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Introduction

English
Orchestral anechoic recordings are more and more needed for binaural synthesis and orchestral
simulations in acoustic environments. The concern for anechoic recordings (pure sound, with no
reverberation or reflexion) is that they can be placed in every acoustic environment afterwards,
and are perfect for acoustic simulations.
However, these orchestral recordings are either rares or the studios that enable them are often too
small to welcome great numbers of musicians at the same time. Thus, techniques that synthesize
a whole instrument section from one anechoic solo recording have to be found. Moreover, a great
audio quality is required for binaural synthesis, and the audio rendering of the traditional chorus
effect, that makes an instrument sound more like an ensemble, is often too poor for such purposes.
In this paper, we explore several high audio quality techniques to generate an instrument section
starting from a solo anechoic recording, and compare their performances according to the instru-
ment section (snare or violin) we want to create. These techniques stand on a phase vocoder
approach and improve the Pitch-Time-Amplitude (PTA) algorithm. The time domain PSOLA
method is also evaluated.
Finally, the anechoic instrument sections are placed in a virtual acoustic environment, created by
room acoustical simulation and dynamic binaural synthesis (giving to the listener the impression
of sitting in a real concert hall listening to a full orchestra) and are tested with subjective listening
tests.

Français
Les enregistrements anéchoïques d’orchestre sont de plus en plus demandés pour des applications
de synthèse binaurale et des simulations dans différents environnements acoustiques. L’avantage
des enregistrements anéchoïques (son pur, sans réverbération ni reflexion du son) est qu’ils peuvent
être ensuite placés dans n’importe quel environnement acoustique.
Cependant, ces enregistrements sont rares car les studios les permettant sont souvent trop petits
pour accueillir un grand nombre d’instrumentistes en même temps. Ainsi, il est nécessaire de
trouver des méthodes permettant de synthétiser une section complète d’instruments à partir de
l’enregistrement anéchoïque d’un seul de ces instruments. De plus, la synthèse binaurale requiert
des enregistrements de très bonne qualité sonore, dont l’effet de ’chorus’, qui permet à un instru-
ment de sonner comme un ensemble est incapable.
Dans ce rapport, nous étudions plusieurs techniques en comparant leurs performances suivant la
section d’instruments (violons ou caisses claires) désirée. Ces méthodes, dont les résultats audios
sont de haute qualité, utilisent le vocodeur de phase et améliorent sensiblement l’algorithme de
base: l’algorithme Pitch-Time-Amplitude (PTA). La méthode TD-PSOLA, opérant dans le do-
maine temporel, est aussi étudiée.
Enfin, les enregistrement anéchoïques d’orchestre obtenus sont évalués par des tests d’écoute. Les
enregistrements sont alors simulés dans différentes salles de concert (nos environnements acous-
tiques), et la synthèse binaurale apporte à l’auditeur la sensation d’être assis en plein milieu de la
salle.

Keywords

Analysis, Anechoic, Binaural synthesis, Chorus, Instrument section, Orchestral effect, Phase lock-
ing, Phase vocoder, Pitch-Time-Amplitude (PTA), PSOLA, Synthesis, Transient detection.
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Part I

Synthesis of a polyphonic play
1 Abstract

In this part, we propose to study and implement several algorithms that generate orchestral effects
based on a solo anechoic recording.
J. Meyer [1] has noted that one of the effect of an instrument section lies in the broadening of the
peaks at harmonic frequencies. With instrumental ensembles the 3 dB bandwidth of the spectral
peaks deviate up to ±20 cents from the nominal frequencies. J.Pätynen and al. [2] noted that
another effect was small temporal fluctuations in instruments’ onsets, and that these ones were
following a normal distribution N (0, σ2) with σ2 ' 40ms.
Thus, it seems that the simulation of an instrument section lies in the fact that two different
instruments would never play at the exact same pitch and at the exact same time.
In the first section, we’ll describe already used methods and recall tools (mainly the phase vocoder)
that will be useful for our simulations. The articles [3], [4] will be partly used for this theoretical
part.
In the second section, we’ll implement a technique developed by J. Pätynen and al. in [2], called
PTA (Pitch shift - Time difference - Amplitude modulation) algorithm and using a phase vocoder
approach. Then, we’ll improve the results by working on vertical phase coherence and transient
processing, developed respectively by J.Laroche and M. Dolson [3], and A. Röbel in [5].
Then, starting from this technique, we’ll work on alternative methods and approaches using onset
detection, pitch detection, and a time-domain method this time: the TD-PSOLA method (Time
Domain - Pitch Synchronous OverLap and Add), developed by J. Laroche and E. Moulines in [6].
In a last part, we’ll explain how our own database of recordings were conducted (violins and snares),
and how we excerpted the parameters of our simulations. Finally, we discuss which simulations
must be chosen depending the instrument section we want to create, and subjective listening tests
were conducted to asset our implementations.

2 Latest developments and recap on the phase vocoder

2.1 Latest developments
Some techniques, such as the audio effect chorusing [7] already exist and are widely used in musical
industry’ devices when a single instrument is needed to sound more like an ensemble.
The chorus effect lies on the fact that in an ensemble, two instruments would never play the exact
same sound, at the exact same pitch. Moreover, their pitch difference is constantly varying in
time. This method is based on a delay line whose tap point is modulated over time.
Thus, this method consists in creating a signal y, that is the original signal x modulated by a
time-varying delay τ(t), such as:

y(t) = x(t− τ(t))

Thus, applied to numeric signals sampled every ∆T , and choosing for example a linear delay
τ(t) = α ∗ t, we’ll get:

yn = y(n∆T ) = x(n∆T − τ(n∆T )) = x(n∆T (1− α))

We can see that this modulation causes a local re-sampling of the signal, that is now sampled
at F ′s = Fs/(1 − α) if x was first sampled at Fs. In general, for a delay τ(t), we get a local
re-sampling of:

F ′s(t) = Fs(1−
dτ

dt
(t))−1 (1)
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Thus, when we play the generated signals at the original constant Fs, we get variation in pitch
and in time for each instrument as wanted.
We implemented two different delays: a periodic delay and a random one, as used by J. Pätynen
and al. [2]. The periodic delay was set as τ(t) = τ0 +αsin(w0t). The local sampling frequency F ′s
was then such as, following (1):

F ′s(t) = Fs(1− αw0cos(w0t))
−1 ≈ Fs(1 + αw0cos(w0t)) (2)

We have to set w0 such as to get low variations in the signal. We can set a period T0 = 5s that
correspond in samples to w0 = 1/5Fs. α corresponds to the amplitude of the delay, and is respon-
sible for the pitch and time modification of the signal, as not only the pitch but also the playback
rate with which one we read the signal is changed. Thus, if F ′s ≤ Fs, when played at Fs the signal
will be higher pitched and read faster. As we want a pitch shift of ±20 cents [1], corresponding
to a variation of 10−2 around Fs in (2), that is to say αw0 ≤ 10−2, thus α ≤ 5.10−2.Fs. Finally,
τ0 corresponds to the offset for every instrument and is picked following a random distribution
N (0, σ2) with σ = 30ms.
The second delay line proposed by [2] is picked randomly following a normal distribution, with a
modulation depth of 1.3ms, and low-pass filtered at 3Hz. Offsets randomly picked between 0-25ms
were then added for each instrument. The computational cost of this method was however much
higher than the sinusoid delay.
These two chorus effects are implemented in the function chorus.m.
However, the chorus effect presents numerous artifacts. The most famous, its characteristic vi-
brato, or beating artifact, happens according to U. Zölzer [7] when the offset between simulated
instruments is null and the delay line is in between 0-3ms. Interferences between close frequencies
(when ∆f ≈ 1/100Hz) are then often audible, and that why an offset between instruments is
essential.
Moreover, the effect is really dependant to the amplitude of the delay. Lower values were considered
to introduce too small differences and higher values for the modulation were heard as unnaturally
’fuzzy’ audio results. This is caused by the local resampling which acts as a expansion/contraction
of the frequency axis of the signal, and that can lead to an aliasing effect, especially for signals
with high frequencies.
Finally, the parameters, resulting in time and pitch modifications are too dependant one from
each other, reducing our freedom of action for the desired simulations.
For binaural synthesis, as we’re working with separate mono-sources, every instrument simulated
has to have a good audio quality. With the parameters we chose for the sinusoidal delay, the
overall chorus effect was good, but taps/interferences could definitely be heard when listening to
the separate sources.
Thus, although widely used in music industry, this effect is yielding fair audio quality results that
are not good enough for auralisation and binaural synthesis issues. That’s why we’re introducing
the phase vocoder, that can generate high-quality results that are needed in our applications.
The audio results are in the folder ’Violin’, as well as all the other results in this part. The original
recording from which we are doing our tests is a former anechoic recording belonging to TU and
named ’violin.wav’. ’chorus_12.wav’ and ’chorus_1.wav’ are respectively the chorus effect of a
section of 12 violins and just one of them.

2.2 Phase Vocoder, a powerful tool in signals modification and synthesis

2.2.1 Description of the approach

The phase vocoder approach is more and more commonly used in audio modifications thanks to
its production of high quality audio results.
Its approach uses the Short Term Fourier Transform (STFT) and consists in a sequence of analysis
- modification - resynthesis of the signal.
The analysis consists in computing the STFT of the signal to divide the signal into frames and
compute a Fast Fourier Transform (FFT) on each one of them to get their spectral representation.
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Spectral modifications are then applied to the FFT of each one of these frames, and the signal is
finally re-synthesised through an inverse FFT (iFFT) and overlap-add of all of its frames.
The following diagram explains the process enhanced by the phase vocoder:

Figure 1: Phase vocoder approach

First, the analysis of the signal is done computing a Short Term Fourier Transform of the
signal. The signal is divided into frames that are portions of the signal windowed around analysis
marks ta, usually set as tua = u.Ra, where Ra is constant and the analysis hop factor. The analysis
window wa is a Hanning window of length N (signals’ portions are thus of length N) in our case.
A FFT is then performed on each one of this frame, to obtain a time-frequency representation of
the signal. The Fourier Transform has a length, or a spectral precision of Nfft, that corresponds
to the Nfft vertical channels of our phase vocoder. In order to prevent the problem of aliasing,
we have to have N ≤ Nfft. In the rest of this paper, we’ll take N = Nfft = 2048, and the hop
factor will be set to Ra = N

4 , guaranteeing an overlap of 75%.
Below a formula for the STFT at the analysis time tua , in the vocoder channel k:

X(tua ,Ωk) =
∑
n∈Z

x(n+ tua)wa(n)e−jnΩk (3)

where x is the original signal, wa is the analysis window (in this paper a Hanning window),
and this window is chosen from now on as symmetric around zero. Ωk = 2π k

Nfft
is the center

frequency of the kth vocoder channel.
The following image shows the STFT of a piano playing a music scale:
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Figure 2: STFT of a music scale played by a piano

The diagram clearly exhibits a rise in the fundamental frequencies as the piano plays the music
scale, and the partials are also shown for each fundamentals.
Once the STFT is computed, we obtain for each frame its FFT X(tua ,Ωk). We can then compute
the desired spectral modifications to get the new FFT’s and resynthesize the signal on the synthesis
marks ts, usually defined as tus = u.Rs. The specific spectral modifications we’ll use will be
described in detail in the next section.
After these modifications, we obtain the modified FFT’s Y (tus ,Ωk). The resynthesis of the signal
is then obtained by inverse Fourier transforming the modified Y (tus ,Ωk), that will give us for each
frame a synthesised signal yu. These signals are then windowed using a synthesis window ws and
are summed all together using the overlap-add method to get the final synthesised signal y, as
shown in figure 1:

y(n) =
∑
u∈Z

yu(n− tus )ws(n− tus ) with (4)

yu(n) = FFT−1[Y (tus ,Ωk)(n)] =
1

Nfft

Nfft−1∑
k=0

Y (tus ,Ωk)ejnΩk

If no modification is done (i.e tua = tus ∀u (Ra = Rs) and Y (tus ,Ωk) = X(tua ,Ωk)), then the
synthesised output y is equal to the original one x if and only if:

χ(n) =
∑
u∈Z

wa(n− tus )ws(n− tus ) = 1∀n (5)

In the following, we’ll work with wa = ws = hanning(N). χ was computed with these two
windows thanks to the function ola.m and gives for an overlap of 75% (Rs = N/4):

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Resynthesis condition

Figure 3: Perfect resynthesis condition

9



We can see that the χ = 1 for these parameters, ignoring a multiplication factor, and apart
from both sides of the signal. By setting ws = 1/max(χ).ws, we have our condition fully respected.
This setting will be used for the rest of this paper.

2.2.2 Consistency of the synthesised STFT

In the previous section, we’ve shown that the final signal y is synthesised from the modified STFT
Y (tus ,Ωk).
However, this STFT does not correspond, in practice, to any actual signal. In particular, if you
compute the STFT of the synthesised signal y, you would likely not find Y (tus ,Ωk).
Thus, the sequence of STFT frames must satisfy strong consistency conditions, because they
correspond to overlapping segments, to guarantee coherence and consistency in the synthesised
signal. To achieve this, a lot of techniques and conditions will be described in the following
sections.
In the meantime, we present here a tool developed by J. Laroche and M. Dolson in [3] that will
measure the consistency of the modified STFT and thus the quality of our synthesis:

DM =

∑U−P−1
u=P

∑Nfft−1
k=0 [|Z(tus ,Ωk)| − |Y (tus ,Ωk)|]2∑U−P−1

u=P

∑Nfft−1
k=0 |Y (tus ,Ωk)|2

(6)

where Z(tus ,Ωk) is the STFT of the synthesised signal and Y (tus ,Ωk) is the modified STFT. U
is the total number of frames, and we don’t take into account the P first and last frames, to avoid
errors due to missing overlapped segments in the resynthesis formula (as we saw in the extrema
(first and last frames) of χ (fig. 3), where χ 6= 1.
The better the consistency, the closer Y is to Z and so the closer DM is to 0. In the rest of
this article, our different techniques will use this measure to verify the consistency of the STFT
generated. The implementation of this measure can be found in function STFTConsistency.m.
The phase vocoder offers various transformations by modifying the STFT of the signals treated.
In the following sections, we’ll talk about the most relevant ones that we’re going to use in our
study. The main actions we’ll deal with in the next sections are time-scaling and pitch-shifting
modifications.

2.2.3 time-scaling modification

The main theory related to this section is written using both articles written by J. Laroche and
M. Dolson, and J. Laroche and E. Moulines in [3] and [4] respectively. A further explanation of
the phase vocoder time-scaling modification can be found in the annex. An implementation of the
time-stretching modification is proposed in the function timestretch.m.
The time-scaling modification consists in stretching the synthesis time-marks tus , while preserving
locally the spectral content.
The first step consists as usual in an analysis through the STFT of the signal. The signal is
analysised with analysis frames spaced by ∆tua . Usually, and in our cases, tua = u.Ra, that gives
us a constant interval between analysis frames of ∆tua = Ra.
Then the synthesis frames will be stretched and separated by ∆tus , also often set such as tus =
u.Rs,∆t

u
s = Rs. To achieve the time-scaling modification, we’ll just have to synchronize the

phases of the generated STFT Y (tus ,Ωk) between two consecutive synthesis frames, thanks to the
so-called instantaneous frequency ω̂k(tua), which is the local spectral content in the kth channel at
time tua .
The instantaneous frequency between two consecutive analysis frames can be computed thanks
to the phase of the analysis STFT X(tua ,Ωk), denoted ∠X(tua ,Ωk), using the phase unwrapping
method. Below is only the way to compute it. The origin of this method and the explanation of
the hypothesis under which one it can be applied are in the annex.
The instantaneous frequency for every channel k, ω̂k(tua), between two consecutive analysis frames
placed at tua and tu−1

a is first computed using the heterodyned phase increment, that is unwrapped,
as follows:
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∆Φuk = ∠X(tua ,Ωk)− ∠X(tu−1
a ,Ωk)−∆tuaΩk (7)

where ∆tua = tua − tu−1
a .

Then, we take the first determination of ∆tua between [−π, π]: ∆pΦ
u
k = ∆Φuk − 2nπ, such as

|∆pΦ
u
k | < π.

Finally, we get for the instantaneous frequency ω̂k(tua) for every kth channel with:

ω̂k(tua) = Ωk +
∆pΦ

u
k

∆tua
(8)

Assuming our signal is a sum of sinusoids (McAulay and Quatieri model):

x(t) =

I∑
i=1

(t)Ai(t)e
jΨ(t)

and that only one sinusoid falls in a channel, then the instantaneous frequency in channel k
is the instantaneous frequency of the sinusoid i that fell in that channel. Plus, the heterodyned
phase increment corresponds to the small phase shift resulting from this sinusoid i in channel k
(represented by ω̂k(tua) = ωi(t

u
a)) being close but not equal to Ωk.

To achieve the time-scaling, we have to synchronize the phases of the new STFTs Y (tus ,Ωk) between
the synthesis frames, as suggested by the figure excerpted from [4]:

Figure 4: Time-scaling operation
R = Ra, D(uR) = tus and N(u) = ∆tus

The amplitude of the synthesised STFT is set as the same as the analysis one:

|Y (tus ,Ωk)| = |X(tua ,Ωk)| (9)

And the new phases are calculated deriving the instantaneous frequency, using ω(t) = dΦ
dt :

∠Y (tus ,Ωk) = ∠Y (tu−1
s ,Ωk) + ω̂k(tua)∆tus (10)

We have a phase correction of ω̂k(tua)∆tus to synchronise the phase between synthesis frames.
Plus, we suppose that the instantaneous frequency remains constant between two consecutive
synthesis frames (that suppose that ∆tus is small enough). Finally, as ω̂k(tua) remains unchanged
during the entire operation, we’ve changed the length of the signal while keeping our spectral
content.
However, this transformation stands on three hypothesis, that we’ll be dealing with during the
entire study, and that is explained further in the corresponding annex:

• First, that the signal is a sum of sinusoids (McAulay and Quatieri model) whose charac-
teristics (amplitude and frequency) vary slowly in time. That enables us in part to derive
the phase on the analysis window length, as we did for example in (10). It is the stationary
hypothesis.
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• Then that the length of the analysis window N = Nfft is big enough so that only one
sinusoid of the signal can be at the same time in the same channel. For a monophonic signal
(with which one we work on anechoic records), at frame tua , we’ll have a sound composed of
a fundamental frequency f0 and its partials fh = hf0. If we want to separate them, we have
to guarantee that the cutoff frequency of the analysis window ωh is less than half the spacing
between two consecutive harmonics, f0/2. This is the narrow-band hypothesis. Thus, for a
Hanning window of length N, we want: ωh = 2πfh, fh = 2/N ≤ f0/2, so N ≥ 4/f0.
Let’s assume we detect sounds down to A2 (110Hz) for the violin, then N ≥ 4∗Fs/f0 ' 1600
samples is good with our setup N = 2048. Be careful though, because if N is too big, the
stationary hypothesis may not be true enough on the analysis window length.
Plus, as N = Nfft, a greater N, a greater Nfft and so a better spectral precision to read
the frequencies.

• Finally, for the unwrapping technique to be verified, we have to ensure ωh.Ra < π, or
phase offsets of π can appear in the adjacent channels (the explanation of this condition
can be found in the annex). It is the unwrapping hypothesis. For a Hanning window, this
can be expressed as 2π 2

NRa < π, i.e Ra < N/4 which corresponds to an overlap of at
least 75% between the analysis windows. This hypothesis meets with the one created by
the sub-sampling of the STFT. Indeed, instead of computing the STFT every samples, we
compute it every ∆tua = Ra samples to reduce the computational cost of the STFT. This
sub-sampling will create duplications of the spectrum that can create aliasing. To have a
perfect reconstruction, we must have Bw ≤ F ′s/2 = Fs/(2∆ta), with Bw bandwidth of our
loss-pass analysis window. Here, as working with a Hanning window, we’ll have:

Bw =
Cw
N
Fs =

2

N
Fsfor a Hanning window

So we need ∆ta ≤ N/4 that implies again an overlapping of at least 75% between the analysis
frames.

2.2.4 Pitch shifting

The operation of pitch shifting can also be realized with the phase vocoder, this time by multi-
plying the instantaneous frequencies in every channel by the desired factor, and resynthesize the
signal using a sum-of-sinusoids model (McAulay and Quatieri model) with the amplitudes and the
new frequencies.
Another method and the one we will be using in the next sections is the time-stretch method. It
consists simply in resampling the original signal by a factor of d ∈ Q closest to the desired detune.
If the signal is read at the former sampling frequency Fs, resampling will cause a pitch-shift but
will also change the length of our signal. The signal will endure a compression or a dilatation of
d.
From this point, we can use the time-scaling method presented above to stretch the signal without
modifying the new spectral content. We set tua = uRa and tus = uRs, with Ra and Rs constant,
and such as Rs/Ra = 1/d.
Finally, the signal will be back to its original length, but the pitch would have changed by a factor
of d. An implementation can be found in the function pitchshift.m.

We’ve explained the use as well as the hypothesis that rule the phase vocoder approach, and
are now ready to use it to simulate a full section of violins out of one anechoic recording.
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3 Pitch-Time-Amplitude (PTA) algorithm - method based
on a phase vocoder approach

The aim of this section is to study an algorithm proposed by J.Pätynen and al. [2] and called
PTA (Pitch-shifting - Time fluctuations - Amplitude modulation).
As stated in the introduction, the effect of an instrument section lies in the broadening of the peaks
at harmonic frequencies up to ±20 cents from the nominal frequencies [1]. J.Pätynen and al. [2]
have also noted that another effect was small temporal fluctuations in instruments onsets, and
that these ones were following a normal distribution N (0, σ2), where σ ' 40ms is the standard
deviation.
Thus, it seems that the simulation of an instrument section lies in the differences between the
pitch, the onsets and the amplitude between the different musicians. J. Pätynen and al. [2] used
these observations to generated M musicians by adding pitch, temporal and amplitude fluctuations
based on the original recording.
The method is using phase vocoder techniques, and is explained in the figure shown below, and
excerpted from [2]:

Figure 5: Pitch-Time-Amplitude (PTA) algorithm

The method is separated in three main modifications brought to the original recording to
generate the musicians:

• The first one is a simple pitch-shift around the original recording that symbolizes the differ-
ences of intonation between different violinists in one orchestra.

• The second one is the use of Metropolis-Hastings sampling to add time differences/fluctua-
tions between the violins.

• Finally, an amplitude modulation is set to simulate the varying playing dynamics between
musicians and between consecutive notes.

3.1 Pitch shifting
The pitch-shift operation is done using the phase vocoder and realizing an inverse time-stretching
operation. In [2] and in our study, we’re using an analysis Hanning window wa of length N =
2048 samples. The synthesis window is set as ws = wa, and N = Nfft as stated in the previous
sections, to fulfill the no-aliasing and narrow-band hypothesis. Moreover, tua = uRa (constant
interval between analysis frames), where Ra = N

4 to have an overlap of 75% and verify the
unwrapping hypothesis.
In [2], pitchs are varied ±10 cents around the original one (to get the final ±20 cents observed by
Meyer [1]). 100 cents correspond to the gap between two consecutive frequencies, i.e an interval
of 2

1
12 for the tempered scale.
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Thus, a change of n cents will result in a pitch shift corresponding to: 2
n

1200 , so for ±10 cents to
2

n
1200 = 1.0058, so approximately ±0.5% from the original pitch.

Thus, for every wanted musician m, we pick a random pitchshift factor following the normal
distribution N (1, 0.005), and do the corresponding pitch shifting using an inverse time-stretch
method.
The inverse time-stretching approach consists, as suggested in its name, in first time-stretch and
then resample the signal.
Thus, for a musician m, a pitch-shift factor following the normal distribution N (1, 0.005) is picked,
and we choose the factor d(m) ∈ Q closest to the desired detune.
Then, the inverse time-stretching method consists setting the synthesis frames, such as tus = uRs,
with Rs = d(m)Ra, and computing the new STFT’s |Y (tus ,Ωk)| using the time-scaling approach:{

|Y (tus ,Ωk)| = |X(tua ,Ωk)|
∠Y (tus ,Ωk) = ∠Y (tu−1

s ,Ωk) + ω̂k(tua)∆ts(u)
(11)

where X(tua ,Ωk) is the STFT of the original signal, and ∆ts(u) = tus − tu−1
s = Rs.

At this point, we have a signal compressed or expanded by a factor d(m) whose spectral content
was kept unchanged.
Then, a resampling of a factor 1

d(m) will change the pitch and the length of the signal, back to its
original one, and with the desired detune.
The inverse time-stretching approach is wise here, as we’re computing only one analysis STFT for
the M instruments desired, and generate M synthesised STFT. If we have used the normal time-
stretching approach, we would have to generate M analysis STFT, whose computations depend
on the lengths of the M resampled signals, and then compute M synthesised STFT.

3.2 Time Differences using Metropolis-Hastings sampling
More than just a pitch-shifting, J. Pätynen and al. [2] introduce time differences on each synthe-
sised frames to simulate time variation between the M different players. This will complete the
pitch-shifting to create more "volume" in the sound to sound more as an ensemble.
The time-fluctuation is achieved by setting:

tus = tus + δ(u) = uRs + δ(u) (12)

adding a little time fluctuation in the synthesis time-instants. If δ(u) > 0, the synthesis frame
originally at tus will be moved forward to tus + δ(u), giving the impression that the musician is
playing slightly behind the tempo.
The question now is which model we have to choose to simulate at best the time fluctuation.
J. Pätynen and al. in [2] chose a random Markov chain, following the Metroplis-Hastings sampling.
This method, based on a Markov Chain Monte Carlo method, presents the advantage that picked
samples depend on the previous state as in every Markov Chain, and can emulate the effect of a
musician playing slightly behind the tempo, and catching the tempo at the next moment, or vice-
versa. That is similar to the behavior of the traditional chorus effect but without its characteristic
vibrato, and with more manoeuvrability in the parameters.

3.2.1 Metropolis-Hastings sampling - Theory

The explanation of the Metropolis-Hastings sampling given here is excerpted from an article of S.
Chib and E. Greenberg in [8].
Classical simulation techniques usually generate independent successive samples. With Markov
chains, and more specifically the Metropolis-Hastings chain here, we include dependency between
observations. This dependency is defined by the so-called the candidate-generating density, and
noted q(x, y) such as

∫
q(x, y)dy = 1. This density is just saying that when a process is at a point

x, the density generates a value y from q(x, y). Let’s define π(.) as the density of the distribution
with which one we’re picking our samples. In most of the cases, we’ll find for some x and y:
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π(x)q(x, y) > π(y)q(y, x) (13)

which means that the process of sampling moves from x to y too often and from y to x too
rarely. Note that the problem can be seen the other way as it is symmetrical.
To counterbalance this phenomena and reduce the moves from x to y, we’ll introduce a so-called
probability of move α(x, y) < 1, which is the probability that the move is made, to reduce the
number of transitions from x to y. Thus, the transition from x to y will now be set by q′(x, y) =
q(x, y)α(x, y) = pMH(x, y), defined as the Metropolis-Hastings candidate-generating density.
What we want to have now, to balance (13) with the probablity of move α(.) is:

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

But as we want more transition from y to x, considering the inequality (13), we set α(y, x) as
large as possible, so to its upper limit 1.
From the previous equations, we have:

α(x, y) =
π(y)q(y, x)

π(x)q(x, y)

Finally, we get:

α(x, y) =

{
min[π(y)q(y,x)

π(x)q(x,y) , 1] , if π(x)q(x, y) > 0

1, otherwise.
(14)

The Metropolis-Hastings algorithm is then defined as follows, with the arbitrary value of the
first sample x(0) and N the length of the desired chain:

Algorithm 1 Metropolis-Hastings algorithm
Steps
1: for j = 0, 1, ..., N − 2 do
2: Generate y from q(x(j), .) and u from U(0, 1)
3: if u ≤ α(x(j), y) then
4: set x(j+1) = y
5: else
6: set x(j+1) = x(j)

7: end if
8: end for
9: Return the values x(0), x(1), ..., x(N−1)

Where U(0, 1) is the standard uniform distribution whose probability density equals 1 in [0, 1].

3.2.2 Application

By setting contact microphones (to avoid noise between nearby instruments) on different violins in
the same section, and picking their onsets, J. Pätynen and al. have noticed that the distribution of
the onsets, thus the temporal fluctuations were following a normal distribution N (µ, σ2) of mean
µ = 0 (on average, the section is in the tempo) and with a standard deviation σ ' 40ms. The
distribution is shown below:
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Figure 6: Distribution of the onsets temporal differences, from [2]

Thus, the Metropolis-Hastings sampling algorithm can be simplified a lot. Indeed, for a normal
random distribution, the candidate-generating density is symmetric: q(x, y) = q(y, x) as samples

are picked randomly, and π(x) = 1
σ
√

2π
e−

1
2

(x−µ)2

σ2 > 0.
Thus the expression of α(x, y) in (14) is:

α(x, y) = min[
π(y)

π(x)
, 1] = min[

e−
1
2 ( yσ )2

e−
1
2 ( xσ )2

, 1] (15)

Finally, as it is a random normal distribution, in step 2 of the Metropolis-Hastings algorithm,
y is just taken randomly in N (0, σ2).
Below a density for a symmetric distribution (the same as our normal distribution):

Figure 7: Probability of move, from [8]

If π(y) ≤ π(x) (the jump goes ’uphill’) α(x, y) = 1 and the move is always made. Otherwise,
if it goes ’downhill’, it is accepted with a non-zero probability.
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In our case, if the musician plays slightly after or before the tempo with an offset of x, and if y,
the offset at the next time, is close to 0, π(y) > π(x) (as closer to 0), the move is always made,
and the musician catches the tempo, and vice-versa.
Thus, we generate a different Metropolis-Hasting chain for every musician MH(m)(u) = δ(m)(u)
of length Na, the number of analysis frames, and we low-pass filter it with a Hanning window.
The algorithm implemented in MetropolisHastings.m shows the time differences generated:
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Figure 8: Time Differences for a musician m, in ms

As we can see, filtering this random chain with a low-pass filter simulates a musician ’moving’
around the tempo, consecutively catching it and playing slightly behind or before the tempo at
the next moment.
The Metropolis-Hastings sampling is perfect for a phase vocoder approach. As it can remain in the
same state during several pickings, it guarantees at a low-frequency coherence between overlapping
and consecutive synthesis frames.
As we’re placing the synthesised STFT for each musician m at time-instants tus = u.Rs + δ(m)(u),
we compute them accordingly, for each musician m:{

|Y (tus ,Ωk)| = |X(tua ,Ωk)|
∠Y (tus ,Ωk) = ∠Y (tu−1

s ,Ωk) + ω̂k(tua)∆ts(u)
(16)

where ∆ts(u) = tus − tu−1
s = Rs + δ(m)(u)− δ(m)(u− 1), Rs = d(m).Ra. In practice, δ(m)(u)−

δ(m)(u − 1) = d(m)(δ(m)(u) − δ(m)(u − 1)), so that the time fluctuations are following N (0, σ2),
σ = 40ms, when resampled by a factor 1

d(m) .
Admitting we’re in a zone where the average time difference is δ(m) ' 40ms, the synthesis frames
will be set locally a bit after where they should have been if they were set at the normal time-
instants tus = uRs. The instrument is then heard as playing right after the tempo.
The spacing between two consecutive synthesis frames is not constant anymore. We have to
be careful though that ∆(m)(u) = δ(m)(u)− δ(m)(u− 1) remains small enough, that means small
variations between two consecutive values of δ(m) so that the synthesised frames keeps overlapping
correctly. The hypothesis of a constant instantaneous frequency ω̂k(tua) that remains constant
between two consecutive frames, which we use to compute the synthesised phase, also lies in the
small gap between two frames.
That’s why we low-pass filtered the Metropolis-Hastings sampling, to keep coherence between
overlapping consecutive synthesis frames.
Moreover, E. Moulines and J. Laroche in [4] recalls that theoretically, if f : tua 7→ tus is not linear
(in our case, f no longer equals f(t) = d(m)t), then the synthesis window should be normalized at
each synthesis frames.
Indeed, in figure 3, when we did the perfect reconstruction hypothesis and we normalized the
synthesis window ws so that χ = 1 on the synthesis frames, we did it for all synthesis frames
in one time because the time-stretching factor was constant. Here, as the gap between synthesis
frames is varying, we should normalize the synthesis window at each frame to make them overlap
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correctly.
However, in practice, this normalisation can be skipped if a sufficient overlap between consecutive
synthesis frames is provided, which was fufilled with δ(m)(u)−δ(m)(u−1) when we low-pass filtered
the time fluctuations we generated (thee maximum of d(δ(u))

du was lower than 50 samples, which
represents approximately 10% of the hop factor Rs.

3.3 Amplitude modulation
The last part of the PTA algorithm consists in an amplitude modulation, which simulates varying
playing dynamics between musicians and between consecutive notes.
This will be done by adding a factor γ(u) for every frame in (4) before the synthesised signals
yu(n− tus ):

y(n) =
∑
u∈Z

γ(u)yu(n− tus )ws(n− tus ) (17)

Of course, γ(u) = γ(m)(u) and tus = t
(m),u
s = u.R

(m)
s + δ(m)(u), where R(m)

s = d(m)Ra depends
on the musician m, but the expression will be written as above to be clearer.
As for the time difference sampling, the chain γ of length Na, the number of frames will be set as
a low frequency random Metropolis-Hastings sampling. As for the tempo, it simulates a musician
playing louder, then catching the average volume and below, and the low-pass filtering stands for
coherence between overlapping synthesis frames.
J. Pätynen and al. [2] chose a normal distribution N (µ, σ2) centered in µ = 1, and with a 1dB
standard deviation σ, which corresponds to a standard deviation of 10

1
20 ' 12%. The modulation

frequency is set to 5 Hz which corresponds approximately to eight notes in moderate tempo.
As the metropolis-Hastings sampling is operating every frame, we will look for a Hanning window
operating on frames whose length Nf is such as:

wh =
2Fe
NfRa

≤ 5Hz

as frames are set every Ra samples, so Nf ≥ 2Fe
5Ra

.
After obtaining the low frequency amplitude chain for each musician, we scale the sum of parallel
random values to unity to change balance between different musicians without affecting the gen-
eral sound level.

This technique is coded in the function PTA.m, and uses the functions ola.m, and Metropol-
isHastings.m.
It shows good audio results that are available in the repositoryViolin, and are named ’PTA_12.wav’
and ’PTA_1.wav’, which are respectively the results for a full section of 12 violins, and a single
violin source.

4 Improvement of the phase vocoder

The method described above, standing on a classical phase vocoder approach, shows high-quality
audio results as compared to the traditional chorus effect. However, even if the audio results are
good, we can hear at some point a "loss of presence" in the synthesised signals. This artifact, called
phasiness, is with transient smearing characteristic artifacts of the phase vocoder applications.
Phasiness (or reverberation or “loss of presence”) is heard as a characteristic coloration of the
signal; in particular, time-expanded audio signals, even for modification that are close to one
(that is our case), can sound as if the musician is much further from the microphone than in the
original recording. One has to note that this effect is independent from amplitude modulation and
occurs even when there is none.
Transient smearing occurs also even with modification factors that are close to one, and is heard
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as a slight loss of percussiveness in the signal. Percussive intruments (as the piano, or drums) are
perceived as having less “bite.”
These two artifacts will be dealt with and explained in the two following sections.

4.1 Reducing phasiness with phase locking techniques

This section is inspired by the work of J. Laroche and M. Dolson in [3] who developped two
techniques to reduce considerably the effect of phasiness.

4.1.1 Limitations of the horizontal phase propagation

The problem of phasiness is known to lie in the modifications of phases in the STFT. Indeed,
when applying the formula:

∠Y (tus ,Ωk) = ∠Y (tu−1
s ,Ωk) + ω̂k(tua)∆ts(u)

This formula guarantees a horizontal phase coherence, in other words, coherence is maintained
only within each frequency channel over time. In the following section, we see why it is also
important to have coherence across frequency channels for a given synthesis frame, to achieve
what J. Laroche and M. Dolson name vertical phase coherence, and how incoherent synthesis
phase computation can easily lead to the phasiness artifact.
If horizontal and vertical phase coherence are not preserved, the modified STFT won’t be a valid
one for the synthesis signal y, so the STFT consistency will be damaged and phasiness will be
heard. Thus, the results of the following algorithms will be analysed through the consistency
measure we introduced above.
Because phase propagation errors are in the center of many of the sound quality issues in the
phase vocoder, it is important to understand how sinusoidal phases are altered by vocoder-based
time-scale modifications.
Let’s unroll the phase-propagation equation (10), assuming that tus = uRs, and tua = uRa:

∠Y (tus ,Ωk) = ∠Y (t0s,Ωk) +

u∑
i=1

Rsω̂k(tia)

= ∠Y (t0s,Ωk) +

u∑
i=1

[RsΩk +
Rs
Ra

∆pΦ
u
k ]

Replacing ∆pΦ
u
k by its definition, and noting α = Rs

Ra
, we obtain:

∠Y (tus ,Ωk) = ∠Y (t0s,Ωk) + α

u∑
i=1

[∠X(tia,Ωk)− ∠X(ti−1
a ,Ωk) + 2mi

kπ]

where 2mi
kπ = ∆pΦ

i
k −∆Φik (mi

k is the unique integer (the unwrapping factor) found thanks
to the unwrapping hypothesis Raωh < π, with ωh cutoff frequency of the analysis window wa,
that links the STFT analysis phase with the instantaneous phase in the channel). In the previous
equation, we also recover the wrapped phase determination up to an integer multiple of 2π. Finally,
we get:

∠Y (tus ,Ωk) = ∠Y (t0s,Ωk) + α[∠X(tua ,Ωk)− ∠X(t0a,Ωk)] + α

u∑
i=1

2mi
kπ] (18)

This equation shows that at a given time-instant tus , the synthesis phase depends only on the
phase of the current analysis instant, on the initial synthesis frame, on the initial analysis frame
and most importantly on the series of phase-unwrapping factors mi

k.
Let’s take sinusoid I, part of the original signal x following the McAulay and Quatieri model. The
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channels k influenced by this sinusoid are the ones such as |ωk−ωI | < ωh. Thus, for these channels
k, we’ll have, according to (35) in the annex:

X(tua ,Ωk) = AI(t
u
a)ejψI(tua)Wa(ej(Ωk−ωI(tua))

where Wa is the FFT of the analysis window wa. If we have a symmetric window, Wa is real,
thus its phase is null, and all the adjacent channels influenced by the nearby sinusoid I will have
the same phase ∠X(tua ,Ωk) = ψI(t

u
a) + 2nukπ that equals the instantaneous phase up to a multiple

of 2π. Only the amplitude AI(tua)Wa(ej(Ωk−ωI(tua)) will change depending on the proximity with
the nearby sinusoid.
In practice, we look for the phase difference between two consecutive analysis instants, and relate
it to the instantaneous phase difference up to the unwrapping factor mu

k :

∠X(tua ,Ωk)− ∠X(tu−1
a ,Ωk) = ψI(t

u
a)− ψI(tu−1

a ) + 2mu
kπ

= ωI(t
u
a)∆ta(u) + 2mu

kπ

by deriving the phase. Then we have to find the unique mu
k so the instantaneous frequency of

the sinusoid I ωI(tua) = ω̂k(tua) for the kth channels influenced by the sinusoid is known, and that’s
what the phase unwrapping method tends to do.
NB: in practice however, the analysis window is not centered and is nonzero for 0 ≤ n < L. This
offset creates, a variation of π in the adjacent channels.
Thus, it seems essential that modified STFT Y (tus ,Ωk) has to keep the same synthesis phases in
channels around the sinusoids composing the signal. This is precisely what we called the vertical
phase coherence.
In (18), as ∠X(tua ,Ωk) = ψI(t

u
a) + 2mu

kπ for all channels k around the sinusoid, we want the sum
of the unwrapping factors α

∑u
i=1 2mi

kπ equal (modulo 2π) in nearby channels.
Let’s place ourselves in a synthesis frame u, on channels k that are nearby a sinusoid I. The
computation of the unwrapping factors mu

k depends directly on the unwrapping condition:

|∠X(tua ,Ωk)− ∠X(ti−1
u ,Ωk)− ΩkRa − 2mi

kπ| = |∆Φuk − 2mu
kπ| = |(ωI(tua)− Ωk)Ra| < whRa < π

So that we can find a unique 2mi
k that satisfies the equation and gives us the instantaneous

phase and frequency. For each channel k, ∆Φuk is the heterodyned phase which is actually the
small phase shift resulting in the sinusoid I being close, but not necessarily equal to Ωk.
If Ra is small enough, then the unwrapping condition is fulfilled and there is no danger of phase
unwrapping errors in the adjacent channels. However, we’re working here with Ra = N

4 such as
whRa = π. As before, there won’t be any problem for the closest channels of the sinusoid I.
However, the furthest channels can be influenced by noise or unrelated sinusoid, modifying slightly
∠X(tua ,Ωk) − ∠X(ti−1

u ,Ωk) for these channels. This will lead to a wrong unwrapping factor mu
k ,

and result in breaking the equality between the phases of the related channels.
More, we can see in (18) that phase unwrapping errors accumulate in the sum, losing the vertical
coherence for ever.

In (18), we’ve seen that the phase at time-instant tus , ∠Y (tus ,Ωk) depends on the initial syn-
thesis phase ∠Y (t0s,Ωk). J.laroche and M. Dolson have shown that this initialization is impor-
tant, especially when the time-expansion factor α is an integer. For this case, an initialization
∠Y (t0s,Ωk) = α∠X(t0s,Ωk) is advised to reduce consistently the phasiness artifact.
We don’t apply this initialisation as we’re working with non-integer factors close to one, and will
set ∠Y (t0s,Ωk) = ∠X(t0a,Ωk) for the rest of the implementation.
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4.1.2 Identity phase locking

Departing from the observations noted above, J. Laroche and M. Dolson developped a technique,
called rigid phase locking that locks vertically the synthesis phases around the peaks in the STFT.
The first step consists in locating energy peaks at time tua in the analysis STFT frame. These peaks
corresponds to the sinusoids i present in the original signal, and compute for the peak channels
the new synthesis phase according to the classical phase-propagation formula (10). These peak
channels are noted Ωki , and are considered in our implementation as channels whose amplitude is
larger than its four nearest neighbours, and larger than max(|X(tua ,Ωk)])

5 . This threshold prevents
us from taking unrelated peaks only caused by noise, and decreases the computationnal cost of
our implementation.
Then the phases of the nearby channels are locked to the new synthesis phases of these peaks. In
our algorithm, we choose to set the upper limit of the region surrounding peak Ωki , as the channel
of lowest amplitude between the two peaks Ωki and Ωki+1

.
From what we explained in the section, the synthesis phases around the peak are then chosen to
be related in the same way as the analysis phases: the synthesis phase difference between adjacent
channels around a peak are set identical to the analysis phase difference in the analysis STFT.
Thus, once we’ve computed ∠Y (tus ,Ωki) for all peaks, for channels k in the zone of influence, we
set:

∠Y (tus ,Ωk)− ∠Y (tus ,Ωki) = ∠X(tua ,Ωk)− ∠X(tua ,Ωki)

Or, in other terms:

∠Y (tus ,Ωk) = ∠Y (tus ,Ωki) + ∠X(tua ,Ωk)− ∠X(tua ,Ωki) (19)

There’s no danger in unwrapping factors errors anymore for further channels from the sinusoid
channel (peak). By relating the synthesis phases in the way as were the analysis ones, we’re sure
to keep the same coherence across channels from the analysis STFT to the synthesised STFT. In
particular, as explained above, for nearby channels around a sinusoid I, if we have a perfect signal
(no noise or unrelated sinusoid), then ∠X(tua ,Ωk) = ∠X(tua ,ΩkI ) with ΩkI the channel where the
sinusoid I is. This provides ∠Y (tus ,Ωk) = ∠Y (tus ,ΩkI ). The coherence is preserved for channels
surrounding a sinusoid, independently from the unwrapping factors.
More, since unwrapping is performed only on peak channels, we’re sure that the instantaneous
frequency of the sinusoid I is close to the center frequency of this channel. As a result, the het-
erodyned phase ∆Φuki is minimum and the unwrapping condition |∠X(tua ,Ωk) − ∠X(ti−1

u ,Ωk) −
ΩkRa − 2mi

kπ| = |(ωuI − Ωk)Ra| < π to find the unique unwrapping factor mi
k is clearly fulfilled.

ωuI is here the instantaneous frequency of the sinusoid I in the channel. The unwrapping condition
ωhRa < π can then be relaxed, allowing even greater values of Ra and overlap down to 50% can
be chosen without generating unwrapping errors. For our case, whose analysis Hanning window
requires a normal overlap of 75%, it reduces the computational cost by a factor of two!

Finally, this technique is really cheap as concerned its computational cost. Phase unwrapping
technique is only applied to peak channels. Then, phases are locked according to (19) by defining:

θ = ∠Y (tus ,Ωki)− ∠X(tua ,Ωki) (20)

and simply rotate the phase for the adjacent channels with the phasor Z = ejθ (the amplitude
is the same, only a phase shift is operated) as follows:

Y (tus ,Ωk) = ZX(tua ,Ωk) (21)

Thus, the phase lock computation for the neighboring channels only require one complex
multiply.
The algorithm is summed below:
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Algorithm 2 Identity phase locking
Steps
1: for STFT frames do
2: Locate prominent peaks
3: for each peak do
4: Compute the synthesised STFT according to the phase unwrapping method:
5: |Y (tus ,Ωkl)| = |X(tua ,Ωkl)|
6: ∠Y (tus ,Ωkl) = ∠Y (tu−1

s ,Ωkl) + ˆωkl(t
u
a)∆ts(u)

7: Compute Z = ejθ

8: Compute Y (tus ,Ωk) = ZX(tua ,Ωk) for all channels in the zone of influence around the
peak, including the peak

9: end for
10: end for

4.1.3 Computation inter-peaks and scaled phase locking

In the previous algorithm, and since the beginning, the phase propagation is computed between
two consecutive synthesis frames within the same channel. However, signals and their sinusoids
can slowly move across channels between consecutive frames, even when analysing a single note. A
chirp signal is the perfect example to illustrate this case. Especially now that we’re concentrating
on peaks, a sinusoid can move slightly from channel k0 at time tu−1

a to channel k1 at time tua .
In that case, the unwrapping equation should be based for two peaks on the phase difference
∠X(tua ,Ωk1)− ∠X(tu−1

s ,Ωk0), and the phase propagation equation changed to:

∠Y (tus ,Ωk1) = ∠Y (tu−1
s ,Ωk0) + ω̂k1(tua)∆ts(u) (22)

To determine which peak in time-instant tu−1
a is related to the new one in tua , we’ll just take

the dominant peak Ωk0 of the region where the peak channel Ωk1 at the current time belonged at
the former time-instant tu−1

a .
J. Laroche and M. Dolson [3] propose also a new phase locking technique called scaled phase locking
that sets the synthesis phases of the channels in the region of peaks as follows:

∠Y (tus ,Ωk) = ∠Y (tus ,Ωki) + β(∠X(tua ,Ωk)− ∠X(tua ,Ωki)) (23)

where β is a phase-scaling factor. Identity phase locking is simply achieved with β = 1. J.
Laroche and M. Dolson found experimentaly that setting β = 2

3 + α
3 with α as the time-stretching

factor helps reducing phasiness.
In our cases, as α ' 1, this case doesn’t change much from the identity phase locking in theory.
However, subjective listening tests with the two phase locking techniques proved that the audio
results have a better quality using the scaled phase locking technique.
This technique has the disadvantage that we can not use the phasor Z = ejθ to compute the
synthesis phases anymore. More, we have to unwrap the phases ∠X(tua ,Ωk) across channels k
around the peak ki to avoid jumps of 2βπ in the synthesis phases. Even in our case where β ' 1,
we want to avoid small phase shifts resulting from 2βπ ' 2π but not necessarily equal.
This unwrapping operation and the calculations of the analysis phases inter peaks will unfortu-
nately lead to a greater computational cost than with the identity phase locking.
The scaled phase locking algorithm is then set as defined below.

Both identity and scaled phase locking techniques were implemented in the functions
PTA_PhaseLock.m and PTA_ScaledPhaseLock.m respectively. Each one can use inter or intra
peaks phase unwrapping computation during the analysis stage by setting the parameter phaselock
to ’inter’ or ’intra’.
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Algorithm 3 Scaled phase locking with computation Inter Peaks
Steps
1: for STFT frames do
2: Locate prominent peaks
3: for each peak do
4: Find the associated previous peak and compute the synthesised STFT according to the

phase unwrapping method:
5: |Y (tus ,Ωkl)| = |X(tua ,Ωkl)|
6: Compute ˆωk1(tua) with ∠X(tua ,Ωk1)− ∠X(tu−1

a ,Ωk0)

7: ∠Y (tus ,Ωk1) = ∠Y (tu−1
s ,Ωk0) + ˆωk1(tua)∆ts(u)

8: Unwrap analysis phases across all channels in the region around the peak to avoid 2βπ
jumps

9: Compute Y (tus ,Ωk) = ∠Y (tus ,Ωki) + β(∠X(tua ,Ωk) − ∠X(tua ,Ωki)) for all channels in
the region around the peak

10: end for
11: end for

4.1.4 Results

The above phase locking techniques were added to the former PTA algorithm and the consistency
measure for the synthesised STFT was computed, using the formula (6) by taking the time-instants
with time fluctuations tus = uRs+δ(u), with Rs = d(m)Ra. P is taken when χ reaches 1, according
to the perfect reconstruction graph 3. We can see that χ(Nframes−P ) also equals 1 on the other
side.
The algorithms were compared through STFT consistency measures and computational cost eval-
uations. The STFT consistency measures presented below was taken each time as the mean of
the STFT consistencies obtained for the M instruments generated.
The results are slightly improved, and the computational costs are good as well:

Phase Locking technique Dm Time
Classic PTA -38dB 49.55s
PTA Identity PhaseLock - Intra Peaks -39dB 50s
PTA Identity PhaseLock - Inter Peaks -40dB 54.57s
PTA Scaled PhaseLock - Intra Peaks -39dB 70.12s
PTA Scaled PhaseLock - Inter Peaks -38.5dB 70.86s
PTA Identity PhaseLock - Intra Peaks - 50% -37dB 26.77s
PTA Scaled PhaseLock - Inter Peaks - 50% -35dB 37.64s

Table 1: STFT consistency and execution time for different
phase locking techniques

- 50% defines the same algorithms run with an overlap of 50%. The STFT consistency was
slightly improved with the phase-locking techniques, but remain very close, as we’re working with
modification factors close to one.
However, the audio results are heard to be better, and also appear to be more ’punchy’: the loss
of presence created by the phasiness artifact, as if the musician was further from the microphone,
is no longer heard.
To check that the consistency in the generated STFT is indeed improved with the phase locking
techniques, tests with a time-stretching factor of 1.5 were computed and the results are exposed
below:
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Phase Locking technique Dm

Classic PTA -34dB
PTA Identity PhaseLock - Intra Peaks -46dB
PTA Identity PhaseLock - Inter Peaks -43dB
PTA Scaled PhaseLock - Intra Peaks -39dB
PTA Scaled PhaseLock - Inter Peaks -38.5dB
PTA Identity PhaseLock - Intra Peaks - 50% -32dB

Table 2: STFT consistency for a time-stretch factor of 1.5

The STFT consistency are shown to be merely improved with the new algorithms, up to a
decrease of -12dB as compared with the classical PTA!
The scaled phase locking algorithms don’t present as good results as the identity phase locking in
general. Though, the audio listening suggested that the results were better, and less ’phasy’ with
the scaled phase locking, and although the STFT consistency can show strong consistency and
coherence in the synthesis signals, it is not a clear indicator of phasiness.
As concerned the computational cost of the algorithms, the identity phase locking ones are as
low computational as in theory and have the same cost than the classic PTA (even with peaks
computation), whether with intra or inter peaks computation. Indeed, as the inter/intra peaks is
done only one time in the analysis stage (compared to the M synthesis stages), the overall time
execution is not far from one to another. The PTA scaled phase lock is unfortunately longer in
execution, as it can’t use the phasor operator to change phase in peaks’s regions of influence, but
is still fair and its results have better quality than the PTA and the identity phase locking.
Finally, the Scaled and Identity PTA run with an overlap of 50% (hop factor Ra = Nw

2 ), which
reduces as supposed the number of computations, and so the time of execution by a factor of two.
The STFT consistency measure is really fair with -35dB and -37dB for the identity phase locking
as compared with the classical PTA (-37.5dB). This would have been a perfect solution if we
wanted to have fair results in a short time. However, the synthesised sound rough and rubbling,
probably because of an insufficient overlap, and even if the time fluctuations were set to zero.
J. Laroche and M. Dolson [3] also noticed this phenomenon and advised to avoid the artifact to
choose β close to one, that was already our case.
Thus, the phase locking techniques are solutions that can be easily added to the classical PTA,
and are shown to reduce phasiness artifact as compared with the results obtained with the PTA
algorithm, while keeping a fair computational cost. Every phase locking technique was heard and
the scaled phase locking technique, with inter peaks computation was the one who yielded the
best audio results. This is the one we will be using from now on until the end of the study. Only
phase artifacts were heard with the phase locking algorithms when the musician was breathing,
creating a slight ’fuzzing/laser’ effect.
All the results are available in the ’Violin’ folder, with ’technique_nbViolins.wav’.

4.2 Reducing transient smearing with transient detection
The study above works well for constant-frequency signals, or signals whose frequencies vary slowly
(as the chirp signal used in [3]).
However, if the signal changes brutally (what we call a transient attack), the technique above won’t
work as the phase of the peaks between consecutive frames are not related anymore. Plus, the
stationary hypothesis is no longer fulfilled, and time stretching attack transients (so updating the
phase using an unrelated previous phase with the unwrapping method) will result in a transient
smearing problem, or loss of percussiveness in the signal, as introduced above. In more severe
cases, a complete change of the sound characteristics may take place.
Though it may not be heard clearly with a section of violins (as they are non-percussive instru-
ments), this transient smearing artifact can create audio problems for some percussive instrument
sections composing a symphonic orchestra, such as drums or horns.
Below is the recording of a snare we did in the second part:
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Figure 9: Snare signal

We stretched the signal by a factor of two to see the artifact. Below on the left is the zoom on
the first onset for the original recording, and on the right on the same onset for the time-stretched
recording.
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Figure 10: Transient smearing artifact

As we can see, the transient attack has disappeared, resulting in a loss of percussiveness in the
sound. This artifact can be heard with the audio file transientSmearing.wav in the folder ’Snare’.

The study proposed by Axel Röbel in [5] consists in detecting frames where transient attacks
occurs and re-initializing phases of the synthesis STFT for these frames, as the phase propagation
formula in (10) is no longer valid.
To detect transients, A. Röbel computes the Center Of Gravity (COG) t̂ defined in [5] as:

t̂ =

∫
ts(t)2dt∫
s(t)2dt

which can also be computed, at time instant tua with:

t̂ua =

∫
−∂φ(tua ,ω)

∂ω) A(tua , ω)2dω∫
A(tua , ω)2dω

(24)

where A(tua , ω) and φ(tua , ω) are respectively the amplitude and phase of the analysis STFT at
time tua : X(tua , ω) = A(tua , ω)ejφ(tua ,ω).
As we can see, the computation of the COG lies on a phase criteria which is particularly relevant
for a phase vocoder application, as compared to energy based criteria used in former methods.
Moreover, we’ll see after that these two criteria, thanks to formula developed by Auder and al. [9]
are immediately related.
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The COG developed by A. Röbel lies on the time-reassignment operator γ : (t, ω) 7→ (t′, ω′)
developped by Auder and al. [9] and shown in the figure below:

Figure 11: Time reassignment method, from [9]

The time-reassignment operator applied to time-frequency representations consists in comput-
ing (t′, ω′) that will "find" the energy around (t, ω) in the representation. In the example above,
we can see that the energy zone is ’before’ and ’below’ (t, ω). As a result, we’ll have t′ < t and
ω′ < ω.
The Center Of Gravity stands on a time-reassignment method, and basically indicates where the
energy is in an analysis frame. Further explanation on how we find this COG are excerpted from
[9] and given in the annex.
As A. Röbel is focusing only on time issues, the time will be fixed at tua , and the COG obtained in
(24) by integrating the time computed by the time reassignment operator on the frequency axis,
and weighting it with the amplitudes A(tua , ω).
The time-instant tua is also assumed to be in the center of the window, without loss of generality,
to get the COG formula.
Admitting we’re encountering an attack transient. For stationary partials, the phase is constant,
so the COG is equal to 0 and is in the center of the analysis window. If we encounter a transient,
then the average phase derivative is negative, and t̂ua > tua = 0 is in the right of the analysis
window, looking for the energy as shown in fig 11.
Then, as we get closer from the transient, the phase derivative and t̂ua will decrease slowly back to
zero, as we’re reaching a stationary signal.
As the COG can’t go further than the window right size, when detecting a transient, it will be
placed at +50% of the window size to its maximum value, and will then move back to the center
of the frame at 0%.
In the article, A. Röbel [5] has tested the values of the COG for different ramp inclination (differ-
ent type of transients) and found that a threshold of Ce = 4.4% of the analysis window’s length
ensures a minimum of 60% of transient covered by the analysis window, regardless of its type.
When we’re on a transient, the synthesis phases are not related anymore with the ones in the
previous frame. The phases are reinitialized and the phase propagation using the unwrapping
method is going on in the next frame.

As we said, this phase vocoder improvement is particularly useful to prevent percussiveness in
attack transients from being lost during the phase propagation computation. Though it may not
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be heard clearly with a section of violins (as they are non-percussive instruments), this transient
detection is useful for some percussive instrument sections composing a symphonic orchestra, such
as drums or horns.
The COG is computed in each analysis frames of the signal and is display below for a violin and
for a snare that we personally recorded anechoically. A. Röbel [5] worked on polyphonic signals
and had to integrate the phase derivative on different sub-bands in (24) and then sum it all to
distinguish energy brought by real transients are by partials of notes already existing. In our case,
working with a solo recording removes all problems concerning polyphonic treatments, possible
overlapping of partials from different notes, and we can directly integrate on the whole frequency
range.
Morevover, Auder and al. [9] found a relation relating the phase derivative with the STFT of the
signal windowed by wa and T wa(t) = t.wa(t), the analysis window multiplied by a time ramp, and
is more adequate for computational purposes when working with the phase vocoder and STFT:

− ∂φ(tua , ω)

∂ω
= −<(

STFTT wa(tua , ω).STFTwa(tua , ω)

|STFTwa(tua , ω)|2
) (25)

That’s the implementation we used to compute the COG in every frame with the function
computeCOG.m. The evolution of the COG, so its computation in every frame is found in function
COG_g.m and is displayed below respectively for the violin we studied before and for a snare:
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Figure 12: COG for a violin
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Figure 13: COG for a snare

In these two graphs, the peaks corresponds clearly to the onsets in the original recordings. As
we can see, they are much more clear for the percussive snare signal, reaching until 40% of the
analysis window length on the right (the max is 50% as the time origin is in the center of the
window). For violin sounds, the COG reaches only 25%.
The threshold Cs > Ce to detect transients will be set to COG > Cs = max(COG)/2. After
verifying this condition, we assume that we are on the transient when COG < Ce = 4.4% in a
given frame as stated by A. Röbel. In this frame, the synthesis phase is re-initialized.
The following graph shows the first onset, after time-stretching using the transient detection:
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Figure 14: Restored transient attack

The transient attack has clearly been restored, and the synthesised sound has regained in
percussiveness.
Thus, we add this transient detection to the scaled phase lock PTA algorithm with inter-peaks
computation to get the improved PTA algorithm described below:

For the violin, the results appear to be less phasy than with the scaled inter-peaks algorithm,
especially during the musician breaths where phasy artifacts were heard the most. As the phase
locking algorithms already corrected the phasiness effect, making the sound more punchy, and as
the violin are non-percussive signals, the regain of percussiveness was hard to detect on the onsets
between the two algorithms. However, we will see in the second part that transient smearing
artifact was indeed corrected when percussive snare signals are processed.
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Algorithm 4 Improved PTA
Steps
1: for STFT frames do
2: if transient detected then
3: Re-initialize the synthesis phases:
4: Y (tus ,Ωk) = X(tua ,Ωk), so:
5: |Y (tus ,Ωk)| = |X(tua ,Ωk)| and
6: ∠Y (tus ,Ωk) = ∠X(tua ,Ωk)

7: else
8: Scaled phase lock PTA with inter-peaks computation algorithm
9: end if

10: end for

The audio results can be found in the same folder ’Violin’, in ’improvedPTA_1.wav’ and ’im-
provedPTA_12.wav’, and the performances of the algorithm are given below:

Phase Locking technique Dm Time
Classic PTA -34dB 49.55s
PTA Scaled PhaseLock - Inter Peaks -36dB 70,86s
Inproved PTA -39.5dB 75.62s

Table 3: Improved PTA performances

The time computation is approximately the same as the scaled phase locking algorithm, where
the COG detection was added. As for the STFT consistency, the result shows improvement com-
pared to the former algorithms.
Another advantage of the improved PTA algorithm for all instruments is that as the phase propaga-
tion formula is no longer used when detecting attack transients, we are sure that the instantaneous
frequency will remain the same and constant between two consecutive synthesis frames.
As a result, a greater interval between consecutive synthesis frames is allowed (providing of course
that the frames overlap in a sufficient way), and greater variations of time fluctuations are per-
mitted without hurting the sound.
In practice, the time fluctuations can be low-pass filtered with a cutoff frequency of 5Hz (eight
notes in the medium tempo), as for the amplitude modulation! This provides a fluctuation on
each onset, and not a general and progressive fluctuation as in the PTA algorithm.
With a low-pass filter of 5Hz cutoff frequency, the time fluctuations given in the graph below:
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Figure 15: Time fluctuations - 5Hz cutoff frequency

were such as, on average max(dδ(u)
du ) = 500 < Ra samples for an overlap of 75%. This can

create an overlap varying between 100% and 50% at max. Thus, we can still consider that a
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general normalisation during the synthesis stage can still be operated (as revealed by E. Moulines
[4]), and that coherence still exists between consecutive synthesis frames. The only issue would be
to have a rough sound as when we ran the algorithms with an overlap of 50%, that can’t happen
as this overlap is only for the extrema, and the average overlap is still 75%.

5 Phase vocoder with onset analysis

In the previous sections, we were adding time fluctuations on the signal frames, thus progressively.
The changes operate smoothly, but without taking care of the onsets and the reality of the way
musicians are playing, apart from our improvement when low-pass filtering the time fluctuations
at 5Hz. In real life, time fluctuations can only occur when the musician is playing notes, and so
on onsets.
Thus, the technique we’re developing below lies on the same process and same techniques, except
that we’ll apply the signal modifications to the notes between two consecutive onsets, and not on
every frame.
First step was to choose our way to detect onsets. Several, using techniques described by J.P.
Bello and al. [10] are explored.

5.1 Onset Detection

5.1.1 Spectral difference

The first method was the spectral difference (SD) developed by J.P. Bello and al. in [10], and
given at time-instant tua by the following formula:

SD(tua) =
∑
k

[H(|X(tua ,Ωk)| − |X(tu−1
a ,Ωk)|)]2 (26)

where H(x) = x+|x|
2 . This formula is directly related to the energy change between two

consecutive analysis frames, and is particularly adapted for our phase vocoder approaches.
The spectral difference method can be found in spectralDifference.m.
Other techniques described by J.P. Bello were also explored. One of them computing the signal
phase evolution across frames was also relevant for our approaches. However, tests run on our
violin base showed results for these two methods not as good as with the two following detections.

5.1.2 Phase criteria - COG

In his article, Bello talks about phase criteria, and how they can be related with energy. His
examples meet computations that resemble to the COG computation, and indeed, we showed in
the annex how A. Röbel related it to an energy criteria. Due to its high precision as shown in the
previous part (also for non-percussive instruments), it remains a strong choice for onset detection,
and will be used for the PSOLA part.

5.1.3 Volume detection

We have the chance to work with monophonic and anechoic sounds. As a result, a simple volume
detection can work. The only issue is that some notes can be missed if the musician plays notes
legato for example, but this is not a major problem, resulting only in missing some onsets. The
graph showing the amplitude detection is shown below:
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Figure 16: Onset detection using signal’s amplitude

With this technique, instead of detecting onsets (where amplitude is at local maximum), we will
detect the silences, thus the minimum of amplitude between notes. This choice will be discussed
in the following.
Both COG and volume detection showed fair results for our test base of violins. However, the
volume detection is the one that fits the best this algorithm as detecting silences instead on onsets
and will be the one used for this algorithm, even if its computational cost is much bigger than
with the COG detection.

5.2 Time difference model
The advantage with working with onsets is that a low pass-filtering for the delays is not required,
as a coherence between successive onsets is no longer necessary, and that time difference can be
computed independently.
However, the Metropolis-Hastings sampling can not be used anymore. Indeed, the advantage of
the Metropolis-Hastings sampling for the phase vocoder approach was that the delay could remain
the same, guaranteeing at a low frequency coherence between successive frames. Here, as we’re
working with a smaller number of onsets, such a sampling can create important delay between
instruments in a short amount of time.
A random delay following a normal distribution N (0, σ2) would also have the same effect, as the
number of onsets is not big enough to ensure a general mean that equals 0.
Thus, we decided to create a wise random picking, such as:{

δ(0) follows N (0, σ2)
δ(l) = −sign(δ(l − 1))δ(l)| (27)

Where δ follows N (0, σ2) are the delays at each onsets and sign(δ(l − 1)) is the sign of the
previous delay. We chose as above a standard deviation σ = 40ms. Thus, by forcing the sign of
the delay, we create a musician that goes around the right tempo, playing consecutively above
then below the average tempo in the next onset. This guaranteed a minimum delay between the
musicians at the end of the play.
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5.3 The replica algorithm
The replica algorithm follows the same steps as the PTA algorithm, with the only difference that
it is working on notes.
First, an onset detection following the signal volume is done, and the signal is separated in silences
(where the amplitude is the lowest). This cuts our signal in segments. Each one of these segments
represent one or two tones.
For each one of the notes between two silences, we pick the time difference as given above and
time-stretch the signal accordingly, using the phase vocoder approach with the scaled phase lock-
ing technique with inter peaks computation to avoid phasiness artiact. The segments are then
resampled for the pitch shift, weighted for the amplitude modulation and added back together to
create the new signal. As we’re working with the onsets, we can not overlap-add the segments
together, as in the phase vocoder approach, and must apply a fade-in/fade-out between the seg-
ments. And this is the reason why we are working with with silences instead of onsets. If we
had worked directly with onsets, adding back the segments together would have resulted in a
rubbling/taping sound, such as with the 50% overlap for the phase locking techniques, unusable
for binaural application. That’s why we used this detection instead of the COG onset detection,
even if the COG is much more computational effective.
Moreover, the transient detection has also to be dealt with, as the beginning of the segment is not
directly on an onset, and the attack transient is in the middle of a segment.
This method shows very good results. However, it appears to be much more computational costly
than the previous algorithms, because of the onset detection that takes most of the time.

6 Time-scaling modification using time domain technique

Apart from frequency-domain techniques as the phase vocoder approach used in the previous
sections, time-domain signal methods such as the TD-PSOLA (Time Domain - Pitch Synchronous
OverLap and Add) method developped by E. Moulines and J. Laroche in [6] can be used.
This method modifies the pitch or duration of the signal by dividing it in small overlapping
segments (defined by analysis marks) and replace them in the right positions.
In the following, an instrument m will be synthesised using the time-stretching approach (achieved
by time-scaling the signal, then resample it to reach the desired pitch shift), but this time using
the PSOLA method.

6.1 Usual time-scaling modification
With the PSOLA method, the signal is first analysed and divided in small segments, defined by
the analysis marks tka whch are placed on the waves composing the signal.
Then, if we want to alter the duration of the synthesised signal, we just have to duplicate or
remove some segments, without changing the frequency, and collect these segments together using
the overlap-add technique. The graph showing this modification is presented below:
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Figure 17: Duration modification with PSOLA method

The new segments will be indicated by the synthesis marks tks .
The first step is to analyse our signal and set the analysis marks on its sinus waves, which assumes
that we are knowing the signal’s frequency. Once we’ve found the period at each analysis mark
tka: P ka , we set the next analysis mark on the next wave form, at tk+1

a = tka + P ka .
To find the period, we simply used the normalized auto-correlation formula:

rx(m) =

∑N−1−m
n=0 x(n)x(n+m)√∑N−1−m

n=0 x(n)2

√∑N−1−m
n=0 x(n+m)2

where x is the analysed signal.
With the normalized formula, we have |rx(m)| ≤ rx(0) = 1∀m. If the signal is periodic, the
auto-correlation will present peaks every m multiple of the period, and these peaks will have a
value close to max(rx(m)) = 1.
In our case, the period will be computed on four periods of the signal x(tka : tka + 4P ka ) and the
max of the auto-correlation mf will be searched between fmin = 50Hz (G1) and fmax = 1000Hz
(C6).
We set a threshold β = 0.7. If rx(mf ) > β, then the signal is considered periodic and P ka = mf .
Else, we consider that there is no harmonic signal, and P ka will be set to 10ms by default (100Hz),
so that we can move forward faster than with a usual frequency (f0 > 100Hz) without missing
any note.
The auto-correlation method and fmin and fmax were chosen respectively for its low computational
cost, and because higher frequency intervals yields in less precision in the results. For frequencies
f0 greater than fmax, we’ll detect f0/2 and move by two wave forms at each time, which is not a
problem for high-pitch sounds.
Thus, the analysis marks will be set with the following algorithm:

The spectral product detection was also explored for the pitch detection, but its greater com-
putational cost, as well as the instability of its results, depending on the spectral resolution, made
us choose the auto-correlation method.
If we want now to modify the duration of the signal without changing its frequency, we will simply
duplicate or remove the periods/wave forms marked during the analysis stage, and sum all of them
using the overlap add technique.
As shown in 17, the original signal is separated in two segments, which are duplicated to obtain
three overlapped synthesised segments. The original signal is then stretched by a factor of 1.5.

33



Algorithm 5 PSOLA Analysis marks
Steps
1: initialisation: k = 0, t0a = 1, P 0

a = 10ms
2: while tka < length(x)− 4P ka (the whole signal is processed) do
3: Increment k = k + 1
4: Find the period of excerpted signal x(tk−1

a : tk−1
a + 4P k−1

a ): P ka
5: Set the next analysis mark: tka = tk−1

a + P ka
6: end while

More generally, for the synthesis stage, we will define the synthesis marks tks as the places where
the wave segments will be in the synthesised signal, and a playback rate n(k), which is how we
are going to read our original signal.
These synthesis waves will be then summed to create the synthesised signal, using the overlap-add
technique as follows:

y(tks − P bn(k)c
a : tks + P bn(k)c

a ) = x(tbn(k)c
a − P bn(k)c

a : tbn(k)c
a + P bn(k)c

a )ws (28)

where ws is the synthesis window, in our case a Hanning window of length 2P
bn(k)c
a + 1, b.c

is the round operator, and y is the synthesised signal. The sinus waves are commonly windowed
between the previous sinus wave tbn(k)c

a − P bn(k)c
a and the next one tbn(k)c

a + P
bn(k)c
a .

The next step is to define the synthesis marks tks and the playback rate n(k). For a time-scaling
operation of a factor α, the algorithm is as follows:

Algorithm 6 PSOLA Synthesis marks
Steps
1: initialisation: k = 0, n(0) = 0, t0s = t

bn(0)c
a = 1

2: while tbn(k)c
a < length(x)− 4P

bn(k)c
a (the whole signal is processed) do

3: Increment k = k + 1
4: Define the playback rate: n(k) = n(k − 1) + 1

α

5: Set the next analysis mark: tks = tk−1
s + P

bn(k)c
a

6: end while

The essence of the PSOLA method lies in the way you are reading the signal with the playback
rate. In the case where you are stretching the signal by a factor of α = 2, we have bn(k)c =

bn(k + 1)c, for k odd, and the sinus waves at tbn(k)c
a will be duplicated twice at synthesis marks

tks = tks = tk−1
s + P

bn(k)c
a and tk+1

s = tks + P
bn(k+1)c
a = tks + P

bn(k)c
a , multiplying the signal’s length

by a factor of two, and keeping its spectral content, as the sinusoids are reproduced on the signal’s
periods.

6.2 Creation of an instrument section with PSOLA
To create a section of M instruments, we follow the same steps as for the PTA algorithm.
To simulate each instrument m, we’ll do an inverse time-stretching approach, as for the PTA
algorithm. The original recording will be analysed once for all instruments, following the PSOLA
analysis marks algorithm, that will give us the analysis marks of our signal, and the every instru-
ment will be time-stretched by a factor α = d(m) and by adding time fluctuations with the PSOLA
method.
The final signal will then be resampled by a factor 1

d(m) , back to its original length and with the
desired pitch shift.
Adding time fluctuations with PSOLA will be quite easy, as we just have to remove or add periods
in our synthesised signal to create the delays.
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This method enables us to work directly on the onsets, as with the replica algorithm presented in
the previous section, which is the best simulation, as instruments can only be delayed when they
play notes, compared to a progressive and continuous way as modeled with the phase vocoder
approach. We will use the same time-fluctuation model as for the replica algorithm in (27), with
the delays δ following N (0, σ2), where σ = 40ms.
To simulate these delays, we first did an onset detection, based on the transient detection and the
COG computation, and saved the corresponding analysis marks tk,la .
For each musician, during the synthesis stage, we then added or removed periods to the original
recording to simulate these delays. To achieve this, we modified the playback rate n(k) at each
onset.

If the musician was late when we read the onset/analysis mark t
bn(k)c,l
a , (δ(l) > 0), we added

Pnb = b δ(l)

P
bn(k−1)c
a

c periods to the preceding sound (theoretically a silent sound). Moreover, as it
is the first time we reach the onset, we know that bn(k − 1)c < bn(k)c, and so that we take the
period of the previous sound.
The algorithm is as follows:

Algorithm 7 Add periods
Steps
1: take period of the previous sound: P = P

bn(k−1)c
a

2: for j ≤ Pnb do
3: increment k = k+1
4: add synthesis marks: tks = tk−1

s + P
5: keep the playback rate as is: n(k) = n(k-1)
6: end for

Thus, we create more synthesised signal, while the playback rate n stays on the onset, ready
to keep on reading the signal.
If we want to remove Pnb periods, we will just move backward and overwrite the Pnb last synthesis
marks, while keeping the same playback rate. In practice, this will remove the end of the previous
note or silence.

Algorithm 8 Remove periods
Steps
1: k = k − Pnb
2: n(k) = n(k + Pnb)

The new synthesis marks will be overwritten, and the onset marked by the playback rate
t
bn(k)c,l
a will be played in the next loop.
When tbn(k)c

a is not an onset, the usual time-stretching modification is used with α = d(m), leading
to the desired instrument pitch-shift and time-fluctuations.
An amplitude modulation was also added in the overlap-add equation (28) following a low-pass
filtered Metropolis-Hastings sampling at 5Hz, and whose length is the number of synthesis marks
ts.

6.3 Results
In practice, we had to take longer segments for the overlap-add synthesis, taking two periods below
and above:

y(tks − h.P bn(k)c
a : tks + h.P bn(k)c

a ) = x(tbn(k)c
a − h.P bn(k)c

a : tbn(k)c
a + h.P bn(k)c

a )ws (29)
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to prevent the synthesised sound from ’fuzzing’ or ’rubbling’.
h was set to 2 and the synthesis window ws was accordingly of length 2hP

bn(k)c
a + 1. The only

consequence was that the overall amplitude of the signal was twice higher, but a normalization by
a factor 1

h made the signal back to its original volume.
The audio quality of the results were very good and the phasiness artifact, as we’re working
directly in time-domain on the waves of the signal, does not exist. Plus, working with an onset
detection guaranteed for the transient attacks to be preserved. This would not have been the case
if removing/adding periods had been done randomly on the signal, that could have been another
solution, maybe deleting periods on the onsets.
But the main advantage of the PSOLA method is its computationnal cost. Time tests were done
on the different algorithms, and the PSOLA method proved to be 1.5 to more than two times
faster than with the phase vocoder approaches:

Algorithm time
Classic PTA 49.55s
Improved PTA 75.62s
PSOLA 35s

Table 4: Computation duration for the different algorithms

Thus, the PSOLA method yields high quality audio results, avoids recurrent artifacts such as
phasiness of transient smearing and guarantees a very low computational cost. Plus it enables, as
opposed to the chorus effect, and such as the phase vocoder approaches, the time fluctuations, the
pith-shifting and the amplitude modulation to be non-dependant and enables a great freedom in
the choice of the parameters of our simulations. That makes him a very good candidate for high
quality synthesis of polyphonic plays.
The audio results are also present in the folder ’Violin’, at PSOLA_12.wav and PSOLA_1.wav.
The code is present in PSOLA_AnalysisMarks.m and PSOLA_SynthesisMarks.m for the analysis
and synthesis marks computation, and PSOLA.m for the whole algorithm.
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Part II

Subjective listening tests on personal
recordings
Once the algorithms implemented, the next step is to test them through subjective listening tests
to see how the audio rendering is actually perceived.
The first part was to get our own recordings database, and to analyse them to get the parameters
(pitch and onset distribution) of our instrument sections. The algorithms presented above were
then run according to these parameters to create the audio files.
The second part was to develop a ABC-Hidden Reference (ABC-HR) listening test so that a
database of listeners can evaluate the different algorithms.

1 Anechoic recordings and results of the algorithms

The first step was to get our own anechoic recordings. We decided to record violins and snare, to
have percussive and non-percussive instruments, try the real effects of our algorithms and see if
the artifacts (phasiness and transient smearing) were corrected.

1.1 Anechoic recordings
The first day, we recorded two violins in the anechoic chamber of the TU of Berlin. Preliminary
tests were done to see what was the best position for the musicians, absorption panels and the
best configuration of the microphones to minimize cross-talk, as they were recorded together.
A loudspeaker was placed in the position of the first musician emitting a white noise signal at
a certain amplitude in dB. The microphone of the second musician was then placed in different
positions around the area, recording the white noise signal and looking for the best position to
minimise cross-talking. The best position was found to place the musicians in the north-east and
north-west corners of the room, facing the conductor and with absorption walls in between them.

Figure 18: Configuration of the recording for a violonist

The musician were recorded with a microphone Neuman U89 :
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Figure 19: Microphone Neuman U89 used for the recording

where up to 6 different directivities could be chosen. The most used are:

• omnidirectionnal O takes the sound equally from all directions

• cardioid reduces sounds coming from behind

• 8 configuration cancels sounds coming perpendicularly to the membrane

In our case, the microphones were placed above the musicians, in the 8 configuration, so that
sounds are only taken from below (the musician) and above (almost no signal from above, as most
of the sound coming from the other musician is absorbed in the anechoic chamber), and sounds
coming from the perpendicular (so eventually from the other musician) are annihilated due to the
directivity.
Twelve mono recordings (as they are to be used for binaural synthesis), six for each musician, were
performed during this session for the tests.
Furthermore four recordings of a snare drum were recorded. As there was only one musician, no
preparation of the room was needed and the recordings were done directly in the anechoic chamber
with a condenser microphone in 1m distance from the snare drum.

1.2 Analysis of the recordings
The next step was to analyse our recordings to excerpt the parameters of our own onset and pitch
distributions.

1.2.1 Onset distribution

The onsets were marked manually for all 12 recordings, thanks to the freeware Sonic visualiser.
For each onset, the reference was taken as the mean of the onsets, and the distribution around
these references was observed. The onset detection results were then analysed through the existing
package allfitdist.m that detects the closest distribution.
The result is given below:

38



−0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

 

 

empirical

tlocationscale

logistic

normal

generalized extreme value

Figure 20: Onset distribution

So we see that our onset distribution follows a normal distribution N (µ, σ2) centered in µ = 0
and of standard deviation σ = 22ms.

1.2.2 Pitch distribution

To detect the pitch distribution, we had to use a high precision fundamental frequency estimator.
The auto-correlation used for the PSOLA method clearly not being precise enough.
To achieve this, we used the YIN algorithm described by Albert de Cheveigné and Hideki Kawahara
in [11]. This high-precision algorithm stands on several steps that consist in using the Average
Square Difference Funtion (ASDF):

dt(τ) =

t+N∑
j=t+1

(xj − xj+τ )2

where N is the length of the analysed signal and normalize it, by setting dt(τ) = 1 if τ = 0 and

dt(τ) =
dt(τ)

1
τ

∑τ
j=1 dt(j)

for the rest.
The ASD function is much less sensitive to the amplitude of the partials than the usual Auto-
Correlation technique.
Then the minimum is taken according to a threshold and a parabolic interpolation is done to find
the fundamental frequency with even more precision.

The package Yin provided by A. de Cheveigné and al. [11] was used. The algorithm was run
on all the signals with a buffersize of 10000 samples, and a 48 samples hop factor. The minimum
frequency fmin and maximum frequency fmax were respectively set to 30Hz (B0) and 5000Hz
(E8). The algorithm also provides a normalized aperiodicity measure ap for each frames, and a
sound is defined periodic when ap < 0.1 by default in the algorithm.
Thus, for all violins, we looked upon intervals/ensemble of frames where ap < 0.1 (which corre-
sponded to a note) and picked on these intervals the frame where the aperiodicity rate was at its
minimum. The chosen fundamental frequency f0 was the corresponding one, as are doing A. de
Cheveigné and al. to give the ’best’ frequency detected for the signal.
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We then collected the pitch-shift in cents that separated these frequencies from the closest tuned
note, based on the A440, and plot their histogram:
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Figure 21: Pitch distribution showing a general detune

The pitch distribution clearly shows a general detune in our recordings, that are approximately
20 cents above the original tune based on the A440.
Thus, we decided that all violins were on average around 20 cents, so that the pitch shift factor
was 1, and removed the average detune to each violin to fit the new distribution. Cents above 40
cents and below -40 cents were removed, as corresponding to a wrong note detection.
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Figure 22: Pitch distribution centered

The desired algorithms to compute the pitch distribution are in the script pitchdistribution.m
and added in the function yin.m given by the package.
The normal distribution fitted our distribution at the third place, with the allfitdist.m algorithm.
Thus we chose it and the parameters were µ ' 0 (all recordings have the same detune) and
' 14.51cents, so a pitch shift of 212.51/1200 = 1.0071 around the original one.
Thus, the pitch shift factors were picked following N (1, σ2) with σ = 0.0071.

1.3 Computation with the algorithms
Using these onset and pitch distributions as parameters for our time difference and pitch shift
operations, we ran on our 12 violin recordings and 4 snare recordings, the algorithms that showed
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best results during our study: PTA, PTA Phase locking - inter peaks, improved PTA and PSOLA.
The STFT consistency and execution time are given below:

Phase Locking technique Dm time
Classic PTA -37.5dB 14s
PTA Scaled PhaseLock - Inter Peaks -33dB 21.40s
Improved PTA -33dB 23.05s
PSOLA / 12.30s

Table 5: STFT consistency and computational time for violin recordings

Phase Locking technique Dm time
Classic PTA -30dB 11.41s
PTA Scaled PhaseLock - Inter Peaks -39.5dB 18.36s
Improved PTA -42dB 18.43s
PSOLA / 7.34s

Table 6: STFT consistency - computational time for snare recordings

The results obtained are coherent with what we found during the testing parts. However,
listening tests showed that PSOLA method and Improved PTA showed results are not as good as
they were in the test part for the violin. In particular, the violins were much more delayed for the
PSOLA method, which is not acceptable for a violin section. This was caused by a wrong onset
detection. And indeed, when we look at the COG of the violin:
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Figure 23: COG for the recorded violin

The COG of the recorded violin appears to be much more noisy than with the test one. The
COG is also less identifiable (the max is around 15%, less than the 25% for the elder violin). As a
result, the threshold max(COG)/2 does not detect enough onsets (only 22 against 120 real ones),
and delays on the onsets detected can quickly lead to a complete mess between the musicians. As
a result, we had to choose σ = 10ms < 22ms to compensate the errors. Here, we see that the
PSOLA method is very dependant on the onset detection and another one, such as the one used by
the replica algorithm would have worked perfectly with the method and could have yielded much
better results. Actually, the replica algorithm yielded results as good as the testing recordings. We
did not have the time to run the tests again with this configuration, but we see that a significant
improvement can be brought to PSOLA by developing a good and stable onset detection.
This bad COG detection also affected the improved PTA algorithm, creating more phasiness on
the onsets, than it was actually correcting. Listening tests on the scaled phase locking algorithm
proved better results. Thus, as opposed to the first part, we chose the scaled phase locking
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algorithm for our recorded violins as the ’improvedPTA’ algorithm.
Finally, for the snare, the STFT consistency was surprisingly greatly improved with the phase
locking algorithms. When listening to the results though, the phase locking techniques created
weird effects, that can be described as ’laser’ effects on snare transient attacks compared to the
PTA algorithm.
Indeed, the phase locking techniques try to give back coherence to the phase, concentrating on the
peaks. However, it is known that a percussive snare spectrum is much more like a noise sound than
an harmonic sound. Plus, the frequencies can be very close such that the frequency resolution of
the FFT is often not sufficient to detect all the frequencies composing the signal. That is why we
prefer to use high-resolution methods for analysis percussive instruments. Thus, a wrong peak, so
frequency detection, coupled with providing a phase coherence where it does not exist can create
unnatural percussive sound, making the phase locking techniques not a good choice for percussive
instruments.
However, the transient detection described by A.Röbel clearly restored the attack transient for the
snare sound (whose COG was, as opposed to the violin really clear, as seen in fig 13), making it
sound more punchy as with the classical PTA algorithm. The ’improved PTA’ for a snare was then
chosen to be the classical PTA, without phase locking in which we added the transient detection.
As for the testing part, the audio results can be found respectively in the folders ’Snare’ and
’Violins’ and follow the same notation ’method_nbInstruments.wav’.

2 Subjective listening tests

Subjective listening tests were then conducted to a panel of 30 people to check how our algorithms
were actually perceived.
The people were asked to assess 60 conditions according to how they resemble to two references.
The two references were simply the two instrument sections composed of the 12 different violins
and the 4 different snares.
The section effect was obtained by multiplying one of the violin recordings 12 times to obtain a
violin section. Apart from the different performance of each algorithm, we wanted to know how
the number of original recordings in a section simulation could impact the perceived effect, and
from which one the effect is perceived as close to the reference. As an example, we created two
other sections with 2 and 3 different violins replicated 6 and 4 times respectively, to achieve our
12 violins sections.
The 60 conditions were composed of:

• 5 algorithms: PSOLA, PTA, improvedPTA, Replica, Chorus.

• 2 rooms: the anechoic sections were placed in two different acoustic environments: a dry
room and a concert hall

• 2 instruments: snare, violin.

• up to 3 different instruments for the sections: 1 instrument times 12, 2 different instruments
times 6, 3 different instruments times 4.

In practice, for the snares, we only went up to 2 different recordings. A chorus effect with the
low-pass random delay line developed in [2] was also implemented, and expected to sound as the
anchor (the furthest simulation from the reference).

2.1 Integration in acoustic environments and binaural synthesis
For each algorithm were returned 12 mono audio results for the 12 violins generated. These violins
were then placed in virtual acoustic environments and binaural room impulse responses (BRIRs)
gathered by the software RAVEN developed in Institute for Technical Acoustics in Aachen. [12],
and following the work of S. Wienzierl and al. (the interested reader can learn more in [13], [14]
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and [15]).
The BRIR’s are created by emitting a Dirac impulse signal at the position of the source and
simulating the first reflections of the room with Ray-Traycing following the geometrical acoustics
model and further simulating the reverberation according to statistical acoustics. For each degree
of horizontal inclination of the listener (360), an impulse response for both ears is recorded using
the head related transfer function of the dummy head FABIAN created at the TU Berlin, resulting
in 720 impulse responses.
The different sources are situated on the stage and the listener in the auditorium, at a distance of
twice the ’critical distance’ (distance where the direct sound is equal to the diffuse sound) from
the closest source, so the reverberation of the room is guaranteed.
The listener uses special headphones for binaural synthesis:

Figure 24: Headphones for binaural synthesis with head-tracker

The headphones are connected with a head-tracker that follows the head inclination, and
the corresponding impulse responses of the BRIR (depending on the room) are convoluted with
the violin or snare signal by the software SoundScape Renderer [16], simulating a full-immersion
experience, as if the listener is sitting in the room listening to the instrument section.

2.2 ABC-Hidden Reference listening tests
The tests were then implemented as ABC-Hidden reference tests, and set up thanks to the Whis-
PER software developed in TU Berlin. This software enables you to choose between the different
types of listening tests (AB, MUSHRA, ABC-HR) and helps you connect your listening conditions
to a user-friendly interface that the listener will use. A pureData patch was developed to connect
buttons of the WhisPER interface to markers that read our different conditions through the free-
ware Ardour (open source digital audio workstation).
With the ABC-Hidden Reference test, for each condition, you have 3 recordings: the reference, a
hidden reference and the recording we want to assess. The interface is given below:
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Figure 25: ABC-Hidden Reference tests

For each tests, the reference is given and the listener can listen to it whenever he wants.
Then from the two recordings, he has to pick the one he thinks is the hidden reference, set the
quality to the max, and rate the other one in comparison. 5 conditions are given each time on the
same interface, so in addition with the comparison with the reference, the listener can compare
the different algorithms in between them. Hiding the reference helps us know is the listener can
actually hear a difference (whether the simulation is very good if the listener is on average right
about the hidden reference, or the listener hasn’t a good perception if he is on average wrong
about the reference).
The listening tests are to be conducted between the first and the last week of July, so the results
are unfortunately still expected.

2.3 Additional information
Finally, in the end of the tests, the listeners were asked to answer a survey, on the web address:
https://www2.ak.tu-berlin.de/musikstudie/umfrage/index.php/survey/index/sid/996748/
newtest/Y/lang/de

This test was simply to gather basic sociological information about our listeners (age, educa-
tion, gender), and to know what was the listener’s relation to music (musician or involved in
musical production, how often he listens to music), to assess his musical and listening expertise.
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Conclusion

In this study, we started from the latest developments in terms of high audio quality section
simulation with the PTA algorithm, and improved them with a better understanding of the phase
vocoder. We successively got rid of some characteristic artifacts of the phase vocoder such as
phasiness and transient smearing, in order to always provide better quality results for binaural
and acoustic simulations.
A completely new approach for instrumental section simulation, using the time-domain PSOLA
method was also revealed and shown to yield excellent audio results. The new techniques were
evaluated and were shown to provide either a better audio rendering and/or a better computational
cost.
Moreover, the goal of this study is eventually to create a full anechoic orchestra for full concert
immersion, such as the synthesis of instrument sections must be done for all the different type of
instruments composing a symphonic orchestra. By working on a percussive snare instrument, we
discovered that techniques supposedly good for violin or polyphonic sounds in the literature might
not be adapted for anechoic percussive instruments. Thus, the techniques must be adapted to
each type of instruments and studies on all instruments composing an orchestra are still needed.
For percussive instruments for example, a synthesis with high-resolution methods can be worth
considering, still based on the pitch, time and amplitude modification proposed with the PTA
algorithm.
Finally, we showed that for onset-based algorithms, the dependence with the original recording
quality can be strong. As we’re working with anechoic solo recordings, a stable and better onset
detection that improves the proposed algorithms might be found.
In the end of this study, listening tests were conducted to check with the theory and if the
algorithms were actually perceived as better. In the time this report is being written, the listening
tests are not done yet, but the results will be submitted in the same time as the presentation in
beginning of September.
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Annexes

Recovering the instantaneous frequency of a sinusoid, using
the phase unwrapping method of the phase vocoder

Our first hypothesis is that the signal follows the McAulay and Quatieri signal model, that assume
that the signal is a sum of sinusoids:

x(t) =

I(t)∑
i=1

Ai(t)e
jψi(t) (30)

with I(t) the number of sinusoids composing our signal at time t, Ai(t) and ψi(t) being respec-
tively the amplitude and the so-called instantaneous phase of the ith sinusoid.
The instantaneous phase ψi(t) is directly related, with the well-known equation to the instanta-
neous frequency ωi(t), that we want to guess:

ωi(t) =
dψi
dt

(31)

The phase vocoder stands on three hypothesis:

• First, that characteristics of the sine waves (amplitude, frequency) vary slowly in time, it’s the
stationary hypothesis. Thus, on the length of the analysis window wa, so for n ∈ J0, N − 1K,
we have on the time-instants tua :{

Ai(t
u
a + n) ' Ai(tua)

ψi(t
u
a + n) ' ψi(tua) + ωi(t

u
a).n

(32)

Thus, the STFT of this signal on the analysis window will be:

X(tua ,Ωk) =

I(tua)∑
i=1

Ai(t
u
a)ejψi(t

u
a)Wa(ej(Ωk−ωi(t

u
a)) (33)

where Wa(ejω) is the FFT of the analysis window wa.

• The second hypothesis considers N = Nfft big enough so that there’s only one sinusoid I in
a channel k:

∃!I/|Ωk − ωI(tua)| ≤ ωh (34)

where ωh is the cutoff-frequency of the analysis window wa. This is the narrow-band hy-
pothesis and stands when N ≥ 4

f0
, where f0 is the normalzed fundamental frequency F0

Fs
of

the analysed sound. In the case of an instrument analysis, a good f0 is the lowest frequency
reachable by the instrument.
In that case, we can greatly reduce equation (33):

X(tua ,Ωk) = AI(t
u
a)ejψI(tua)Wa(ej(Ωk−ωI(tua)) (35)

Here, as wa is chosen as symmetric around 0, we know that Wa is real and thus that
∠Wa(ej(Ωk−ωI(tua)) = 0.
Thus, the STFT phase ∠X(tua ,Ωk) equals the instantaneous phase ψI(tua), up to an integer
multiple of 2π for |Ωk − ωI(tua)| ≤ ωh. We can then compute the instantaneous frequency
ωI(t

u
a), using ωI(t) = dψI

dt and deriving it between two consecutive analysis frames where the
stationary hypothesis is still true (∆tua ≤ N):
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∠X(tua ,Ωk)− ∠X(tu−1
a ,Ωk) = ψI(t

u
a)− ψI(tu−1

a ) + 2nπ = ωI(t
u
a)∆ta(u) + 2nπ (36)

Here, the instantaneous frequency is available through the phases of the STFT up to an
integer n. And that’s this integer that we would like to determine to find the right instan-
taneous frequency.
To achieve this, we’ll unwrap the phase, hence the name phase unwrapping method:

∠X(tua ,Ωk)− ∠X(tu−1
a ,Ωk) = Ωk∆ta(u) + (ωI(t

u
a)− Ωk)∆ta(u) + 2nπ (37)

As the sinusoid I falls in the channel k, we have:

|(Ωk − ωI(tua))∆ta(u)| < wh∆ta(u) (38)

• Finally, we assume that ∆ta(u) is such as wh∆ta(u) < π (that is the so called unwrapping
hypothesis), the unwrapping equation (37) leads to the heterodyned phase computation. That
is to say that ∃!n/:

|∠X(tua ,Ωk)− ∠X(tu−1
a ,Ωk)− Ωk∆ta(u)− 2nπ| = |∆pΦ

u
k | < π (39)

which leads to the instantaneous phase ωI(tua) once n is determined to satisfy the above
equation with:

ωI(t
u
a) = Ωk +

∆pΦ
u
k

∆ta(u)
(40)

Thus, we can find the instantaneous frequency ωI(tua) of the sinusoid I (that is composing the
signal at time-instant tua) in the channel k of the vocoder, assuming |Ωk−ωI(tua)| ≤ wh. This
thanks to the heterodyned phase that represents the small phase shift between the center
frequency Ωk of the channel and the frequency of the nearby sinusoid I.
In practice, we compute the instantaneous frequencies for all channels k in the phase vocoder:
ω̂k(tua), and the instantaneous frequency in the kth channel equals the instantaneous fre-
quency of the sinusoid I that falls into the channel.
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Transient detection

The detection of the transients, as the first step of the method proposed by A. Röbel [5], stands
on the time-reassignment operator γ : (t, ω) 7→ (t̂, ω̂′) developped by a Auger and Flandrin in 1995
[9] for a time-frequency representation.
Auder and Flandrin (1995) define a very general technique to detect the COG that applies for all
time-frequency representations. In this section, we’ll just explain the case corresponding to the
STFT/spectrogram time-frequency representation. The analysis window note wa will be of type
Hanning and will be used as the filter for the region around the point (t, ω). In this specific case,
the reassigned values t̂(t, ω) and ω̂′(t, ω) are as follows:

t̂(t, ω) = t− ∂φwa(t, ω)

∂ω
(41)

ω̂(t, ω) = ω +
∂φwa(t, ω)

∂t
(42)

where STFTwa(x, ω) = Awa(x, ω)ejφwa (x,ω). As we’re working with Discrete Fourier Transform
(DFT), Auder and al. [9] proposed an alternative formula, that computes t̂(t, ω) and ω̂(t, ω) with
STFT directly:

t̂(t, ω) = t−<(
STFTT wa(t, ω).STFTwa(t, ω)

|STFTwa(t, ω)|2
) (43)

where T wa(t) = t.wa(t) is the analysis window multiplied by a time ramp.
A. Röbel [5] takes this formula, and assume that the time origin is at the center of the frame,
causing t = 0 relatively to the analysis frame. As a result, we have:

t̂(t, ω) = 0− ∂φwa(t, ω)

∂ω
(44)

and:

t̂(t, ω) = 0−<(
STFTT wa(t, ω).STFTwa(t, ω)

|STFTwa(t, ω)|2
) (45)

Finally, as A. Röbel is concentrating only on the time assignment, the Center Of Gravity is
achieved by integrating this new time on the frequency axis, and weighting by the amplitudes,
and is applied to the center of each STFT frame placed at tua :

tuCOG =

∫
−∂φ(tua ,ω)

∂ω A(tua , ω)2dω∫
A(tua , ω)2dω

(46)

noting φwa(tua , ω) = φ(tua , ω) and Awa(tua , ω) = A(tua , ω), with:

− ∂φ(tua , ω)

∂ω
= −<(

STFTT wa(tua , ω).STFTwa(tua , ω)

|STFTwa(tua , ω)|2
) (47)

Auder and al. [9] give us a simple way to compute the COG in practice, using the STFT at
time-instant tua . Moreover, using the latter formula, A. Röbel [5] shows that if we derivate the
spectral energy |STFTwa(tua , ω)|2 with respect to window position tua and normalize by the spectral
energy, we obtain:

− ∂|STFTwa(tua , ω)|2

|STFTwa(tua , ω)|2∂tua
= −2<(

STFTDwa(tua , ω).STFTwa(tua , ω)

|STFTwa(tua , ω)|2
) (48)

which besides a factor of two can be derived from the previous equation by replacing the STFT
of the window T wa with the STFT of the derivative Dwa of the analysis window. As T wa and
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Dwa are relatively similar functions, the two equations above are related, proving that the phase
based and the energy based criteria are related. The phase based criteria is thus a good method
in the transient attack detection, especially for a phase-vocoder approach.
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Anechoic recordings

Below a few pictures that sum up the conditions of the violin anechoic recordings. The first one
represents the anechoic chamber before the recording, and the last one the configuration of the
violins when they were recorded.

Figure 1: The anechoic room

Figure 2: Disposition of the recorded violins - North-East side
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Figure 3: Disposition of the recorded violins - North-West side

Each one of the violins was placed in a corner of the anechoic chamber and walls were placed
in between them
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