
gradients applied to parameter Θk.

That is, a progressively decreasing learning-rate adapted to each of the
parameters is used, allowing to:

1. Perform larger steps at the beginning of the optimization, when
the distribution of parameters may lie far from any minimum of
the error function, so as to quickly move around the parameter
space and cross several local minimum areas,

2. Progressively lower (proportionally to the norm of the cumulated
gradient applied to each parameter) the learning rate for each pa-
rameter individually. Parameters which have received strong
updates are supposed to have left their initial random area and
hopefully reached a zone near a minimum, thus the gradient
updates become more refined to avoid “jumping” over this lo-
cal minimum.

3.2 neural networks 11

The ADADELTA method [56] further improves on ADAGRAD by
allowing the learning rate for each parameter to periodically increase,
thus avoiding the convergence of the learning rates towards 0 implied
by ADAGRAD. This allows the parameters to keep varying, rather
than receive infinitesimally small updates after a while.

stochastic gradient descent (sgd) Other forms of gradient
descent have been proposed, based on the behaviour of the algorithm
at the first steps of optimization, after a random initialization of the
parameters. In this early optimization stage, the parameters may be
in a rather “flat” zone, with no clear direction for the closest local
minimum.

Performing gradient updates based on a gradient computed over
the whole dataset may therefore have only a dim impact on the error
value, specially when this dataset is large (datasets with size greater
than one million examples are not uncommon [8, 26]).

One way of tackling this issue is SGD (Stochastic Gradient Descent) [9],
a widely popular alternative to vanilla gradient descent. SGD oper-
ates on mini-batches – small sets training examples sampled at ran-
dom from the training set – rather than on the full training set. The
idea is that these small gradient updates are faster to compute and
that quickly performing many updates using randomly chosen exam-
ples allows to “scan” the error space and hopefully get closer to a
minimum. Once an area close to a minimum has been reached, per-
forming standard gradient descent on the full dataset will become
meaningful and one can thus switch back to standard gradient de-
scent after a few steps of SGD.

3.2 neural networks

In this section we begin to introduce neural networks, a specific
type of machine learning systems which has proved very efficient in
many tasks in the last few years.

Neural networks are defined as connectionist systems: they are built
by connecting several identical computation modules, namely neu-
rons. In this section, we first present the definition of a single neuron.
In the next section, we then build a perceptron, the most basic kind of
neural network, by connecting several neurons.

definition Artificial neurons (as shown in Figure 1), were defined
by McCulloch and Pitts [35]. They are the building brick of neural
networks.

3.2 neural networks 12

A single artificial neuron is a function f̃ : Rn → R defined asf̃(x) = φ(y)
y = 〈x,w〉+ b = b+

∑n
k=1 xk.wk

Hence, it is composed of:

1. A transfer function: a function mapping an input to a single
value. Usually this function is a dot-product, a linear projection
of the input vector on a vector w, which outputs a weighted
sum of the inputs. For flexibility, a constant term, the bias, b is
added to this transfer function (otherwise, neurons could not
even approximate a non-zero constant).

The computed value y (in R) is called the pre-activation.

2. An activation function φ: a non-linear function applied on the
pre-activation y.

Figure 1: Definition of an artificial neuron

interpretation The algorithmic idea behind the transfer func-
tion is that the neuron is expected to take a decision and output a
given value y based on all of its inputs. Therefore, a function is needed
that aggregates all inputs into one meaningful value, on which to per-
form the decision. This is the main “trainable” operation of the neu-
ron, indeed the weights wk of the projection vector are the variable
parameters Θ that are optimized during training.

After this information aggregation has been done, yielding the acti-
vation y, the activation function φ computes the actual value o = φy

returned by the neuron.
Commonly used non-linearities φ include: the hyperbolic tangent,

the sigmoid functions or the Rectified Linear Units [18, 31].

3.2 neural networks 13

decision problems A large class of machine learning problems
can be fruitfully seen as binary decision problems: “given an input x,
does x satisfy some property P?”. This will allow us to give some
interpretations of the computations done by neurons.

In this context, the activation function is the function that performs
the decision making. An example of such decision function φ is the
Heaviside function, H, the most simple function which performs binary
decisions on real-values. It is defined as

H : x 7→

1, x > 0

0, otherwise

Example. An example of a decision making problem that can be natu-
rally performed by a neuron is the problem of evaluating the position
of point on the real plane R2, e.g. with respect to the line (an affine
hyperplane of R2) L of points with y-coordinate 1, i.e. L defined as

L = {

(
x

y

)
∈ R2| x ∈ R,y = 1}

Indeed, to decide if a point x with coordinates (x1, x2) lies above
the line L, one can compute the projection 〈x,w〉 of x on the vector

w orthogonal to L, that is, w =

(
0

1

)
. This yields the value x2. Then

x lies above L if and only if x2 > 1, or equivalently x2 − 1 > 0, i.e.
H(x2 − 1) = 1.

We can then write x2 − 1 = 〈x,w〉− 1, i.e. we set the bias b to −1.
Then one can perform this operation using an artificial neuron with

weightsw =

(
0

1

)
, bias b = −1 and activation functionH. This neuron

outputs 1 for a given input point if and only if it lies above the affine
vector L, otherwise it outputs 0.

geometrical interpretation We have presented the interpre-
tation of a neuron as a means of making decisions. A neuron can also
fruitfully be interpreted geometrically as a transformation of its input
data.

To begin with, note that networks use generic activation functions,
not tailored specifically to the problem and the data at hand.

Given a particular problem to solve, then, the solution might be
hard to evaluate on the raw data using only generic functions. The
neuron must therefore learn to transform its input data (in effect “bend-
ing” the input space F) in order to find a transformed space in which
this decision making can be found as a linear separation, i. e. amounts
to splitting the space with an hyperplane, as can be done with a neu-
ron.

3.2 neural networks 14

Indeed, a neuron first performs a projection of its input data on
an hyperplane of the input space. The optimal direction and affine po-
sition of this hyperplane given the problem to solve is learned by the
algorithm. After this projection has been computed, the subsequent
non-linear function can be seen as a deformation of the hyperplane on
which the data is projected. This allows to project on more complex
manifolds than hyperplanes.

features interpretation A final, alternative interpretation of
the behavior of a neuron is in terms of feature detection.

In the neuron’s definition, the dot-product y = 〈x,w〉 of the input
x with the internal vector w yields an estimation of the alignment of
those two vectors. This follows the definition

〈x,w〉 = ‖x‖.‖w‖. cos(θ)

with θ the angle between x and w, which is maximal when x and w
are aligned, i.e. equal up to rescaling.

Thus a neuron operates as a detector for a given feature w: it outputs
a maximal result when its input is aligned with w.

perceptron The single neuron is a function from a multi-dimensional
vector to a single real. In order to approximate multi-dimensional func-
tions, we introduce the perceptron.

A perceptron g : Rn → Rm is a collection of m individual neurons
g1, . . . ,gm, with weight vectors w1, . . . ,wm each of dimension n and
non-linearity φ (identical for all neurons). All neurons gi take the
same vector x as input and each outputs one dimension of the output

vector, i.e. for a given x in Rn, g(x) =

g1(x)

...

gm(x)

.

Mathematically, a perceptron performs:

• A matrix-vector multiplication,Wx, where the matrix W is com-
posed of the weight vectors for each individual neuron, in lines:

W =

(w1)>

...

(wm)>

• Followed by a point-wise application of the non-linearity φ:

φ(x) =

φ(x1)

...

φ(xn)

3.2 neural networks 15

Informally, perceptrons make use of different neurons, each trained
to solve one simple task, to combine their outputs and solve a more
complex task.

Example. Using three neurons, one can decide whether a point

(
a

b

)

of R2 lies in the first quadrant Q = {

(
x

y

)
| x > 0 and y > 0}.

In order to do so, one trains a neuron to detect if the point lies
above the horizontal axis, and a second one to detect if it lies right of
the vertical axis, which yields a new vector of R2.

Finally, one can use a third neuron on top of the outputs of those
two neurons to check whether they both output the value 1. Note that
in doing so, we have actually built a multilayer perceptron (presented
in Section 3.3). It can be proved [36] that solving this toy problem with
neural networks can only be done using at least two layers.

Another example is shown in Figure 2, which illustrates the idea of
input space bending. The task is to predict if a point in R2 belongs to
either the blue or the red part of the space. As illustrated, the input
dataset cannot be split by a line.

After going through the first layer, composed of two neurons with
sigmoid as non-linearity, the input space has been transformed as
shown below. The two regions are now separable using a line and
a single neuron above the outputs of this layer can indeed solve the
problem.

Figure 2: Transformation of the input space learned by a neural network
(via [41])

data representation With the previously introduced interpre-
tation of neurons in terms of feature detection, the perceptron can
also be seen to detect a set of features in its inputs. In this perspective,
a perceptron with m parallel units returns, for a given input, a vector
of size m containing the activation of each of the m feature detectors.

Let us stress the fact here that the interest of neural networks specif-
ically lies in the fact that these features (i.e. the weight matrix W) are

3.3 deep neural networks 16

automatically learned. That is, they are chosen and adjusted to com-
pactly describe and therefore optimally approximate the function f.

The output of a perceptron can therefore be interpreted as an alter-
native representation of the input data, in terms of explanatory features.

training The gradient-descent algorithm on single-layer percep-
trons is rather trivial. If the non-linearity φ is differentiable, the func-
tion computed by the perceptron is the composition of a linear op-
eration and a differentiable function, its derivative can therefore be
computed using the chain-rule.

Following the notations used for a single neuron, we denote as yi

the quantity fed into the activation function for neuron gi, i.e. gi(x) =
φ(yi).

The gradient value at x in Rn for the weight wij of the neuron gi is
then equal to

∂g

∂wij
(x) =

∂φ

∂yi
(yi) · ∂y

i

∂wij
(x)

= φ ′(yi) ·
∂
(
bi +

∑n
k=1 xk.wik

)
∂wij

(x)

= φ ′(yi) · xj

note : parameter initialization In the absence of any pre-
liminary knowledge of the data considered, the initial parameter dis-
tribution can only be initialized by being randomly drawn from some
chosen distribution.

Standard distributions as the uniform or normal distributions for
instance can be used. More advanced methods exist though, aimed
specifically at special machine learning architectures, such as kaiming
for neural networks using Rectified Linear Units [22].

3.3 deep neural networks

principle of compositionality A motivation behind the use
of deep architectures is the principle of compositionality. This principle
states that real-world observations can be explained by the composition
of elementary elements (e.g. the ocean is made of water drops, which are
themselves made of water molecules, in turn made of atoms, down
to the sub-atomic particle level).

Remark. Compositionality in tonal music
This principle appears to apply fittingly to Western tonal music,

where a polyphonic music piece is composed of individual voices, them-
selves built in musical phrases, each made of consecutive chords and
those chords are made of elementary notes.

3.3 deep neural networks 17

This observation motivates the application of such compositional
approaches to music. Note that this is the sole assumption made about
the musical structure.

multi-layer perceptron A Multi-Layer Perceptron (MLP) is a
network composed by a succession of perceptrons, each called a layer
of processing.

The inputs of the perceptron at layer n+ 1 are the outputs of the
perceptron at layer n. An example of MLP is displayed on Figure 3.
In this Figure, the neurons j and i respectively at layers (n− 1) and n
are connected with a weight Wn

ji.

Figure 3: Three layers of a Multi-Layer Perceptron

Note that the non-linearity φ on the output of each layer becomes
crucial in the context of MLPs. Indeed, if we only performed a linear
operation at each layer, then the whole network would compute a suc-
cession of linear operations, i.e. it would be equivalent to computing
a single linear operation.

In order to approximate more complex functions that linear ones,
the non-linearities are therefore required.

motivations We have seen how to define a single perceptron
layer.

Why would one want to use more layers? During the course of our
running example of point location in R2, note that we introduced a
second layer to be able to locate a point with respect to two distinct
lines. One could wonder if this second layer was really necessary. In-
deed, one could think solving this seemingly simple problem would
be possible by using a single layer perceptron. It turns out that this is
not possible, as was formally proved by Minsky and Papert [36].

In this paper, it is shown that adding more layers to a network
does augment its representation power: there are classes of functions
which cannot be approximated using a single layer perceptron, but
can be approximated by adding more layers to the network. Further-

3.3 deep neural networks 18

more, adding layers to a network can drastically (exponentially) reduce
the number of units needed to solve a given problem.

training : backpropagation The canonical gradient descent
algorithm on MLPs is called backpropagation and was introduced by
Rumelhart, Hinton, and Williams [48].

The back-propagation algorithm is initialized at the output layer of
the network, where the network’s error is computed. It then consists
in estimating, for any given example, the contribution of each neuron
to the global error on this example. The weights of each neuron are
then adjusted so as to minimize this individual contribution.

If the non-linearity φ and the metric d are differentiable, the gradi-
ent of the error can be computed by application of the chain-rule.

The main advantage of backpropagation is that it requires a num-
ber of computations linear in the number of units of the network.

vanishing gradient and lack of computational power

An issue empirically occurs when training deep networks, called the
vanishing gradient [17]. This relates to the fact that the gradients in a
deep network tend to get exponentially smaller as one goes from the
output layer to the input layer.

This can lead to a situation where the gradient of error on the first
layers is so small that the updates have no quantitative effect on the
parameters. In that case, the first layers of the network are not trained.
This is a serious problem, since they are randomly initialized and, if
they are not trained, their effect on the input data is simply to mangle
it.

This is due to the fact that the recursive expression of the gradi-
ent obtained by the chain-rule is multiplicative (because the chain-rule
itself is multiplicative). Add to this the fact that the most widely
used non-linearities in the 90s and beginning of the 2000s were sig-
moid and the hyperbolic tangent, which have derivative with norm
bounded in [0, 1]. Using such non-linearities, at each layer during
backpropagation, the initial gradient of error is multiplied by quanti-
ties always less than 1. In that case, the gradient shrinks exponentially
along the layers.

Note that the problem of the exploding gradient also exists. It occurs
when the quantities by which the initial gradient is multiplied are
always greater than 1, leading to exploding weights in the first layers,
with values too large to store.

Simultaneously, in the 90s and beginning of the 2000s, another
issue for deep learning was the lack of computational power and the
scarcity of data to analyze. Indeed, deep networks have a very high
learning power, with a lot of parameters (weights) to train, thus they

3.4 convnets and high-level representations 19

require intense computations to train, as well a a high quantity of
data to reach proper parameter estimations.

the deep learning revival These issues strongly held back
the development of deep neural networks until about 10 years ago
when Bengio et al. [7] introduced a new way of training these net-
works that got rid of the vanishing/exploding gradient issue.

This method, greedy layer-wise pre-training, consists in training the
layers successively to reconstruct their input, i.e. the output of the
previous layer. This proves very efficient in providing a good initial-
ization of the weights of the network and completely removes the risk
of vanishing gradients, since the gradients are never backpropagated
on more than one layer.

In the meantime, computational power had gratly increased, partly
thanks to the development of GPUs, computing units optimized for
matrix computations. The availability of data also greatly expanded,
with the development of the Internet providing a wealth of content
uploaded by individuals. An example is the Flickr dataset [26], which
contains one million of annotated pictures uploaded by individuals.

Altogether, this finally made it possible to train very deep net-
works and sparked a renewed interest for deep learning techniques.

training with rectified linear units Various other solu-
tions to the vanishing gradient problem have since emerged, the newest
and currently most popular of which proves empirically very effi-
cient. It makes use of specific non-linearities: Rectified Linear Units, or
ReLUs, as displayed in Figure 4.

ReLUs, defined as x 7→ max(0, x), are not smooth around zero,
which is theoretically a problem when computing the gradient.

In practice, implementations [13] ignore this non-linearity and sim-
ply trim the gradient to zero below zero.

Why ReLUs actually really work remains somewhat obscure, but
the results are currently the best available [18].

3.4 convnets and high-level representations

Note that although convolutional neural networks are not applied in
the following, they constitute an insightful illustration of the capacity
of deep neural networks to learn high-level features from their input
data, hence their presentation in this review.

convolutional neural networks Convolutional neurons, in-
troduced by LeCun et al. [33], are an extension of standard neurons
in which the transfer function, which maps the input to the value sent

3.4 convnets and high-level representations 20

−4 −3 −2 −1 0 1 2 3 4

x

−2

−1

0

1

2

3

4

f
(x
)

Nonlinearities
Rectified linear

Figure 4: Rectified Linear Unit activation functions

into the non-linear activation function, is a convolution with a learned
kernel.

These neurons search (through the convolution operation) for oc-
currences of their kernel in their input data and activate when this
feature is detected. The size of the learned features is a parameter of
the neuron.

Convnets are (usually deep) neural networks built using such con-
volutional neurons.

higher-level representations Convnets rely strongly on the
compositionality principle and compute successive higher-level rep-
resentations of their inputs.

Indeed, if one perceptron computes a high-level representation of
its input data, then, the perceptron at layer (n+ 1) computes a higher-
level representation of the representation computed at layer n. Now, given
that a convolutional layer operates by detecting occurrences of some
small-scale features within its input, then, in a Convnet, the convo- Convolutional

features of size 3× 3
are common for
picture analysis, see
for instance the
network built
in [51] to perform
image classification

lutional layer n+ 1 operates by detecting co-activations of the features
detected by the previous layer, that is, features at a bigger scale.

If the compositionality principle is respected, then such an approach
makes sense. Indeed, the data can be decomposed into a structure
made of blocks, themselves built by the simultaneous presence (co-
activation) of several smaller blocks. Each convolutional layer then
extracts a refinement of those structural blocks.

classification example : mnist To illustrate the idea of high-
level representations extraction, consider the concrete case of hand-
written digit classification, where one trains a system to associate pic-
tures of handwritten digits with the actual digit they represent.

This has been extendedly studied using the MNIST dataset [32]. A
sample from this database is presented in Figure 5.

In the context of pictures, the computed features will themselves
be pictures, i.e. a picture of a digit is recognized by decomposing it

3.4 convnets and high-level representations 21

Figure 5: Sample (left) and features (right) from the MNIST dataset (via [1])

over a set of elementary pictures. The above layers in the networks
operate on combinations of the features at their underlying layer.

Empirically, one observes that when training a convolutional net-
works on the MNIST dataset, the high-level features obtained resemble
those presented in Figure 5. The first layer features are small linear
edge detectors (the most simple of pen strokes). These basic features
are then used on the above layers to detect more and more complex
pen strokes, up to complete digit recognition. This indeed follows the
compositionality principle.

a note on learning power and quantity of data The
deeper a network and the more trainable parameters it has, the more
flexible it will be and the more complex functions it will be able to ap-
proximate. But this has a cost, as stated before, since a network with
many parameters will require many training examples to properly
approximate any given function (because its parameters lie in a very
high dimensional space). By showing the network many different ex-
amples, it is able to build a precise representation of the distribution
of the input data manifold.

Hence the following informal principle:

“The more data, the better”

Or, stated in another way, “data is the best regularizer”, in the sense
that plentiful data strongly constrains the network’s parameters to pro-
gressively reach their proper distribution.

This principle guided the choice of a very large dataset for the work
presented here.

4
R E C U R R E N T N E U R A L N E T W O R K S

Now that the general machine learning and deep learning notions
have been introduced, we presents a quick overview of the field of
recurrent neural networks: networks that deal with time series, ie.
functions of the time.

We consider in the following that the inputs to the network are
functions t 7→ x(t) of the discrete time t.

We start by introducing general recurrent neural networks. We then
move on to presenting the main model used in our research project:
lstm networks. These networks are known to give state-of-the-art re-
sults on time series analysis.

on learning and memory The main motivation for the intro-
duction of RNNs is the introduction of memory in learning. Indeed,
in order to properly analyze sequences that vary over time which can
follow arbitrarily complex structure and have some arbitrarily long
temporal dependencies, one requires some notion of memory.

4.1 generic rnn

RNNs are a way to deal with memory whilst alleviating the power
of neural networks. They are almost identical to standard NNs, to the
decisive difference that they have recurrent connections, which allow
them to carry the output of a particular neron at further time steps.
Hence, they operate sequentially on their input sequences and are fed
at step t both with their input data x(t) at time step t and the network’s
output o(t − 1) at the previous step. This allows for the transport of
some information within the network over time.

One can convert an RNN to a standard NN. To do so, one unrolls
the recurrent connections over time, by duplicating the layers at each
time-step and explicitly writing the memory connections. This yields
a standard NN. This process is illustrated in Figure 6.

For a network with non-linearity φ, the RNN learns two weight
matricesWin etWrec.Win operates on the inputs, andWrec operates
on the recurrent “feed-back” connexion (which feeds the network’s
output back into it).

Using these weights, the output at step t is computed according to
the following equation:

o(t) =Win · x(t) +Wrec · o(t− 1)

22

4.2 long short-term memory 23

Figure 6: Unfolding an RNN through time (via [40])

backpropagation through time This unrolling through time
is actually at the basis of the training algorithm for recurrent net-
works: the Backpropagation Through Time (BPTT).

It simply consists in two steps:

1. First, the RNN is unfolded for some fixed amount ρ of time
steps, yielding a standard NN,

2. Then, standard backpropagation is applied to the obtained NN,
and the weights of the RNN are updated according to their time-
position.

long-term memory The main issue with vanilla RNN is their
inability to handle long-term dependencies, that is, they cannot trans-
port information over a long time period, as was formally investi-
gated by Bengio, Simard, and Frasconi [6].

This is a problem when dealing with musical scenarios, for instance
in the case of da capos. Those require knowledge of the very beginning
of a potentially long sequence, right at its end.

The following section introduces a widely popular solution to this
issue: Long Short-Term Memory networks.

4.2 long short-term memory

long short-term memory unit Long Short-Term Memory units
(lstm), introduced by Hochreiter and Schmidhuber [25], are a special
kind of recurrent units aimed specifically at transporting information
over long periods.

Informally, their originality and success comes from the fact that
they are based on multiplicative operations, which allow them to mod-
ulate (scale) their input data with some previously stored memory.

An illustration of an lstm unit is presented in Figure 7. Multiplica-
tive interactions are depicted as black squares between connexions.

memory cell and gates More precisely, lstm units hold a mem-
ory cell, which is expected to learn and store the internal memory of

4.2 long short-term memory 24

Memory
Cell

Forget
gate

Update
gate

Output
gate

Input

Input Input

Input Output

Recurrent
connexion

Figure 7: Long Short-Term Memory unit

the unit, and three gates, which control how the memory cell’s content
is being updated and used.

This “control” is done via a multiplicative operation, the point-wise
multiplication of vectors.

The three gates, standard neural networks receiving input from the
current input x(t) to the network and the previous output o(t− 1),
are:

1. A forget gate, which controls which part of the memory to forget.
For instance, the network can “decide” , based on the input
x(t) and the previous output ot−1, to “forget” all dimensions
in the memory vector but the last, by modulating the recurrent

connexion with the vector
(
0 . . . 0 1

)>
.

2. An update gate, which controls which part of the units input
to store into the memory cell. Similarly, the unit can decide to
select the value at the first dimension in the current input, by

multiplying it with the vector
(
1 0 . . . 0

)>
.

3. An output gate, which controls which part of the memory to
output at the current time-step.

At each time t, the content of the memory cell is then updated by
combining – through a simple sum of the two vectors – the values
stemming from the update gate and from the forget gate,

Optimizing the weights in those gates through training, the lstm

can be taught to properly manage its memory for various operations.
Through these mechanisms, it can transport information over long

periods, by storing some values into the memory cell and simply

4.2 long short-term memory 25

passing it on until some event in the input triggers the output of
the memory.

Similarly to the interpretation of convolutional neurons as feature
detectors, lstm units can be interpreted as detectors for arbitrarily
long temporal patterns within sequences. The patterns learned (the “fea-
tures”) are the sequences which maximally trigger the unit’s output.

lstm layer Akin to perceptrons, an lstm layer is built by assem-
bling together independent lstms.

Therefore, such layers learn to detect different patterns within their
sequences.

lstms have had tremendous success in many applications within
the time-series analysis field, including text [44] or video [54].

The work presented in this project mainly relies on those networks.

deep lstm networks Deep lstm networks are a natural exten-
sion to lstm layers: they are networks composed of successive lstm

layers.
The expected effect is the same as deep convolutional networks,

which learned features of increasing scale at each layer, by learning
features over the features computed by their underlying layer.

Here, layer n+ 1 detects temporal patterns over the output of layer
n, which in turn detected patterns over the outputs of layer n − 1.
Thus, layer n+ 1 can be seen to detect larger-scale patterns over the
inputs of layer n− 1

Thus, deep lstm network can be expected to operate at varying
scales and uncover complex temporal dependencies in the sequences
they analyze.

In practice, deep lstms give state-of-the-art results on temporal
analysis of time series, outperforming standard deep neural networks,
e.g. in speech recognition [50].

Part II

P R E D I C T I O N A N D A B S T R A C T S C E N A R I O
I N F E R E N C E

In this second part, we present our approach to the sce-
nario inference and prediction problem.

Prediction is performed through temporal analysis using
recurrent neural networks. Due to the high representation
power of these networks and their large number of param-
eters, we searched for a large dataset on which to train
them. This lead us to the choice of the Million Song

Dataset, which provides one million chromagrams.

A meta-optimization loop is implemented to devise an ap-
propriate architecture for this task, given the large dataset
at hand.

The abstraction step is done using clustering algorithms
on the available chromas, effectively turning a sequence
of chromas into a sequence of abstract labels.

Figure 8: Proposed prediction and symbolization architecure

5
C H R O M A P R E D I C T I O N

In this chapter, we present the prediction model we use for our mu-
sical scenario inference task. The goal here is to be able to predict
subsequent steps in a musical sequence, allowing to extract some sce-
nario with lookahead from musical sequences.

We propose in this first experimentation to train a model at a beat-
by-beat rate to predict the one next chroma based on a sequence of
chromas.
Remark. It should be noted prior to all discussion that, due to the
large scale of the networks considered, training is costly and takes
time. Thus, although the complete data importation/processing and
training pipeline has been implemented during the course of the
internship, quantitative results for this section are not yet available,
since the training is still taking place at the time being. Updated re-
sults should be added as soon as available, including comparisons
between different network architectures.

5.1 data

Given the representation power of lstms and their large number of
parameters, a large dataset is required.

We use the Million Song Dataset [8], which is one of the largest
datasets available for symbolic music. It provides chromagrams, that is,
sequences of chroma vectors, for one million of “popular” music pieces
(see cited article for a description of how the dataset was built).
Remark. Chroma vectors are 12-dimensional arrays (of [0, 1]12) describ-
ing, for a given musical frame, the relative importance of each pitch
class (from C to B[) within this frame.

We therefore settled on building a prediction system for chroma
vectors.

Given the data available (event-based chromagrams), one can recon-
struct chromagrams at any chosen time-rate. For our preliminary ex-
periments, we settled on beat-by-beat analysis of the chromagrams.

5.1.1 Dataset split

From the 1 million elements of the dataset, we extract ≈ 10% to build More precisely, the
last 2 data folders of
the dataset, i. e.
folders /data/Y/
and /data/Z/.

a test set.
This test set is used to compare different network architectures. Ex-

amples from this subset are not used during the training, so as to per-
form the testing on examples completely unknown to the networks.

27

5.2 model 28

5.2 model

Motivated by their strong results on time-series analysis and taking
into account the expected complexity of the musical prediction prob-
lem – with e.g. a high quantity of different styles to learn –, we settled
on the use of lstm networks for the prediction task.

Considering that temporal evolutions within music can be found
at varying time-scales, we furthermore use deep lstm networks so as
to take into account temporal dependencies at several time-scales.

The networks are then trained to perform the following task: “Given
a sequence of chromas x(0) . . . x(t0 − 1) of duration t0, predict the
next chroma vector x(t0)”.

If we write o(t0) = f(x(0) . . . x(t0− 1)) for the network’s prediction
at time t0, the network’s error at time t0 is then equal to d(o(t0), x(t0))

Using our system, one can perform long-term predictions via the
following recursive formula:

o(t0 + 1) = f(x(1) . . . x(t0 − 1)o(t0))

That is, one successively predicts the next time-step, conditioned
on the previous predictions.

Necessarily, the quality of the predictions will decrease with the
length of the successive predictions performed.

Remark. Note that these networks are not by any means restricted to
work on chromagrams. The choice of working with chroma vectors
was mostly motivated by the availability of data.

5.2.1 Slicing the examples

lstms are heavy structures and operate slowly on long sequences,
which involve very large matrix multiplications with the lstm’s internal
weight matrices. Therefore, they are generally [50] trained using SGD
on mini-batches of short sequences, obtained by slicing the sequences
from the dataset.

The length t0 of the sequences with which to train the network is a
hyper-parameter of the network.

5.2.2 Temporal horizon of prediction

Alternatively to the model presented above, which predicts the single
next chroma vector for an input sequence, one could train the network
to predict the k subsequent chroma vectors conditioned on the input
sequence.

The effect of this choice on the quality of the prediction is compared
in the hyper-parameter optimization loop, by comparing the results
for networks trained with different prediction horizons.

5.3 metrics on chromas 29

5.3 metrics on chromas

In order to compute errors and evaluate the quality of the predictions,
one must choose a metric on the space of chromas.

Note, first, that comparing different metrics between one another
in abstracto does not make sense.

Nevertheless, if one fixes a metric of reference (e.g. the L2-norm),
one can compare the effect of the different metrics on the training.
Indeed, one can train a given network using different metrics for the
error, then compute the total error on the test set using the L2-norm
and compare this error between all the networks.

Furthermore, although various metrics exist, interpreting the errors
on the outputs of a chroma prediction system is hard. It comes down
to the difficulty of relating the error from a metric on the chroma
space [0, 1]12 with actual human perception: completely mistaking a
fifth for a third actually has far less perceptual impact than adding a
bit of the diminished second to a chord major chord.

With this in mind, the go-to metric on real-valued spaces is the
L2-norm, a completely agnostic metric (it makes no assumptions on
the data). It is therefore not really semantical.

Other metrics exist, which may be more meaningfully interpretable.
A popular example is the Kullback-Leibler divergence [30], defined

as

DKL(P‖Q) =
∑
i

P(i) log
P(i)

Q(i)

The KL-divergence estimates the similarity between two (here discrete)
data distributions P and Q (in our prediction context, P would be the
prediction targets for the chosen dataset and Q the actual outputs of the
network).

One could also envision the use of a metric incorporating music-
analysis notions, such as the Tonnetz-distance presented by Harte, San-
dler, and Gasser [21]. This distance embeds some elementary notions
of harmony theory, only taking into account the relations between
tonics, thirds and fifths.

Another possible approach to a quantitative means of evaluating
the quality of predictions – though rather extreme –, is to discard
altogether the volume information and use a binary accuracy crite-
rion, such as the Hit/Miss accuracy measure Acc presented by Bay,
Ehmann, and Downie [4]:

the acc measure Acc operates on binary activation vectors. If
y is the target vector of binary activations and x the binary prediction
vector (x is expected to predict the activations in y), we use the usual

5.4 implementation and hyper-parameters optimization 30

definitions of true positives, false positives, true negatives and false nega-
tives, as presented in [4].

For instance, a false positive (on dimension i) is an x such that
xi = 1 whereas yi = 0.

We write TP for the number of true positives in the prediction x for
target y, FP for the number of false positives and FN for the number
of false negatives.

Using this, Acc is defined as

Acc(x,y) =
TP

TP+ FP+ FN

Acc ranks how well the vector x predicts the activations of the tar-
get.

We can apply Acc to vectors of [0, 1]n by first thresholding them by
some chosen value ε in]0, 1[. For chromas, a pitch class is considered
“active” if its value is greater than ε.

We will use this measure to perform some (partly) interpretable
quantitative evaluations of the trained networks.

5.4 implementation and hyper-parameters optimization

The training is performed within the Torch [13] framework.
A pipeline to import the data was implemented. This implementa-

tion takes into account the issues associated with the large quantity
of data in the dataset, which all cannot be loaded onto memory at
once. We thus implemented a sliding window over the dataset. This
sliding successively loads examples, slices them into small sequences
of duration t0 to feed the network with and aggregates them into a
single matrix for faster computations.

Furthermore, the number of parameters to choose from when using
lstms is large. It includes amongst others:

• The number of lstm layers of the network,

• The number of lstm units per layer,

• The slicing duration t0 to use,

• The duration k of the predictions to perform,

• The metric d to use on the chroma space for training,

• The initialization function to apply on the network’s weights,

• The eventual non-linearities to apply on the output of each lstm

layer.

Therefore, finding the best architecture for the task at hand is hard.

5.5 results 31

To perform this parameter adaptation, a hyper-optimization loop
was implemented. This loops starts by generating several network ar-
chitectures by sampling the value of each hyper-parameter from a pro-
vided distribution (in practice a Gaussian kernel). The networks are
then trained with some iterations of SGD using the dataset provided.
They are finally ranked by their total error value on the test subset.

At each iteration of this loop, the kernel for each hyper-parameter
is adapted to try and focus on the best hyper-parameter values.

5.5 results

The training loop is still in progress. Results will be added when
available.

6
C H R O M A S Y M B O L I Z AT I O N

The symbolization step takes a chromagram as input and outputs a
sequence of abstract labels.

For our application, we implement a rather simple approach: we
train a clustering algorithm on the Million Song Dataset, which
then allows to convert any chroma vector into an abstract class label.

6.1 clustering

The clustering problem is a traditional problem in machine learning.
Consider some input data D = {xi}i=1...N. A clustering algorithm

with k classes is expected to split the dataset into k classes, i.e. return
a partition D1, . . . ,Dk of D into k subsets.

Note that the value k is in some cases a hyper-parameter of the
algorithm, to be fixed by the user, and in other cases it is devised by
the algorithm itself.

algorithms Popular clustering algorithms include [27]:

• Hierarchical clustering, based on building a taxonomic tree of the
data points. This taxonomic tree is based on a distance on the
dataset.

The advantage of hierarchical clusterings is that one can extract
clusterings with arbitrary numbers of classes between 1 and N
from a hierarchical clustering, by choosing at which number
of classes to stop refining the tree. Their disadvantage is their
quadratic construction time.

• k-means, with k fixed, attempts to build k classes D1, . . . ,Dk
with centroids µ1, . . . ,µk via a stochastic process minimizing
the quantity:

∑k
i=1

∑
x∈Di

‖x− µi‖2, the within-cluster sum of
squared distances.

Good clusters are therefore clusters with a small radius. A k-
means clustering can be computed in time linear in the size of
the dataset.

An example of k-means using 3 clusters on a dataset sampled from
a Gaussian distribution is presented in Figure 9.

We use k-means in our application, because it is a simple to imple-
ment, popular model with efficient implementations [28].

32

6.2 evaluation 33

−2 −1 0 1 2 3 4 5 6

x1

−2

−1

0

1

2

3

4

5

6

7

x
2

Original unclustered data

−2 −1 0 1 2 3 4 5 6

x1

−2

−1

0

1

2

3

4

5

6

7

x
2

Clustered data

Figure 9: Clusters computed by k-means, k = 3

6.2 evaluation

Clusterings with different numbers of clusters will give different re-
sults. The “quality” of a clustering in out context is again hard to
evaluate in abstracto: what makes a clustering good is somewhat sub-
jective.

Whether a clustering is “good” or “bad” could nonetheless be as-
sessed in the context of the co-improvisation application we present
below. Indeed, when connected with a co-improvisation system, a
“good” clustering will produce abstract sequences which will in turn
provide “rich” improvisation possibilities, with satisfying musical re-
sults.

In this case, the quality of clusterings should therefore be evaluated
in conjunction with a musician, who could judge and rank the co-
improvisations generated using different clustering parameters.

Part III

C O - I M P R O V I S AT I O N A N D
S T Y L E - A D A P TAT I O N

In this last part, we propose a theoretical architecture for
reactive structured co-improvisation and style adaptation us-
ing the scenario inference and prediction tool presented
before.

Existing co-improvisation systems cannot simultaneously
reactively adapt to a musician’s style and anticipate on
his playing. We propose to connect the symbolic outputs
of our network to a pre-existing co-improvisation engine
which operates on sequences of abstract labels. Using this
system in real-time with a human improviser, we could
both infer a scenario to his playing and anticipate on his
next steps, allowing for smooth, synchronized transitions.

We furthermore propose a framework for style adaptation,
that is, adapting our model’s outputs to the style of a par-
ticular musician. This can be done by setting up an adver-
sarial network [19]. To this effect, we present a quick intro-
duction to the theory of adversarial networks.

Theoretical results show that, under some assumptions,
this architecture leads to a good approximation of the mu-
sician’s style, i. e. the system learns to better predict the
musician’s playing.

7
A S T R U C T U R E D C O - I M P R O V I S AT I O N
A R C H I T E C T U R E

7.1 on co-improvisation systems

Co-improvisation is the general problem of synthesizing new, original
sequences based on the analysis of a set of example sequences.

In the music informatics field, co-improvisation refers to systems
which analyze some symbolic corpus of musical sequences and ex-
tract some low-level abstract sequential structure from this corpus. These These systems can

also operate on
concrete data, such
as audio, via a
symbolization
process, as presented
in Chapter 6, given
a chosen
symbolization step.

systems first compute a symbolic abstraction of the provided corpus
using the chosen criterion, then analyze it to find some temporal
patterns and construct a memory which embeds these patterns. Co-
improvisation then consists in synthesizing new sequences using this
constructed structural memory.

These systems can be used in real-time in conjunction with a live
musician. For instance, one can generate some live harmonic accom-
paniment for a musician when the chosen criterion is harmonic simi-
larity.

Existing approaches vary in how much they constrain the sequence
generation and roughly fall into three general classes.

free generation The first group of systems is devoted entirely
to free, unconstrained generation. These systems first build their struc-
tured memory from the corpus, then freely navigate it to output some
new sequences. Here, the different approaches differ in the computa-
tional model used for the construction of the memory.

Existing systems include the Continuator, by Pachet [42], which is
based on Markov chains, and OMax [3], based on Factor Oracles [2],
automata aimed at extracting repeated sub-sequences within a sym-
bolic sequence.

reactive synthesis The second group of approaches are reac-
tive systems which extend the previous approaches by allowing to
guide the synthesis by a stream of inputs. At each generation step,
the next output is chosen based on a provided compatibility criterion.
For instance, if the inputs are MIDI notes from a live musician, one
can perform an harmonic analysis and constrain the model to gener-
ate some harmonically compatible accompaniment.

Example of such systems include SoMax – an extension to OMax
which guides the run on the memory via a local optimization of the
compatibility criterion. Another example is VirtualBand, by Moreira,

35

7.1 on co-improvisation systems 36

Roy, and Pachet [37]. VirtualBand which is built around a dictionary
of solo instrumental recordings by different musicians on different in-
struments and in different styles. A solo musician can then construct
his own band by selecting different instruments, then choosing a style,
then playing: the backing music is generated using the recorded cor-
pus and adapts (via real-time music information retrieval tools) to
different parameters of the human musician, e. g. picth, volume and
density of notes.

scenario-based generation Finally, other, recent approaches
constrain the very musical scenario followed by the generation pro-
cess. This scenario can be described in the form of a symbolic se-
quence, which the human improviser is also expected to follow. This
sequence is then used by the co-improvisation engine to sequentially
guide the generation, thus enforcing the underlying structure of the
generated music.

One of the key advantages of this approach is the ability to use
future information to make better generation choices. Indeed, by per-
forming lookaheads into the future steps of the scenario, the co-impro-
visation engine can perform some anticipations on what the human
improviser is going to do. In the case of a harmonic scenario (e. g. a
chord progression), this allows to introduce cadences or modulations
in synchronization with the musician.

An example of scenario-based system is Improtek by Nika, Chemil-
lier, and Assayag [38]. Using pattern-matching algorithms on sym-
bolic sequences, the symbolized inputs from the musician are com-
pared with the scenario to follow it in real-time. Improtek is also
partly reactive in that it can dynamically rewrite the scenario using
external information [39], adapting the generated outputs in real-time
to this evolving scenario. The scenario can be modified for instance
via parameters controlled in real-time by an external operator or us-
ing a set of pre-coded formal rewriting rules.

Nonetheless, a basic scenario still has to be provided prior to the
performance.

We propose a theoretical architecture that allows to bridge the ap-
parent gap between the fully reactive methods and the scenario-based
approaches, by providing a hybrid dynamically inferred-and-refined
scenario. In the concept of this prototype, the scenario sent to the ex-
ternal scenario-based co-improvisation engine (for instance Improtek)
is inferred in real-time from the music played by the human improviser
and incorporates dynamically updated short-term anticipations.

7.2 structured co-improvisation with inferred short-term scenario 37

7.2 structured co-improvisation with inferred short-
term scenario

This architecture makes crucial use of the scenario inference system
presented in the previous section.

We fix here a rate at which our networks operate (this allows to
operate on a discrete time-scale), for instance the scale of the beat,
with a fixed tempo.

In the proposed architecture, the short-term scenario of the music
played by the live musician is computed in real-time by analyzing its
inputs, computing the associated chroma vector sequence and sym-
bolizing it using the previously trained clustering. This short-term
scenario is passed on to the co-improvisation tool, Improtek in our
case.

Furthermore, the prediction network allows to generate a real-time
probable scenario for the next time step(s), which indeed makes it
possible to perform short-term anticipation on the music played by
the musician (i. e. use at time t the inferred information for time
t + 1, t + 2 . . .) and introduce smooth transitions in the music gen-
erated by the co-improvisation tool, for instance through cadences or
modulations.

At each tick of the clock (defined by the chosen rate), a new short-
term scenario is therefore passed on to Improtek, dependent on the
current inputs to the system, the new predictions as well as the past
predictions.

The whole architecture is displayed in Figure 10.

7.3 software architecture

In order to implement this architecture, an OSC (Open Sound Con-
trol [55]) network is set up.

The input stream (audio or MIDI) is run through Max/MSP which
performs a beat-by-beat chroma analysis.

The prediction block functions as a server which receives the chroma
vectors from Max/MSP, runs them through the prediction neural net-
work and sends the predicted chroma vectors to the symbolization
neural network via OSC.

The symbolization (clustering) engine receives both the input chro-
mas and the chromas for the predicted continuation. It concatenates
them and finally turns this sequence of chromas into an abstract se-
quence of cluster labels, the partly inferred, partly predicted real-time
scenario.

This scenario is then sent to Improtek via OSC, which can generate
an output sequence following it.

7.3 software architecture 38

Figure 10: Proposed co-improvisation architecture

This process is dynamic: the short-term scenario used by Improtek
is re-updated in real-time by comparing the predictions done with
the actual outcomes. If the predictions were wrong, the sequence cur-
rently generated by Improtek is updated to follow the new scenario.

8
S T Y L E - A D A P TAT I O N

In this last section, we propose the prototype of an architecture for
style-adaptation (or style modeling). In this setup, the extension to the
co-improvisation engine we presented in the previous section is fur-
ther trained, in real-time, on the human improviser’s inputs. The goal
here is to better adapt the network’s predictions to the music played
by the musician, hopefully leading to a better scenario and more se-
mantical synchronization between the human and the machine.

Two approaches to this are proposed, the first of which is rather
trivial. The second relies on adversarial training [19], a recently in-
troduced training framework for generative models. To this end, we
present a review of generative networks and adversarial training. Ad-
versarial training allows to build models which efficiently synthesize
data resembling examples from a given dataset. Here, we want to
build a network which generates predictions which closely resemble
the playing of the live musician whose style we want to mimic.

In both cases, at each discrete time step t, the network’s prediction
o(t) is compared with the musician’s actual output x(t) and we try
to further minimize the prediction error.

Note that the gains implied by these approaches can be evaluated
by monitoring the evolution of the mean prediction accuracy whilst
performing this further training. But it should even more crucially be
assessed during improvisation sessions with a human musician.

8.1 naive finetuning

Finetuning refers to using a small task-specific dataset to further train
a network already trained on a large corpus of examples.

This allows to effectively “finetune” the networks weights to better
solve the task at hand.

The easy way of performing style-adaptation on a given musician
is thus to finetune the prediction network using the the new data pro-
duced in real-time by the musician as new training examples. Thus,
we continuously perform gradient descent on the musician’s outputs: at
each instant t, a new example pair is available where the training
sequence is x(t− t0)x(t− t0 + 1) . . . x(t− 1) and the target is x(t).

39

8.2 adversarial training 40

8.2 adversarial training

The second approach is more advanced and relies on so called adver-
sarial training.

The context here is that of generative networks: neural networks
trained to generate new data resembling the data they were given as
example. In a probabilistic approach, these networks try to approxi-
mate the density distribution of their input data in order to sample from it
afterwards. Adversarial training is a means to further refine the out-
puts of such networks, hopefully making them indistinguishable from
real example data.

We first present the Variational Autoencoder, a popular example of
generative model, then we introduce adversarial training.

8.2.1 Variational autoencoders

Variational auto-encoders (VAEs) [29] are a popular type of generative
networks.

These networks are built as the succession of two deep networks:

• An encoder E, which computes a vector E(x) of high-level fea-
tures based on the input data x. E can for instance be a standard
MLP,

• A decoder D, which is trained to reconstruct the input data from
the code computed by the encoder, i.e. trained with the target
criterion ∀x,D(E(x)) = x.

Such a network is displayed in Figure 11.
The specificity of variational autoencoders is that they consider the

outputs of the encoder as a random variable which follows a chosen
distribution, dependent on some trainable parameters. For instance,
the introductory article puts a Gaussian prior on the outputs of the
encoder.

The parameters of the distribution are then trained so as to obtain
a proper autoencoder. Indeed, by using a specific training criterion (ob-
tained via the so-called variational bound), the networks can be trained
in such a way that: for ε small enough compared to E(x), G(E(x) + ε)
constructs a data point which resembles the original data (according
to the metric on the output space G). In effect, one can generate new,
meaningful data samples by small perturbations of the code gener-
ated by the variational auto-encoder.

VAEs were applied with success to the problem of image genera-
tion, for instance within the DRAW model developed at Google by
Gregor et al. [20].

8.2 adversarial training 41

Figure 11: Autoencoder

8.2.2 Adversarial networks

Adversarial networks were introduced by Goodfellow et al. [19] as an
original way of improving the capacities of a generative network to
simulate a given process.

In this context, two networks are considered:

1. The generative network G, which is trained to simulate a data
distribution D with D ⊂ G.

2. A classifier C, trained to recognize data in D. For an input x in
G, C is expected to return 1 if x ∈ D and 0 otherwise.

After an initial phase of isolated training of those two networks, so
as to have their weights properly initialized, they are further trained
by connecting them and training them with the following criterion:

• An example x is either chosen from the provided dataset or
synthesized by G,

• D tries to devise if x is a real datapoint from the provided
dataset or if it was synthesized,

• IfD is right, G receives a penalty, i. e. its parameters are updated
so as to better synthesize,

• If D is wrong, it receives a penalty, i. e. its parameters are up-
dated so as to better discriminate.

8.3 evaluation 42

Formally, D and G play a zero-sum game. Using this setup, it can be
theoretically shown [19] that the density estimated by G progressively
converges towards the original data distribution. In other words, G
learns to generate examples indistinguishable from the original data.

8.2.3 Style adaptation via adversarial training

Now that we have defined adversarial networks, we can see the style-
adaptation problem as a generative problem in adversarial context:
the prediction network indeed tries to simulate the playing of the live
musician.

To set up the architecture, we replace the lstms used previously by
their variational counterparts, as introduced by Bowman et al. [11].

Then, we use a classifier trained to discriminate between chromas
generated by the prediction system and chromas stemming from a
real musician. A possible choice for this classifier would be a Con-
vnet as they have proved very powerful at classification (e. g. on
MNIST [33]).

We can then use adversarial training to further adjust the prediction
network to the musician’s style.

8.3 evaluation

Three variants of our co-improvisation architecture should be com-
pared:

1. The vanilla architecture, were the prediction network is not fur-
ther trained during activity,

2. The “naive finetuning” architecture, in which traditional back-
propagation/gradient descent-based is performed in real-time
using the new examples continuously provided by the live mu-
sician,

3. The adversarial architecture, using a variational recurrent net-
work.

The go-to means of evaluating the effect of these training tech-
niques is via simple standard test error monitoring. Even better in
the case of an improvisation tool will be to have a musician try out
all variants and give feedback on each of them.

C O N C L U S I O N

43

C O N C L U S I O N

We have presented a machine learning approach to musical scenario in-
ference, using deep recurrent neural networks. Deep lstms analyze time-
series at multiple time-scales and allow to perform predictions taking
these different time-scales into account. A network training pipeline
was set up, using the large Million Song Dataset. The computa-
tions are still running at the time being, with an hyper-parameter
optimization loop devising an appropriate architecture for the con-
sidered problem.

By using clustering methods, we can furthermore turn any given
sequence of chroma vectors into a sequence of abstract labels, thus
extracting a notion of underlying higher-level structure from these
chromagrams.

The presented tool could be used in conjunction with a so called co-
improvisation system, a system built to synthesize sequences based on
a corpus of examples, following some notion of temporal structure
learned on this corpus. Our tool could provide a co-improvisation
engine with a real-time, dynamic scenario, inferred for instance from
the music played by a live musician.

Thanks to this and without any prior knowledge of the music
played by the live human improviser, the co-improvisation tool, e.g.
Improtek, will be able to make predictions on the live musician’s
playing and introduce anticipation and transitions in the generated
accompaniment.

Finally, this architecture could be further optimized using real-time
training to perform style adaptation on a given musician. Two solutions
are envisioned, a rather naive one and a more complex one, which
makes use of adversarial training.

The results presented in this report are still prospective. The com-
putations associated with lstms are heavy and the training of the net-
works is not done yet. There is therefore still work to do on gathering
the quantitative results of the hyper-optimization loop and analyzing
those results.

Once this will have been done, the co-improvisation architecture
should be set-up and the style-adaptation schemes implemented. In
situ testing with a musician will then be required to asses the usability
and the advantages of the methods proposed.

44

B I B L I O G R A P H Y

[1] D. Akagi. “A Primer on Deep Learning.” blog post. 2013. url:
https : / / www . datarobot . com / blog / a - primer - on - deep -

learning/.

[2] C. Allauzen, M. Crochemore, and M. Raffinot. “Factor oracle : a
new structure for pattern matching.” In: 26th Seminar on Current
Trends in Theory and Practice of Informatics (SOFSEM’99). Ed. by P.
Jan, T. Gerard, and B. Miroslav. Vol. 1725. LNCS. Milovy, Czech
Republic, Czech Republic: Springer-Verlag, Nov. 1999, pp. 291–
306. url: https://hal-upec-upem.archives-ouvertes.fr/
hal-00619846.

[3] G. Assayag et al. “OMAX Brothers: A Dynamic Topology of
Agents for Improvisation Learning.” In: ACM Multimedia Work-
shop on Audio and Music Computing for Multimedia. Santa Bar-
bara, United States: Santa Barbara, 2006. url: https://hal.
inria.fr/hal-00839075.

[4] M. Bay, A. F. Ehmann, and J. S. Downie. “Evaluation of Multiple-
F0 Estimation and Tracking Systems.” In: Proceedings of the 10th
International Society for Music Information Retrieval Conference, IS-
MIR 2009, Kobe International Conference Center, Kobe, Japan, Oc-
tober 26-30, 2009. 2009, pp. 315–320. url: http://ismir2009.
ismir.net/proceedings/PS2-21.pdf.

[5] Y. Bengio, A. C. Courville, and P. Vincent. “Unsupervised Fea-
ture Learning and Deep Learning: A Review and New Perspec-
tives.” In: CoRR abs/1206.5538 (2012). url: http://arxiv.org/
abs/1206.5538.

[6] Y. Bengio, P. Simard, and P. Frasconi. “Learning Long-Term De-
pendencies with Gradient Descent is Difficult.” In: IEEE Trans-
actions on Neural Networks 5.2 (1994), pp. 157–166. url: http:
//www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf.

[7] Y. Bengio et al. “Greedy layer-wise training of deep networks.”
In: In NIPS. MIT Press, 2007.

[8] T. Bertin-Mahieux et al. “The Million Song Dataset.” In: Pro-
ceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011). 2011.

[9] L. Bottou. “Large-Scale Machine Learning with Stochastic Gra-
dient Descent.” In: Proceedings of COMPSTAT’2010: 19th Inter-
national Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers. Ed. by
Y. Lechevallier and G. Saporta. Heidelberg: Physica-Verlag HD,

45

https://www.datarobot.com/blog/a-primer-on-deep-learning/
https://www.datarobot.com/blog/a-primer-on-deep-learning/
https://hal-upec-upem.archives-ouvertes.fr/hal-00619846
https://hal-upec-upem.archives-ouvertes.fr/hal-00619846
https://hal.inria.fr/hal-00839075
https://hal.inria.fr/hal-00839075
http://ismir2009.ismir.net/proceedings/PS2-21.pdf
http://ismir2009.ismir.net/proceedings/PS2-21.pdf
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1206.5538
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf

Bibliography 46

2010, pp. 177–186. url: http://dx.doi.org/10.1007/978-3-
7908-2604-3_16.

[10] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. “Mod-
eling Temporal Dependencies in High-Dimensional Sequences:
Application to Polyphonic Music Generation and Transcription.”
In: ArXiv e-prints (June 2012). arXiv: 1206.6392 [cs.LG].

[11] S. R. Bowman et al. “Generating Sentences from a Continuous
Space.” In: CoRR abs/1511.06349 (2015). url: http://arxiv.
org/abs/1511.06349.

[12] E. Cambria and B. White. “Jumping NLP Curves: A Review
of Natural Language Processing Research [Review Article].” In:
IEEE Comp. Int. Mag. 9.2 (2014), pp. 48–57. url: http://dx.doi.
org/10.1109/MCI.2014.2307227.

[13] R. Collobert, S. Bengio, and J. Marithoz. Torch: A Modular Ma-
chine Learning Software Library. 2002.

[14] W. B. De Haas et al. “Automatic functional harmonic analysis.”
In: Computer Music Journal 37.4 (2013), pp. 37–53.

[15] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Tech. rep. UCB/EECS-
2010-24. EECS Department, University of California, Berkeley,
Mar. 2010. url: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2010/EECS-2010-24.html.

[16] A. Forte and S. Gilbert. Introduction to Schenkerian Analysis. Nor-
ton, 1982. url: https://books.google.fr/books?id=IL99ygAACAAJ.

[17] X. Glorot and Y. Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks.” In: In Proceedings of
the International Conference on Artificial Intelligence and Statistics
(AISTATS’10). Society for Artificial Intelligence and Statistics. 2010.

[18] X. Glorot, A. Bordes, and Y. Bengio. “Deep Sparse Rectifier Neu-
ral Networks.” In: Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics (AISTATS-11). Ed. by
G. J. Gordon and D. B. Dunson. Vol. 15. Journal of Machine
Learning Research - Workshop and Conference Proceedings,
2011, pp. 315–323. url: http://www.jmlr.org/proceedings/
papers/v15/glorot11a/glorot11a.pdf.

[19] I. J. Goodfellow et al. “Generative Adversarial Nets.” In: Ad-
vances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. 2014, pp. 2672–2680. url: http:
//papers.nips.cc/paper/5423- generative- adversarial-

nets.

[20] K. Gregor et al. “DRAW: A Recurrent Neural Network For Im-
age Generation.” In: CoRR abs/1502.04623 (2015). url: http:
//arxiv.org/abs/1502.04623.

http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://arxiv.org/abs/1206.6392
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://dx.doi.org/10.1109/MCI.2014.2307227
http://dx.doi.org/10.1109/MCI.2014.2307227
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html
https://books.google.fr/books?id=IL99ygAACAAJ
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623

Bibliography 47

[21] C. Harte, M. Sandler, and M. Gasser. “Detecting Harmonic Change
in Musical Audio.” In: Proceedings of the 1st ACM Workshop on
Audio and Music Computing Multimedia. AMCMM ’06. Santa Bar-
bara, California, USA: ACM, 2006, pp. 21–26. url: http://doi.
acm.org/10.1145/1178723.1178727.

[22] K. He et al. “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification.” In: CoRR abs/1502.01852

(2015). url: http://arxiv.org/abs/1502.01852.

[23] M. Henderson. “Machine Learning for Dialog State Tracking:
A Review.” In: Proceedings of The First International Workshop on
Machine Learning in Spoken Language Processing. 2015.

[24] D. Herremans and S. Kenneth. “Composing first species coun-
terpoint with a variable neighbourhood search algorithm.” In:
Journal of Mathematics and the Arts 6.4 (2012), pp. 169–189. eprint:
http://dx.doi.org/10.1080/17513472.2012.738554. url:
http://dx.doi.org/10.1080/17513472.2012.738554.

[25] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.”
In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780. url: http:
//dx.doi.org/10.1162/neco.1997.9.8.1735.

[26] M. J. Huiskes, B. Thomee, and M. S. Lew. “New Trends and
Ideas in Visual Concept Detection: The MIR Flickr Retrieval
Evaluation Initiative.” In: Proceedings of the International Confer-
ence on Multimedia Information Retrieval. MIR ’10. Philadelphia,
Pennsylvania, USA: ACM, 2010, pp. 527–536. url: http://doi.
acm.org/10.1145/1743384.1743475.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A
Review.” In: ACM Comput. Surv. 31.3 (Sept. 1999), pp. 264–323.
url: http://doi.acm.org/10.1145/331499.331504.

[28] T. Kanungo et al. “An Efficient k-Means Clustering Algorithm:
Analysis and Implementation.” In: IEEE Trans. Pattern Anal. Mach.
Intell. 24.7 (July 2002), pp. 881–892. url: http://dx.doi.org/
10.1109/TPAMI.2002.1017616.

[29] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes.”
In: CoRR abs/1312.6114 (2013). url: http://arxiv.org/abs/
1312.6114.

[30] S. Kullback and R. A. Leibler. “On Information and Sufficiency.”
In: Ann. Math. Statist. 22.1 (Mar. 1951), pp. 79–86. url: http:
//dx.doi.org/10.1214/aoms/1177729694.

[31] Y. LeCun et al. “Effiicient BackProp.” In: Neural Networks: Tricks
of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop.
London, UK, UK: Springer-Verlag, 1998, pp. 9–50. url: http:
//dl.acm.org/citation.cfm?id=645754.668382.

[32] Y. Lecun et al. “Gradient-based learning applied to document
recognition.” In: Proceedings of the IEEE. 1998, pp. 2278–2324.

http://doi.acm.org/10.1145/1178723.1178727
http://doi.acm.org/10.1145/1178723.1178727
http://arxiv.org/abs/1502.01852
http://dx.doi.org/10.1080/17513472.2012.738554
http://dx.doi.org/10.1080/17513472.2012.738554
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://doi.acm.org/10.1145/1743384.1743475
http://doi.acm.org/10.1145/1743384.1743475
http://doi.acm.org/10.1145/331499.331504
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dl.acm.org/citation.cfm?id=645754.668382
http://dl.acm.org/citation.cfm?id=645754.668382

Bibliography 48

[33] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip
Code Recognition.” In: Neural Comput. 1.4 (Dec. 1989), pp. 541–
551. url: http://dx.doi.org/10.1162/neco.1989.1.4.541.

[34] F. Lerdahl and R. Jackendoff. A generative theory of tonal music.
Cambridge. MA: The MIT Press, 1983.

[35] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas
immanent in nervous activity.” In: The bulletin of mathematical
biophysics 5.4 (1943), pp. 115–133. url: http://dx.doi.org/10.
1007/BF02478259.

[36] M. L. Minsky and S. A. Papert. Perceptrons: Expanded Edition.
Cambridge, MA, USA: MIT Press, 1988.

[37] J. Moreira, P. Roy, and F. Pachet. “Virtualband: Interacting with
Stylistically Consistent Agents.” In: ISMIR. Ed. by A. de Souza
Britto Jr., F. Gouyon, and S. Dixon. 2013, pp. 341–346. url: http:
/ / dblp . uni - trier . de / db / conf / ismir / ismir2013 . html #

MoreiraRP13.

[38] J. Nika, M. Chemillier, and G. Assayag. “ImproteK: Introduc-
ing Scenarios into Human-Computer Music Improvisation.” In:
ACM Computers in Entertainment, Special issue on Musical Metacre-
ation (2016). (To appear).

[39] J. Nika et al. “Guided improvisation as dynamic calls to an of-
fline model.” In: Sound and Music Computing (SMC). Maynooth,
Ireland, July 2015. url: https://hal.archives-ouvertes.fr/
hal-01184642.

[40] C. Olah. Understanding LSTM Networks. blog post. Aug. 2015.
url: http://colah.github.io/posts/2015-08-Understanding-
LSTMs/.

[41] C. Olah. Visualizing Representations: Deep Learning and Human
Beings. blog post. Jan. 2015. url: https://colah.github.io/
posts/2015-01-Visualizing-Representations/.

[42] F. Pachet. “The Continuator: Musical Interaction with Style.” In:
Proceedings of the 2002 International Computer Music Conference,
ICMC 2002, Gothenburg, Sweden, September 16-21, 2002. 2002. url:
http://hdl.handle.net/2027/spo.bbp2372.2002.044.

[43] J.-F. Paiement, S. Bengio, and D. Eck. “Probabilistic models
for melodic prediction.” In: Artificial Intelligence 173.14 (2009),
pp. 1266–1274. url: http://www.sciencedirect.com/science/
article/pii/S0004370209000654.

[44] H. Palangi et al. “Deep Sentence Embedding Using the Long
Short Term Memory Network: Analysis and Application to In-
formation Retrieval.” In: CoRR abs/1502.06922 (2015). url: http:
//arxiv.org/abs/1502.06922.

http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dblp.uni-trier.de/db/conf/ismir/ismir2013.html#MoreiraRP13
http://dblp.uni-trier.de/db/conf/ismir/ismir2013.html#MoreiraRP13
http://dblp.uni-trier.de/db/conf/ismir/ismir2013.html#MoreiraRP13
https://hal.archives-ouvertes.fr/hal-01184642
https://hal.archives-ouvertes.fr/hal-01184642
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-01-Visualizing-Representations/
https://colah.github.io/posts/2015-01-Visualizing-Representations/
http://hdl.handle.net/2027/spo.bbp2372.2002.044
http://www.sciencedirect.com/science/article/pii/S0004370209000654
http://www.sciencedirect.com/science/article/pii/S0004370209000654
http://arxiv.org/abs/1502.06922
http://arxiv.org/abs/1502.06922

Bibliography 49

[45] J. Paulus, M. Müller, and A. Klapuri. “Audio-based music struc-
ture analysis.” In: in Proc. of the Int. Society for Music Information
Retrieval Conference. 2010.

[46] C. Raphael and J. Stoddard. “Functional Harmonic Analysis
Using Probabilistic Models.” In: Computer Music Journal 28.3
(2004), pp. 45–52. url: http://www.jstor.org/stable/3681508.

[47] M. Rohrmeier. “A Generative Grammar Approach to Diatonic
Harmonic Structure.” In: In Anagnostopoulou Georgaki, Kouroupet-
roglou, editor, Proceedings of the 4th Sound and Music Computing
Conference. 2007, pp. 97–100.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Neuro-
computing: Foundations of Research.” In: ed. by J. A. Ander-
son and E. Rosenfeld. Cambridge, MA, USA: MIT Press, 1988.
Chap. Learning Representations by Back-propagating Errors,
pp. 696–699. url: http://dl.acm.org/citation.cfm?id=
65669.104451.

[49] T. N. Sainath et al. “Convolutional, Long Short-Term Memory,
fully connected Deep Neural Networks.” In: 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP
2015, South Brisbane, Queensland, Australia, April 19-24, 2015. 2015,
pp. 4580–4584. url: http://dx.doi.org/10.1109/ICASSP.2015.
7178838.

[50] H. Sak, A. W. Senior, and F. Beaufays. “Long short-term mem-
ory recurrent neural network architectures for large scale acous-
tic modeling.” In: INTERSPEECH 2014, 15th Annual Conference
of the International Speech Communication Association, Singapore,
September 14-18, 2014. 2014, pp. 338–342. url: http://www.isca-
speech.org/archive/interspeech_2014/i14_0338.html.

[51] P. Sermanet et al. “OverFeat: Integrated Recognition, Localiza-
tion and Detection using Convolutional Networks.” In: CoRR
abs/1312.6229 (2013). url: http://arxiv.org/abs/1312.6229.

[52] J. A. Snyman. Practical mathematical optimization : an introduction
to basic optimization theory and classical and new gradient-based al-
gorithms. Applied optimization. New York: Springer, 2005. url:
http://opac.inria.fr/record=b1132592.

[53] H. Soltau et al. “Recognition of music types.” In: Proceedings
of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP ’98, Seattle, Washington, USA, May 12-
15, 1998. 1998, pp. 1137–1140. url: http://dx.doi.org/10.
1109/ICASSP.1998.675470.

[54] N. Srivastava, E. Mansimov, and R. Salakhutdinov. “Unsuper-
vised Learning of Video Representations using LSTMs.” In: CoRR
abs/1502.04681 (2015). url: http : / / arxiv . org / abs / 1502 .

04681.

http://www.jstor.org/stable/3681508
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451
http://dx.doi.org/10.1109/ICASSP.2015.7178838
http://dx.doi.org/10.1109/ICASSP.2015.7178838
http://www.isca-speech.org/archive/interspeech_2014/i14_0338.html
http://www.isca-speech.org/archive/interspeech_2014/i14_0338.html
http://arxiv.org/abs/1312.6229
http://opac.inria.fr/record=b1132592
http://dx.doi.org/10.1109/ICASSP.1998.675470
http://dx.doi.org/10.1109/ICASSP.1998.675470
http://arxiv.org/abs/1502.04681
http://arxiv.org/abs/1502.04681

Bibliography 50

[55] Open Sound Control: State of the Art 2003. OpenSound Control.
Montreal, 2003, pp. 153–159. url: http : / / cnmat . berkeley .

edu/publications/open_sound_control_state_art_2003.

[56] M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method.”
In: CoRR abs/1212.5701 (2012). url: http://arxiv.org/abs/
1212.5701.

http://cnmat.berkeley.edu/publications/open_sound_control_state_art_2003
http://cnmat.berkeley.edu/publications/open_sound_control_state_art_2003
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede.

https://bitbucket.org/amiede/classicthesis/

Final Version as of July 29, 2016 (classicthesis version 1.0).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	Acronyms
	Introduction
	1 Context
	2 Deep learning for musical scenario inference
	2.1 Existing approaches

	3 Machine Learning
	3.1 General notions
	3.2 Neural networks
	3.3 Deep neural networks
	3.4 Convnets and high-level representations

	4 Recurrent Neural Networks
	4.1 Generic RNN
	4.2 Long Short-Term Memory

	Prediction and abstract scenario inference
	5 Chroma prediction
	5.1 Data
	5.1.1 Dataset split

	5.2 Model
	5.2.1 Slicing the examples
	5.2.2 Temporal horizon of prediction

	5.3 Metrics on chromas
	5.4 Implementation and hyper-parameters optimization
	5.5 Results

	6 Chroma symbolization
	6.1 Clustering
	6.2 Evaluation

	Co-improvisation and style-adaptation
	7 A structured co-improvisation architecture
	7.1 On co-improvisation systems
	7.2 Structured co-improvisation with inferred short-term scenario
	7.3 Software architecture

	8 Style-adaptation
	8.1 Naive finetuning
	8.2 Adversarial training
	8.2.1 Variational autoencoders
	8.2.2 Adversarial networks
	8.2.3 Style adaptation via adversarial training

	8.3 Evaluation

	Conclusion
	Bibliography
	Colophon

