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ABSTRACT

Gesture-controlled interactive systems are prevalent in the sound comput-
ing community. They have given rise to new performance paradigms and
bridged the gap between sound research and other scientific disciplines

by providing a rapid prototyping platform for designing gestures and respective
sound outputs in application-specific contexts. In such systems, the mapping strat-
egy from gestures to sounds is central to the versatility and adaptability of the
design process. This thesis is concerned with improving the workflow for designing
mappings between gesture features and sound synthesis parameters. To that end,
we develop an incremental system for learning the gesture-sound mappings. The
system is divided into two modules: unsupervised automatic segmentation and
incremental clustering.
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1
INTRODUCTION

The use of gestures in controlling computer-generated sounds has long been

a subject of interest to researchers and artists alike. Traditionally, gestural

control of audio processing has found applications in interactive music

systems such as digital instruments [57], interactive multimedia installations [48],

and computer games [14]. In these applications, gestural inputs obtained from

different types of motion sensors, cameras, or multi-touch interfaces are used to

control and interact with sound processes [45]. More recently, with advances in

sensing technologies and sound synthesis techniques as well as maturation of

theoretical framework behind gestural description of sounds, ventures into other

gesture-based sonic exploration are also investigated in fields such as sonification

of information [53] and auditory feedback in rehabilitation [7].

The central research question in these different contexts of gesture-based audio

processing is the relationship between gesture data and sonic outcomes, which

is embodied in the mapping scheme that translates input control parameters to

output synthesis parameters. In order to create gestural interfaces that are ex-

pressive and fluid in its usability, it is crucial to design meaningful mappings from

the extracted gesture features to sound synthesis parameters. "Good" mapping

strategies create musically satisfying results and can thus open up possibilities for

interactive gesture-based compositions or real-time performances.

Our research extends an interactive gesture-to-sound mapping system shown

in Figure 1.1. The system employs a strategy called Mapping-by-Demonstration

(MbD) [21] to build the training set from the user’s input examples during the

training phase. The mapping between gesture and sound features are trained

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Workflow of the Mapping-by-Demonstration system. The training
phase consists of the user showing the system example gestures performed while
listening to a sound sample. The temporal and dynamic mappings between gesture
and sound features are trained jointly in a multimodal model. Then during the
performance phase, the user performs learned gestures to control the corresponding
sound synthesis parameters in real-time. Source: [25]. © Copyright: J. Françoise,
2014

jointly in a multimodal model. Then during the subsequent performance phase,

the trained models generate sound control parameters from performed gestures.

Because of the close gesture-sound coupling, the system can be used to explore dif-

ferent modes of gesture-sound interactions such as vocalization through interactive

voice synthesis or mixing recorded sounds using gestural control [26].

In this particular framework, gesture and sound sequences must be segmented

and labeled before inputting them into the MbD system. The process disrupts the

flow of interaction. The focus of this thesis is to improve the system’s fluidity and

increase its interactivity by proposing online methods for automatic segmentation

of multimodal sequences and clustering of motion-sound segments. These modules

will be incorporated into the current framework to enable incremental learning of

gesture-to-sound mappings (Figure 1.2). In addition to improving the workflow of

the current system, results of this extension serve as a first step toward investi-

gating extended modes of interaction using longer continuous gestures for sound

control.

2



CHAPTER 1. INTRODUCTION

Incremental 
Learning System

Figure 1.2: How our incremental learning system fits into the original Mapping-
by-Demonstration system [21]

1.1 Problem Statement

One of the limitations of the current MbD system is that both the segmentation

and learning of the gesture-sound relationships take place offline. This has two

major implications:

1. Since the segmentation is offline, gesture sequences and associated sound

processes must be segmented and labeled, usually by hand, in order to obtain

training examples.

2. Since the learning is offline, users must premeditate all input gestures that

will be used during performance in order to avoid having to retrain the

models each time a new input is introduced.

3



CHAPTER 1. INTRODUCTION

However, these implications correspond to the following inconveniences:

1. Manual segmentation is labor-intensive and error-prone, and in certain cases,

it may require expert knowledge.

2. Sometimes in realistic deployments, the complete input sequence may not

be known beforehand.

In order to address the limitations of the current system and enhance its

workflow as well as versatility, this thesis proposes a suite of machine learning

techniques to perform online segmentation and learning of motion-sound map-

pings. Implementation of this extended system involves automatic segmentation

of continuous observation sequence, which will improve the ease-of-use of the

system by removing the need for annotating segments by hand. In this paper,

we define gesture segmentation as the task of partitioning a streaming gesture

sequence into distinct sub-gestures that contain semantic meaning. The corre-

sponding streaming audio will also be segmented in like manner. The system

will also have an incremental clustering and learning module into which the seg-

mented motion-sound data will be fed incrementally to be labeled, trained, and

updated. By removing the necessity for manual segmentation and batch-training,

the online system facilitates an uninterrupted training phase, thereby increasing

the learning possibilities of input data.

1.2 System Overview

A schematic overview of the incremental learning system is shown in Figure

1.3:

In this extended system, the workflow is as follows: The user performs a set

of gestures according to a sound process (whether through listening or through

vocalization). The motion capture data and sound data are individually inputted

into the system where feature extractions take place. The motion data might

also pass through dimension reduction in order to keep only the most significant

dimensions. Both gesture and sound features are combined in correlation analysis

where correlation between them is learned. The most correlated components are

inputs to the automatic segmentation algorithm. Herein, motion-sound primitives

are extracted and provided as inputs to the incremental clustering module where

new motion-sound pairs are labeled by checking against an incrementally built

dictionary of learned pairs based on a similarity criterion. The mapping between

gesture and sound in each motion-sound pair is learned through multimodal

hidden Markov model at each update.

4
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Figure 1.3: System overview: Acquired motion-sound sequences are automatically
segmented whose segments are incrementally labeled and learned.

1.3 Contributions and Thesis Outline

Our main contributions are the following:

1. We extended and improved the current workflow of the Mapping-by-Demonstration

system by removing the need for offline segmentation and learning.

2. We proposed an incremental learning system that combines online unsu-

pervised segmentation of gesture-sound data streams and incremental clus-

tering and learning of segments in one pass. This creates new avenues for

real-time interactive design of gesture-sound mappings.

3. We adapted a time-series automatic segmentation algorithm to work with

gesture-sound sequences. To our knowledge, this segmentation algorithm

has not been used with multimodal data.

The thesis is organized as follows:

Chapter 2 In order to motivate the subsequent literature review on motion

segmentation and incremental learning, this chapter reviews

the state-of-the-art in mapping strategies between gesture and

sound. It sets up the context for our research. It also provides an

overview of related work on interactive machine learning and

mapping through listening design principle in order to motivate

the mapping-by-demonstration framework.

5



CHAPTER 1. INTRODUCTION

Chapter 3 Drawing from relevant literature in robotics and computer vi-

sion, this chapter gives an overview of the existing work on

motion segmentation and incremental learning of motion primi-

tives – the two related tasks our incremental learning system

undertakes.

Chapter 4 This chapter presents the formulation of our incremental learn-

ing system, detailing the two modules: continuous observation

sequence segmentation and incremental clustering and learning

of gesture-sound segments.

Chapter 5 This chapter details the evaluation of our incremental learning

system. Separate tests are performed for the two tasks and

finally these tasks are integrated in a test to evaluate the overall

incremental learning system.

Chapter 6 The final chapter concludes the main contributions of the re-

search and provides concluding remarks about the proposed

approach for incremental learning of gesture-sound mappings.

Directions for future work are also outlined here.

6
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2
BACKGROUND

This chapter introduces background literature on the gesture-based sound

control system that we propose to extend. The system is based on an ex-

tension of hidden Markov model (HMM) to model the dynamic gesture and

sound relationships. We review literature on gesture-to-sound mappings with par-

ticular emphasis on machine learning based methods. Relevant review of research

in interactive machine learning and mapping through listening design principle

are also given in order to motivate the Mapping-by-Demonstration framework

within whose context our proposed extension situates.

2.1 Gesture-to-Sound Mapping Strategies

Investigation of the relationship between gesture data and digital sound pro-

cesses has received significant attention in the music computing literature. In

particular, there exists great interests in interactive music communities such as

New Interfaces for Musical Expression (NIME) 1 to explore the notion of map-

ping for sound synthesis controls using gestures to be used in performances or

instrument design. Musicians and researchers have been investigating mapping

strategies since the late 1990s [54]. These efforts have led to numerous approaches

that can be roughly divided into two main classes of strategies: explicit parameter

wiring, where input gesture data is directly "wired" to output sound synthesis

parameters using an analytic expression defined by the designer, and implicit

models, where an intermediate model lies between the gesture and sound interface

1Website: http://www.nime.org/.

7



CHAPTER 2. BACKGROUND

to encapsulate complex relationships between the two modalities [32]. Within

explicit mapping strategies, finer categorizations give rise to strategies that are

based on taxonomy (such as one-to-one, one-to-many, or many-to-one relationships)

[56], physical models [47], and geometric properties [55]. In this thesis, we are con-

cerned mainly with the implicit model approach where the relationship between

gesture and sound is learned implicitly from examples using machine learning

techniques rather than defined explicitly using direct wiring.

Neural networks have been used to perform non-linear multi-dimensional

mappings [15]. PCA methods have been used to reduce dimensions in the gesture

space in order to simplify the mapping procedure [2]. Among the many probabilistic

techniques applied to modeling mappings, hidden Markov model (HMM) stands

out in its pervasiveness across relevant literature. Variants of HMM have been

implemented to perform various types of mappings: explicit mapping through

gesture recognition using discrete HMM [37], temporal mapping using a modified

version of standard HMM [4], and finally multimodal mapping using hierarchical

HMM [23].

2.1.1 Discrete temporal mapping

One of the most common methods for mapping design is through discrete

gesture recognition, where recognized gestures are used to trigger musical events.

Examples of such methods include sensor gloves [46], which is a gesture recognition

system based on neural networks that uses sensor data to continuously control

synthesis parameters, and FlexiGesture [44], which uses Dynamic Time Warping

(DTW) to learn performers’ gestures for recognition later. In addition, discrete

HMM’s have also been used in [37] to recognize and analyze conducting gestures

with the aim of expressive mapping. These techniques have been refined over the

years to perform recognition in real-time. However, the types of interaction are

quite limited to triggering as interaction mode and explicit mapping as design

strategy in this context.

2.1.2 Single-level continuous temporal mapping

In an effort to move from instantaneous triggering of musical events to contin-

uous gestural control, methods based on representations of temporal variations in

gestures have been proposed. This paradigm shift is enabled by research efforts

by Bevilacqua et al. [4] who developed Gesture Follower to continuously recognize

and follow gestures in real-time. The system employs a left-right HMM to model

the temporal structure of a gesture (as shown in Figure 2.1.

8



CHAPTER 2. BACKGROUND

Figure 2.1: Left-to-right HMM structure trained on one gesture template in order
to encode temporal information. Source: [3]. © Copyright: Bevilacqua et al., 2011.

It takes as input a single gesture example and treats the time-series data

as a template whose frames are associated with states in the HMM. During

performance, the system continuously reports the estimated position of the input

gesture within a sample template. This method has been applied to gesture-

controlled audio processing [3]. In this application, the gesture time progression is

directly mapped to the audio time progression, thus allowing audio to be aligned

to sound during live performance of the gesture. The system’s ability to track

the current position of gesture across time allows for temporal control of sound

synthesis parameters. For example, a stretched gesture could correspond to a

slower audio playback speed. This method allows us to move beyond discrete

activation of sounds toward continuous control of the temporal properties of the

mapped signal. Figure 2.2 shows a concrete example of the application where

the user associates a gesture to the sound sample while listening and plays back

the sound by stretching it or compressing it using gesture. Our Mapping-by-

Demonstration system is built on this idea of training gesture-sound relationships

while listening and subsequently controlling properties of the sound based on the

learned model.

In order to address the limitation of Gesture Follower in capturing gesture

variations across examples of the same gesture, Caramiaux et al. proposed an

adaptive algorithm based on particle filtering called Gesture Variation Follower

9



CHAPTER 2. BACKGROUND

Figure 2.2: Example use-case of temporal HMM for gestural sound control. Source:
[3]. © Copyright: Bevilacqua et al., 2011.

(GVF) [11]. More specifically, the method dynamically adapts to gesture variations

using a sequential Monte Carlo inference technique. Similar to the Gesture Fol-

lower, it performs temporal mapping of the gesture. But in addition to tracking

the time progression of the gesture, GVF also tracks changes in characteristics of

the gesture that capture its variations, such as position, speed, and rotation. This

allows for gesture recognition that is adaptive to variations during a gesture per-

formance without requiring the users to provide additional examples of different

variations as training set. In other words, GVF is able to train an adaptable model

based on single templates of the gestures to be performed.

10



CHAPTER 2. BACKGROUND

Figure 2.3: Hierarchical structure of a short gesture sample prepared for the
training phase. Each segment in the sequence is associated with a state, Si. And a
submodel for temporal within-gesture tracking can be extracted from each of these
segments. Source: [21]. © Copyright: J. Françoise, 2015

2.1.3 Multi-level continuous temporal mapping

In Gesture Follower, gestures are represented using a single-level time struc-

ture. This implies that each gesture is treated as one unbreakable unit of time-

series sequence. However, different findings [28] [40] suggest that associated

gesture and sound sequences are broken up into smaller units of information

during music perception, called "chunks". A holistic musical idea is formed, hence,

by "fusing" and "transforming" these segment-level musical units into larger units

at varying structural levels (i.e. timescales) [9]. In order to address the multi-level

structure inherent in gesture and sound that is insufficiently described by the orig-

inal HMM setup in Gesture Follower, hierarchical HMM is introduced to enable

control over gestures at segment-level [23]. In this hierarchical approach, each

gesture is represented as a 2-level time structure where the micro-level signal

states capture the same fine-grained temporal information as the original Gesture

Follower for tracking time progression of the gesture frame-by-frame; then the

macro-level segment states encode transitions between different segments. Figure

2.3 illustrates this structure in a 3-segment sample.

For an illustrative example of how inter-gesture transitions can be realized

given more than one gesture, refer to Figure 2.4.

Note that segments in this context refer to the low-level segments within

a given gesture instance, whereas segments this thesis is interested in refer to

11
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Figure 2.4: Inter-gesture transitions using an example structure configuration. The
top left image shows how the two gesture templates are segmented and learned.
The bottom left image shows an example hierarchical structure of the model. The
different segments can be sequenced as shown in the top right image during
performance, whose inference path is shown in the bottom right image. Source:
[23]. © Copyright: Françoise et al., 2012

higher level segments within a given gesture sequence. While the segmentation

algorithm proposed by this thesis could be used to examine segmentation at a finer

in-gesture level, we believe control of segmentation at that level should remain

with the users based on their creative judgments. Our work more importantly

examines segmentation at the inter-gesture level where boundaries can be found

at transitions to new gestures.

2.1.4 Regression mapping

The temporal mapping strategies reviewed thus far use discrete and continu-

ous gesture recognition as the primary method to drive sound synthesis. In other

words, gesture models are trained independently from the sound process where the

resulting gesture models are used to activate sound parameters using an explicit

formulation defined by the user. The lack of joint model between gesture and sound

implies that there is no direct correlation between gestural information and acous-

tic information [11]: sound synthesis parameters cannot be generated from motion

parameters directly; they must pass through an analytical formulation layer (such

as triggering or alignment mentioned in previous sections) in order to arrive at

the mapped sound parameters. A more integrated approach to mapping exploits

regression methods to directly learn the relationship between motion and sound

features. Most early approaches rely on neural networks to learn the non-linear

12
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Figure 2.5: Gesture-to-sound mapping using multimodal HMM. Source: [24]. ©
Copyright: Françoise et al., 2014.

relationships between two modalities, allowing for parameter estimation from one

modality (e.g. gesture) to another (e.g. sound) [41]. However, in these approaches,

while the non-linear relationship between gesture and sound is modeled through

supervised learning of example "true" input/output pairs [17], this relationship is

often static and lacks the temporal dimension offered by the temporal mapping

approach. Françoise et al. [24] developed a method for multimodal learning of

gesture-sound relationships using hidden Markov regression (also termed mul-

timodal HMM) that retains temporal relationship. The general idea behind this

mapping strategy is to learn an HMM on joint gesture and sound data, from which

we can extract a conditional model to estimate associated sound features given a

new gesture during the performance phase. Figure 2.5 provides a closer look into

this process.

2.2 Mapping-by-Demonstration (MbD) Framework

Armed with the probabilistic tools detailed in the previous section to model

gesture-sound relationships, we now need to formalize the conceptual framework

for mapping design.

Recent research [19, 27] has shown growing interest in an “interaction-driven”

approach to the learning of mappings. This framework allows users to define map-

pings interactively by providing training examples of gesture-sound relationships.

The current mapping system proposed by Françoise et al. [21] operates within a

similar interactive learning framework where particular emphasis is placed on

designing through listening.
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Figure 2.6: Interactive machine learning workflow implemented in the Wekinator.
Source: [19]. © Copyright: R. Fiebrink, 2011.

2.2.1 Interactive machine learning

Interactive machine learning (IML) is a computational design methodology

for integrating user manipulation in complex machine learning techniques. It

increases accessibility of complex concepts which were previously only accessible

to experts. It also aims to improve performance of machine learning algorithms by

incorporating end-user interaction and feedback.

IML has been used in the sound computing community to rapidly prototype

gesture-controlled instruments without programming them through machine com-

mands [18]. Its property of allowing the users to bypass programming and directly

interact with underlying machine learning algorithms enable more natural in-

terpretation of the parameters used by the models and yield more customized

results, which are particularly suitable for designing gesture-sound mappings.

Applications of IML include gestural interfaces that allow skilled musicians to

create experimental music, such as Wekinator [16].

The general workflow of an interactive learning system in the context of

gesture-sound design is as follows (Wekinator example in Figure 2.6: 1. Training:

The user builds the training set by demonstrating to the system examples of

gesture and sound pairings. The users are able to manually tune the model

parameters for training. 2. Performance: The user interacts with the trained model

in real-time by performing gestures from the training phase and evaluates the

synthesized sonic feedback. 3. The user can go back to step 1 to retrain the model by

providing additional examples or by adjusting the model parameters. The process

iterates until the he/she is satisfied with the performance results.
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CHAPTER 2. BACKGROUND

Figure 2.7: Summary of the temporal probabilistic models used with in the MbD
system. Source: [21]. © Copyright: J. Françoise, 2015.

2.2.2 Programming-by-Demonstration

Both focused on end-user development, interactive machine learning serves

as a framework for improving the design of machine learning systems, whereas

Programming-by-Demonstration (PbD) is a framework for teaching systems new

concepts or behaviors through demonstrations of example tasks, all without use

of code. It has been applied to interactive computer music in work by Merill et al.

[44], where an electronic instrument is built by learning which gestures trigger

which sound samples through demonstrations from the user.

2.2.3 A unifying framework: Mapping-by-Demonstration

The set of machine learning techniques and design methodologies for inter-

active systems reviewed in this chapter have yielded new mapping and design

possibilities. Mapping-by-Demonstration [21] is a general framework that unifies

these different research efforts in tackling gesture-sound mapping. Specifically, it

implements 4 probabilistic models to address different mapping scenarios result-

ing from variations in temporality and multimodality (See Figure 2.7 for summary

of the models’ characteristics). These models follow a Mapping-by-Demonstration

methodology in designing interactions. This thesis is situated in this MbD frame-

work and we aim to evaluate our extension specifically in the context of 2 temporal

models with varying degree of modalities: hierarchical HMM and multimodal

HMM (refer to Figure 2.7).
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A ll the techniques for gesture-sound mapping reviewed in the previous

chapter consider the case where gestures and its associated sound parame-

ters to be learned are pre-segmented a priori and clustered off-line by the

designer. The training phase for learning the mappings between them is therefore

a one-shot, offline process. In order to devise an online training algorithm where

the observation sequence becomes available sequentially rather than in a batch so

as to support more continuous interaction, strategies to autonomously segment

and cluster the motion-sound data must be studied. We consider segmentation

algorithms that automatically decompose a continuous stream of time-series data

into distinct gestures. The algorithm is also expected to jointly segment the corre-

sponding sound process data so that the relationship between motion and sound

can be learned. In addition, since the model used for mapping gestures to sounds

requires labeled segments for training, a clustering strategy is needed to incremen-

tally label the algorithm-generated segments on-the-fly. Finally, to fully integrate

our extension into the existing Mapping-by-Demonstration system, we build the

motion-sound models incrementally. We briefly detail here further considerations

for the segmentation and clustering modules in our extended system, thereby

motivating our literature review.

Segmentation There has been active treatment of motion segmentation in the

vision, graphics, and robotics literature. We focus on approaches that do not require

a pre-annotated set of training samples. Furthermore, we are mainly interested in

extracting high-level rather than low-level segments, i.e. segments that represent

complete gestures instead of their lower level gesture components. Finally, we

16



CHAPTER 3. RELATED WORK

require that the segmentation takes place online in order to meet our constraint

that data are to be received sequentially.

Clustering As for the clustering technique used in labeling the segments, we

focus on incremental approaches where clusters are built in the order data arrives.

We consider techniques that also simultaneously learn the motion-sound relation-

ships during the incremental clustering step.

This chapter reviews existing literature on automatic unsupervised human

motion segmentation which will inform segmentation of multimodal motion-sound

data. It then provides an overview of common approaches to incremental clustering

and learning of motion primitives in order to contextualize our approach.

3.1 Segmentation of Human Motion

We define segmentation of gesture sequences commonly encountered in our

Mapping-by-Demonstration system [21] as the process of extracting distinct be-

haviors or semantically meaningful segments from continuous multi-dimensional

time-series data. Human motions can be measured via either motion capture

systems or ambulatory sensors such as inertial measurement units (IMUs). In this

thesis, we focus on movement data from IMUs. Figure 3.1 illustrates the problem

of temporal segmentation: given sensor data of a person performing a gesture

sequence, we want to isolate distinct gestures by defining the boundaries between

each gesture.

Gesture segmentation can be classified into two categories: textitsupervised

algorithms that have access to known gesture templates in order to perform the

segmentation and unsupervised algorithms that require no a priori knowledge of

the gestures being observed. Given the constraints of our system, we consider only

unsupervised techniques. Work in supervised gesture segmentation in musical

contexts can be found in [22] and [12]. However, those methods assume prior

knowledge on a set of motion primitives and therefore is outside the scope of this

paper.

To our knowledge, research in unsupervised gesture segmentation in the

context of sound computing or NIME communities is still quite nascent. Most

of these methods take a simplistic approach such as using acceleration change

as the threshold to segment a motion sequence [2]. In this example, the method

interprets gesture transitions as points where the movement has stopped, started,

or significantly changed directions. However, this approach performs segmentation

at the signal level rather than in a feature space that captures the temporal
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Gesture 2 Gesture 3Gesture 1

Data

Segmented gestures

Figure 3.1: Example gesture segmentation of a Tai-Chi movement sequence from
sensor data.

and spatial properties of the signal, making it limited in discovering higher-level

gestural information.

We therefore turn to other communities such as robotics and vision for litera-

ture treatment of unsupervised movement segmentation. These techniques can be

further categorized by whether or not motion templates are used in the segmenta-

tion. We consider two approaches: template-free and probabilistic template based

approaches.

3.1.1 Template-free approaches

Motion templates are pre-determined prototypes of motion against which ob-

served data is checked in order to determine segment candidates. In unsupervised

techniques, motions to be identified are not known a priori, eliminating the need

for templates. In this section, we examine methods that do not require templates

for motion segmentation. The algorithms can be categorized by the assumptions

they make about the underlying structure of the data at segmentation points.

3.1.1.1 Segmentation based on velocity properties

Several algorithms have been developed to use velocity properties as the basis

for segmenting motions. Pomplun et al. [49] assumes that there exists a pause
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between motion transitions. They propose a method that declares a segmentation

point when the root mean square (RMS) of the joint velocities fall below a certain

threshold. While this technique provides an efficient way of performing segmen-

tation, it is restrictive in that fluidity in natural human movement is neither

assumed nor represented.

Fod et al. [20], on the other hand, assumes that a change of movement direction,

measured by angular velocity, corresponds to possible transition to a different

motion. They propose a method based on zero-velocity crossings (ZVCs) to detect

those points. ZVCs are points whose angular velocity values have changed signs

(from positive to negative or from negative to positive). Therefore, a segmentation

point is recognized when a sufficient number of dimensions in the joint angle data

exhibit ZVCs within a short time frame.

Lieberman et al. [42] builds on the ZVC-based method by taking into account

other types of signals (such as tactile information and stereo vision) collected in

a imitation learning setting in humanoid robots. They also define an adaptive

velocity threshold for determining the significance of a movement in order to

inform the segmentation.

Techniques based on velocity properties are fast but tend to produce over-

segmentation because velocity changes that are unrelated to action change can

occur. Noise in signal can also contribute to spurious segmentation. Although

a post-processing step can be introduced to merge the over-segmented motions,

it lacks the intelligence needed to inform which segments to merge or not to

merge. Furthermore, ZVC-based methods are subject to inaccuracy as dimensions

increase in observation data. For example, when multiple dimensions display ZVCs

with slight offset from one another, it is unclear where to place the segmentation

point. Finally, these methods are restricted to movement sequences that are well

characterized by ZVCs. In sequences that contain smooth transitions between

movement segments, velocities may not actually cross zero even though a segment

should have been detected.

3.1.1.2 Segmentation based on variance in feature data

Koenig et al. [35] propose a segmentation algorithm based on signal variance.

A sliding window is passed over the movement sequence, computing the variance

of each window based on a cost function. Segmentation cuts are produced at points

with maximum variance. This is based on the assumption that movements that

are in transition to a new action display high signal variance. While this method is

intuitive, it may also over-segment when the performed actions contain inherently

large variance.
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However, signal variance may not capture sufficient information about the

observed data. Kohlmorgen and Lemm [36] uses probability density function (pdf)

to represent the observation sequence in a sliding window. The pdfs are used to

train a hidden Markov model (HMM). the Viterbi algorithm is used to generate

the most likely state sequence representing segmentation points from the pdfs.

In graphics literature, Barbic et al. [1] proposes the use of simple methods such

as Principal Component Analysis (PCA), probabilistic PCA (PPCA), and Gaussian

Mixture Model (GMM) to perform segmentation. The PCA and PPCA methods

detect sudden changes in the intrinsic dimensionality of the motion sequence,

whereas GMM is used to detect changes in the distribution. These changes mark

transitions to new segments. These approaches have been shown to provide good

performance in motion segmentation problems.

3.1.2 Probabilistic template based approaches

Another approach to segmentation is to formulate the segmentation problem as

identification of motion templates in current observation data. Motion templates

that characterize basic actions in streaming motion data can be modeled in an

unsupervised manner using probabilistic methods.

The algorithm proposed by Chiappa et al. [13] treats the observed motion

sequence as a concatenation of hidden trajectories, namely motion templates, that

are transformed according by time warping and additive noise. Bayesian likeli-

hood is used to compute the probability that the observation sequence is derived

from some hidden trajectory. Expectation-maximization (EM) algorithm is used

to estimate the warping needed to transform the observed data to the hidden

trajectory. Segmentation is performed through extracting motion primitives. How-

ever, this methods requires computationally intensive batch-processing, making it

unsuitable for online applications.

3.1.3 Summary

Many techniques exist across disciplines to tackle the segmentation problem.

ZVC-based methods, albeit fast and lightweight, are prone to over-segmentation.

Sophisticated generative probabilistic models such as Bayesian produce good

segmentation results but involve heavy computations and are offline.

We adopt an online, template-free approach to segmentation based on hidden

Markov models (HMM). Our approach is adapted from the Kohlmorgen and Lemm

[36] algorithm for general time-series segmentation to handle multimodal data

sequences. The algorithm produces segmentation in an unsupervised manner

without annotated gesture database.
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After the observation sequences are segmented into primitives, the next step is

to build a system that incrementally learns models of gesture-sound relationships

as new data arrive. The system should also be able to update its existing models

or incorporate any newly-built models into its knowledge base.

Most systems for motion primitive learning take place offline or require the

motion segments to be labeled a priori. For instance, Jenkins and Mataric [33]

propose a system for clustering the segmented data into groupings. They employ

the spatiotemporal Isomap (ST-Isomap) algorithm to embed the data in lower

dimensional space, and using the "sweep-and-prune" technique, they cluster these

segments into groupings, thereby constructing the primitive motion model. While

this system automatically clusters segmented data, it cannot be turned into an

incremental algorithm as the the entire data sequence must be available for

subspace embedding. Other systems, such as those proposed by Billard et al.

[5], uses manually clustered (i.e. labeled) data to train their HMM-based motion

primitive model.

We are interested in building a system that incrementally updates its models of

gesture-sound relationships as new data arrive and incorporates any newly-built

models into its knowledge base. In subsequent section, we draw from robotics

literature in learning-by-demonstration for a review of incremental learning tech-

niques.

3.2 Incremental Learning of Gestures from
Demonstration

3.2.1 Online learning techniques

Calinon et al. [8] describe an approach for incremental learning of motions

based on Gaussian mixture models (GMM). In this system, motion data are passed

through principal components analysis (PCA) to determine a relevant subspace.

Next, the reduced dataset is abstracted into a set of Gaussian mixtures, and the

structure of the GMM is learned through incremental training.

Kadone and Nakamura [34] develop a system based on associative neural

networks with non-monotonic sigmoid functions to perform online learning of

human motion primitives. The learned primitives are automatically clustered into

a hierarchical tree structure. However, the built models are used to recognize

motions rather than to generate motions.

Kulic et al. [39] have presented an incremental system for learning motion

pattern primitives. In this system, motion primitives are represented by HMM

that can be used for motion recognition and generation. New motion primitives are
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incrementally clustered based on their relative distance to existing motion models.

If the distance is high, indicating that the newly observed data is dissimilar to

existing models, an HMM is created to represent the new data. If the distance

is low, the observed data is merged with the existing model to which it is most

similar. A hierarchical tree structure is formed as a result of clustering.

3.2.2 Summary

In order for a technique to be suitable for integration into our target gesture-

sound mapping system, it requires the following properties:

1. The system’s embedded mechanisms to recognize previously learned motions

as well generation of exemplary motion prototypes.

2. The system’s ability to automatically cluster and learn each newly introduced

motion

3. The system’s organization of learned motion models for easy retrieval later.

We employ an approach similar to Kulic et al. [38] for incremental learning

of gesture-sound segments. As the observed data are segmented, they are ab-

stracted into HMMs, where the algorithm incrementally clusters the segments

into temporally coherent groups of actions and stores them into a storage system.
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PROPOSED APPROACH

Our goal in this thesis is to address the problem of extracting gesture-sound

primitives during online observation. Two sub-problems are involved

in addressing this problem: detection of boundaries between distinct

musical actions, and grouping of segment models based on similarity measure and

subsequent storage of these models. Our algorithm takes a combined segmentation

and incremental clustering approach in learning the mappings between gesture

and sound. We have set the following constraints for our proposed system:

1. Knowledge constraint: We do not presume a priori knowledge about the data

to be received by the system. This indicates an unsupervised approach to

the segmentation of motion-sound sequences and the subsequent learning

of multimodal mappings. Rather than having a pre-existing database of

gestures to learn from, we build the gesture database from examples in

real-time.

2. Workflow constraint: We require that the system receives gesture-sound

data sequentially over time rather than through a batch processing method.

This suggests that we must perform online segmentation of the data inputs

as well as incremental learning of the segments.

3. Time constraint: We wish to bring the entire training pipeline online to

run in real-time, from segmentation to labeling and to the eventual model

training. As such, our segmentation and clustering algorithms must be

computationally efficient.

23



CHAPTER 4. PROPOSED APPROACH

In order to meet these constraints, we propose a probabilistic segmentation

algorithm based on work by Kohlmorgen et al. [36] on segmentation of time-series

data. We adapted the algorithm to work with multimodal gesture-sound data. We

then employ an incremental clustering algorithm for the labeling and learning of

the segmented gestures. The incremental learning framework takes inspiration

from work by Kulic et al. [39] on the learning of full-body movements in a human-

robot interaction setting. Our approach differs in that we do not implement a

hierarchical storage structure but rather a linear one.

In the following sections, we first detail the unsupervised online segmentation

algorithm with a presentation of the multimodal extension. We subsequently detail

the incremental clustering technique that combines the learning of the HMMs.

4.1 Unsupervised Segmentation of Multimodal
Sequences

We apply and adapt the segmentation algorithm proposed by Kohlmorgen et al.

[36] for unsupervised segmentation of gesture-sound sequences. The algorithm seg-

ments multivariate data probabilistically by defining an HMM over the observed

data sequence, associating each hidden state with a window in the observation

sequence. The Viterbi algorithm is then used to find the optimal state sequence

that best represents the observed sequence, where optimality is defined based on

the distance between neighboring data windows.

A general overview of the algorithm is as follows:

1. Feature extraction. For this component, features are extracted from motion

and sound data. We first find the most correlated motion and sound com-

ponents using Canonical Correlation Analysis (CCA) and then we map the

joint data to a probability density function (pdf). The use of pdf provides

convenient mathematical tools for tracking changes in the distribution and

for capturing more complex distributions than raw signal data could.

2. Similarity measure. A distance metric is defined for computing the diver-

gence between two distributions. In this case, we use the standard Euclidean

distance function.

3. Online segmentation algorithm. The online segmentation algorithm utilizes

inter-distribution distances to discover prototypes within an input sequence.
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4.1.1 Feature extraction

Given rich input sensor and audio data, it is typically helpful to select a set of

features that facilitate discrimination between classes. This also serves to remove

noisy signals that will confuse the algorithm. While it is possible to manually

select optimal features given a priori knowledge about application-specific signals,

it is usually more realistic and less labor-intensive to automatically find the

right set of features as inputs to the algorithm to help it achieve high accuracy.

In this step, we first find correlations between the two types of signals we are

dealing with – gesture sensor data and audio sample. We then map the correlated

streaming gesture-sound data into some feature space to facilitate the algorithm’s

computation of the similarity matrix.

4.1.1.1 Gesture representation

Gesture sensor data is represented as a multi-dimensional vector, with each

dimension corresponding to a particular observation on a gesture feature. The

features we obtain are extracted from motion capture data (specifically inertial

measurement units) – the velocity coordinates are vx,vy,vz and the acceleration

coordinates are ax,ay,az, where x, y, z correspond to the 3 axes reported by the gy-

roscope and the accelerometer. These features capture the geometric and dynamic

information in movements.

4.1.1.2 Audio representation

To represent the audio signal, we extract Mel-Frequency Cepstral Coefficients

(MFCCs) [50] as features, which serve to capture the short-term spectral-based

features of the signal.

4.1.1.3 Canonical Correlation Analysis (CCA)

Since our input stream is multimodal (gesture and sound), gesture data alone

does not describe the complete gesture-sound properties we wish to capture. Seg-

mentation on gesture-only data can lose out on the rich audio information that

is recorded synchronously with the listener’s gestures as there is a two which

the listener performs a gesture that describes the sound. In order to address the

possible interdependency between gesture and sound data, we propose the use of

CCA to perform analysis on both modalities [10]. CCA is used to find correlation

between multimodal gesture and sound data based on the assumption that motion

and sound samples are closely correlated with each other. In our target applica-
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tions, such as vocalization of gestures, changes in sound correspond to changes in

gestures.

Given gesture data received from the motion sensors and sound features

extracted from the sound processes, we aim to identify the gesture components

that are most correlated with the audio components. Let s be sound features,

our problem can be formulated as finding a dimension in gesture feature space

g that contributes the most to the maximization of correlation with s. A simple

correlation is not suitable for our problem because it is highly sensitive to the

coordinate systems that describe s and g, and in our case, gesture features g
and sound features s share entirely different coordinate systems. Furthermore,

a simple correlation does not estimate the contribution toward the correlation

result of components along the gesture feature space g and sound feature space

s. Therefore, we need a method that will project both the sound and gesture

features onto a common coordinate system and also simultaneously estimates

their corresponding correlations.

Canonical Correlation Analysis (CCA) proposed by Hotelling [31] provides such

a method by finding the linear transformation of the first variable that is most

correlated to the some linear transformation of the second variable such that the

correlation between two multi-dimensional random variables can be determined.

Figure 4.1 shows the transformation of the random variables g and s to a common

source.

CCA is used to find the canonical bases, ws and wg, that maximize the corre-

lation between the projections g′ =w>
g g and s′ =w>

s s. The canonical correlation
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between s and g is formulated in terms of the covariance matrices for g and a:

Cvv ∈m×m and Css ∈n×n, as well as cross-covaraince matrix of the vectors g and s:

Cgs ∈m×n. The covariance matrices are estimated by the total covariance matrix

C(G,S) as follows:

C(G,S)=
Cgg Cgs

Csg Css

= E
[(g

s
) (g

s
)>]

(4.1)

As such, we formally define the canonical correlation, ρ, as,

ρ = max
wg,ws

E[g′s′]√
E[g′g′>]Es′s′>

,

= max
wg,ws

E[w>
g gs>ws]√

E[w>
g gg>wg]E[w>

s ss>ws]
,

= max
wg,ws

w>
gE[gs>]ws√

w>
gE[gg>]wgw>

s E[ss>]ws

,

= max
wg,ws

w>
v Cgsws√

w>
g Cggwgw>

s Cssws

(4.2)

In the above equations, E[.] denotes empirical expectation. This equation has a

closed-form solution using Lagrange multipliers, which results in an eigenproblem

as,

C−1
ggCgsC−1

ss Csgwv =λ2wg

C−1
ss CagCgg−1Cgss=λ2ws

(4.3)

Here, wg and ws are canonical bases of g and . The eigenvectors wg1 and ws1

correspond to the largest eigenvalue λ2 and they maximize the correlation between

canonical variates, v′1 = w>
g1

g and s′1 = w>
s1s. More details about CCA can be found

in [30].

4.1.1.4 Projecting gesture and sound data to feature space

In order to uncover underlying structures, the incoming data stream is first

embedded into a higher dimensional space. Consider an incoming data stream,

~y1,~y2,~y3, ... with ~yt ∈n, we embed the data into higher-dimensional space,

(4.4) ~xt = (~yt,~yt−τ, ...,~yt−(m−1)τ)

where parameter m is the embedding dimension and τ is the delay parameter of

the embedding. The dimension of the vector~x is hence d = mn.
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Next, the density distribution of the embedded data is estimated over a sliding

window of length W using a standard density estimator with multivariate Gaussina

kernels [6], which is centered on the data points in the window {~xt−w}W−1
w=0 , and is

given by

(4.5) pt(x)= 1
W

W−1∑
w=1

1
(2πσ2)d/2 exp

(− (x−~xt−w)2

2σ2

)
.

where pt(x) is the density distribution of the window t, and σ the variance and

can be estimated from distribution by choosing σ to be proportional to the mean

distance of each~xt to its first d nearest neighbors, averaged over {~xt}. σ acts as a

smoothing parameter, also known as the bandwidth of the kernel. It controls the

degree of smoothing. Large σ produces smooth curves but also does not pick up the

details, whereas small σ risks picking up too much detail, resulting in a noisy fit.

W denotes one observation unit and controls the size of variation we wish to detect

in the distribution. Small W (< 5) allows for detection of minute variations in the

distribution while large W (> 20) allow the algorithm to overlook these variations

and detect larger changes in the distribution. Usually W should be large enough

to capture the full density distribution of a single gesture, but small enough so as

to avoid expensive computations.

4.1.2 Similarity measure

After enough sample points are collected to form the first pdf, a new pdf can be

formed with each new subsequent point. The distance between two pdf ’s,

(4.6) d(pt, ps)=
∫

(pt(x)− ps(x))2dx

can be calculated using integrated square error (ISE). We first consider the case of

two general mixtures f =∑F
i=1αi f i and g =∑G

j=1βi g j.

d( f , g)=
∫ (

f − g
)2dx

=
∫

(
F∑

i=1
αi f i −

G∑
j=1

β j g j)2dx

=
∫

(
F∑

i=1
αi f i)2 −2(

F∑
i=1

αi f i)2(
G∑

j=1
β j g j)+ (

G∑
j=1

β j g j)2dx

=
F∑
i,k
αiαk

∫
f i fkdx−2

F∑
i=1

G∑
j=1

αiβ j

∫
f i g jdx+

G∑
j,l
β jβl

∫
g i gl dx

(4.7)

The integral of the two multivariate Gaussian distributions f i ∼N (~µi,σ2
i Id) and

f j ∼N (~µ j,σ2
j Id) can be found using,
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(4.8)
∫

f i f jdx= 1

(2π(σ2
i +σ2

j ))
d
2

exp(
−(~µi −~µ j)2

2(σ2
i +σ2

j )
)

Finally, plugging Eq. 4.5 into Eq. 4.7 via Eq. 4.8 produces an analytical distance

function for our windowed pdfs as follows,

d(pt(x), ps(x))= 1
W2(4πσ2)d/2

W−1∑
w,v=0

[
exp

(− (~xt−w −~xt−v)2

4σ

2)
−2exp

(− ( ~xt−w − ~xs−v)2

4σ

2)
+exp

(− ( ~xs−w − ~xs−v)2

4σ2

)]
4.1.3 HMM construction

The idea behind unsupervised segmentation is to represent the data sequence

in terms of a smaller set of prototype pdf ’s found from within the sequence itself.

To do that, we define an HMM over a set S of sliding windows. Each state in the

HMM corresponds to one window W , which is represented by a pdf. The continuous

observation probability distribution, or the probability to observe pdf pt at state s

is given by,

(4.9) p(pt(x|s)= 1p
2πς

exp
(− d(pt(x), ps(x)

2ς2

)
The initial state distribution {πs}s∈S is given by uniform distribution, i.e. πs = 1

N

where N is the number of states in the model. The transition probability between

states is defined by,

(4.10) ai j =


k
k+N−1 , if i = j

1
k+N−1 , if i 6= j

The transition probability is designed such that the probability to stay in the same

state is k times more likely than transitions to any other states. k is the ratio aii
ai j

where i 6= j. It determines a current state’s resistance to change.

The Viterbi algorithm [51] is then applied to find the optimal state sequence

given the HMM. The resulting state sequence represents the sequence of prototype

pdf ’s that have the maximum probability of generating the observed sequence of

pdf ’s. Segment points are generated by cutting the sequence at points where the

state changes.
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Figure 4.2: HMM definition.

4.1.4 Segmentation algorithm

4.1.4.1 Offline version

The traditional Viterbi algorithm computes the optimal state sequence using

maximum likelihood function L. However, we can reformulate the algorithm to

compute minimum of the cost function −log(L) instead. This way, we can avoid

numerical problems caused by products by replacing them with sums [51]. Using

this formulation, we define the offline segmentation algorithm below, which takes

as inputs the distance matrix D = (ds, t)s,t∈S and C which is the regularizer that

encodes the transition cost:

In the algorithm, S = T since we constrain states to be the pdfs that make up

the time-series. c[s, t] represents the cost of the optimal sequence ending at state s

at time t. D[s, t] is the distance between two pdf ’s zT is the termination point from

which the algorithm backtracks through the minimum costs logged at each time

step in order to find the minimum cost sequence. C is a regularization constant

given by C = 2ς2log(k). It embeds the transition probability defined previous and

determines the cost to switch from current state to a new state.
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Algorithm 1 Kohlmorgen-Lemm offline segmentation algorithm pseudocode
1: procedure OFFLINEVITERBI(D, C)
2: for all s ∈ S do Initialization
3: c1[s,1]= D[s,1]
4: c2[s,1]= 0
5: for t = 2,3, ...,T do Recursion
6: for all s ∈ S do
7: c[t, s]= D[s, t]+mink∈S(c[k, t−1]+C× (1−δs,k))
8: c2[t, s]= argmink∈S(c[k, t−1]+C× (1−δs,k))

9: zT = argmink∈S(c1[k,T]) Termination
10: XT = szT

11: for t = T,T −1, ...,2 do Backtracking
12: zt−1 = T2[zt, t]
13: X t−1 = szt−1

4.1.4.2 Online version

The offline segmentation can be turned into an online algorithm by incremen-

tally building the state path matrix as new state is observed from streaming data.

cost at the new time step is computed by reusing the likelihood and optimal state

sequence from the previous time step.

Algorithm 2 Kohlmorgen-Lemm online segmentation algorithm pseudocode
1: procedure ONLINEVITERBI(D,C)
2: o[1]= 0
3: for t = 1,2, ...,T do
4: Generate new state k in the HMM corresponding to teh window of data

at the current time step
5: for t = 1,2, ...,T −1 do
6: c[k, t]= D[k, t]+
7:

8:

{
0 if n ≡ 0
min(c[k, t−1], o[t−1]+C) else

9: if c[k, t]< ot then ot = c[k, t]
10: for all ∀s ∈ S do
11: c[s,T]= D[s,T]+min(c[s,T −1], o[T −1]+C)
12: o[T]= mins(c[s,T])

Similar to the offline case, the minimum state path must be tracked simultane-

ously during the computation. This can be done by storing the sequence of points

that have switched states in each path.
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Figure 4.3: Illustration of the clustering algorithm. Each time a new data arrives,
it is encoded into an HMM and compared with existing exemplary models. If the
distance is smaller than a threshold, it is grouped into that model cluster.

4.2 Incremental Clustering and Learning of
Gesture-Sound Primitives

After the streaming data has been segmented into primitives using the segmen-

tation algorithm described above, an incremental clustering algorithm is applied

to label the segments while simultaneously learning the mapping between gesture

and sound data (Figure 4.3. The main task in the incremental clustering module

is to group similar segments together based on their similarity and learn an HMM

for each group of similar segments. Each of these groups are referred to as "primi-

tives". They represent a group of similar gestures whose model is used to generate

representative sequence of that particular motion.

We adapt an incremental algorithm proposed by Kulic et al. [39] to cluster

and learn gesture-sound segments. Figure ?? shows a schematic of the clustering

algorithm and the adapted algorithm pseudocode is shown in Algorithm 3.

4.2.1 Observation sequence encoding

The first step in the algorithm is to encode the newly observed segment into

HMM. We use the multimodal HMM detailed in [24] to map gesture data to sound

data.
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Algorithm 3 Incremental clustering algorithm pseudocode (adapted from Kulic’s
original work [39]

1: procedure INCREMENTALCLUSTERING

2: Learn HMM λi for observed segment Oi
3: for Each existing cluster C j do
4: Calculate distance, D i j between λi and HMM λC j

5: Keep track of the minimum distance between new observation and an
existing cluster.

6: if D i j < threshold then
7: Place λi into cluster C j and retrain the cluster
8: else
9: Form a new cluster Ci, containing λi

4.2.2 HMM distance calculation

Once the segment is encoded into an HMM, it can be compared to the HMMs in

existing clusters. If no cluster has been formed yet, the segment forms a new cluster.

Otherwise, the distance between two HMMs is calculated using Kullback-Leibler

divergence [51]:

(4.11) D(λ1,λ2)= 1
T

(logP(O2|λ1)− logP(O2|λ2))

In the equation, λ1 and λ2 are two HMM’s, O2 is the observation sequence gen-

erated by λ2, and T is the length of the observation sequence O2. This distance

measure is non-symmetric. The symmetric version is defined by taking the average

of two intra HMM distances:

(4.12) Ds = D(λ1,λ2)+D(λ2,λ1)
2

Furthermore, as this distance measure does not satisfy the triangular equation, it

measures the pseuo-distance between two models rather than the actual distance.

4.2.3 Clustering

The newly built model is compared against all existing clusters using the

distance measure defined above. We employ an adaptive threshold for determining

if a node should be merged into one of the existing clusters or create a new cluster

on its own. The adaptive threshold is defined as:

(4.13) thresh =αDC
min

where DC
min is minimum intra distance between all existing models in the

cluster space and α is a multiplication factor.
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If the distance D i j between the new observation sequence Oi and its closest

cluster C j is smaller than thresh, the newly observed sequence will be included

into C j. Then, the HMM for C j is retrained with all observation sequences from

the HMMs in C j and the new observation sequence. However, if D i j is larger

than thresh, cluster C j will not be a possible candidate for generating the new

observation sequence. And if the entire cluster space has been searched and no

match has been found, a new cluster with the new observation is created.
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5
EXPERIMENTAL RESULTS

We have introduced an incremental learning system for segmenting and

clustering multimodal observation data. The system is expected to be

incorporated into the existing Mapping-by-Demonstration framework

for gestural control of sound synthesis. Instead of having to manually segment

and label the data before learning their intrinsic motion-sound relationships, our

system handles this part of the work automatically. We expect our segmentation

system to output segmentation points similar to those from manual segmentation.

In addition, we expect our incremental clustering algorithm to perform accurate

labeling of the segmented data from the automatic segmentation step. Finally, we

expect the integrated system to learn the motion-sound mappings. In this section,

we designed experiments to quantitatively evaluate the performance of our system

according to these expectations.

5.1 Evaluation Method

Choosing a performance measure to evaluate a complex multimodal interaction

system is not straightforward. There are three separate tasks we are concerned

with in evaluating the system: segmentation, labeling, and learning of the map-

pings. Each of these tasks needs its own set of evaluation criteria to address the

different challenges at hand.

For automatic segmentation, one of the challenges lies in choosing ground truth

data. Segmentation points annotated by human subjects can be loosely defined

or ambiguous. The start and end points of a gesture are often subjective and can

35



CHAPTER 5. EXPERIMENTAL RESULTS

vary from one subject to another. Furthermore, the specificity of a segmentation

can also be a point of contention, i.e., at what level of granularity should one

segment a continuous sequence? For example, music-related gestures, such as

those incurred during an instrumental performance, can oftentimes be interpreted

at different time scales, "from the more extended gestures that shape rhythmical,

textural, or melodic patterns, to the micro-gestures that create minute inflections

of pitch, dynamics, and other features in the course of a single tone" [29]. In

addition to granularity, degrees of freedom (DoF) can also add to the complexity

of the segmentation problem. A complete gesture is often made up of activities

in different DoF captured by sensing devices placed at different parts of the

body, but not all DoF may be directly contributing to the overall perception of

movement. Since we do not consider each DoF individually as data quickly become

unwieldy as dimensions increase, filtering out activity along DoF that do not

play a significant role in influencing the direction of a movement will help the

segmentation algorithm perform more accurately. All these different factors are to

be considered when designing a gesture segmentation system and its evaluation.

For the labeling task, the challenge lies in finding a good measure for comparing

the similarity between segments from the segmentation step in order to cluster

similar segments together. The algorithm should ensure that intra-distances

within a cluster remains small while inter cluster distances remains big.

Finally, to assess the model of motion-sound mappings, we are concerned with

two tasks: recognition and synthesis. For the recognition step, we first want to

see if the system is able to recognize the same gesture in the test dataset when

trained on a different dataset. For the synthesis step, we want to compare the

generated motion and sound parameters with the original parameters in order

to evaluate how well our model represents the relationship. In other words, we

asses the algorithm’s ability to model accurately the gesture primitives and their

associated sound trajectories for synthesis.

To validate the performance of our proposed system, a gesture dataset involving

performance of Tai-Chi movements is considered. Given the dataset, we designed

two sets of experiments to evaluate, separately, our segmentation module, our

incremental clustering module, and finally the combined incremental learning

system.

5.1.1 Data collection

We used inertial measurement unit (IMU) as our primary motion capture

system as the sensors are inexpensive and the capturing process unobtrusive.

An IMU measures the acceleration (using accelerometer) and the angular
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velocity (using gyroscope) of the object or body part to which it is attached. For

the Tai-Chi dataset, we recorded movements using the MO interface [52]. Each

interface unit contains a 3-axis accelerometer and gyroscope, generating 6 DoF in

total each.

5.1.1.1 Tai-Chi dataset

Movement data was collected from two participants performing Tai-Chi move-

ment sequences, one a professional Tai-Chi instructor (henceforth referred to as

I) while the other a training Tai-Chi student (henceforth referred to as S. They

were asked to perform common Tai-Chi sequences that ranged in variety, from

those with two repeated gestures (huit-boucle) to those with up to 15 unrepeated

gestures (sequence-debut. For all sequences, there is no break between any of the

gestures. Sound data was collected from I as she vocalizes to her gestures during

performance. Movement and sound data were recorded synchronously using mini-

MO [52] interfaces and DPA microphone headset, respectively. All performances

were also videotaped. 3 MO units were used (totaling 18 DoF), attached at the

wrist and arm of the participants as well as on the handle of the sword used during

the performance (See Figure 5.1 for set-up detail). Both the motion capture and

audio data were sampled at 100Hz.

5.1.2 Data preprocessing

In order to remove noise from the observation signals, we smooth both gesture

features (motion sensor data) and audio features (MFCCs extracted from audio

recordings) by taking the mean of every 10 frames, and we down-sample the

signal by a factor of 5 using an 30-point FIR filter with hamming window. The

resulting data points are multi-dimensional feature vectors, with each dimension

representing values from the accelerometer and gyroscope sensor.

5.1.3 Analysis procedures: segmentation

To evaluate the segmentation results, we compare the algorithmic segmenta-

tion points to the manual segmentation points. Manual segmentation is obtained

by a human observer watching the video of the performed gesture sequence and

determining the start and end points of a gesture. Then the precision-recall metrics

are applied to the algorithmic segmentation against the manual segmentation 1.

Precision is defined as the ratio of the number of correct segments reported to the

1TP: true positive, FP: false positive, FN: false negative
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Figure 5.1: Sensor placements for Tai-Chi dataset. Source: [21]. © Copyright: J.
Françoise, 2015

total number of correct and incorrect segments reported by the algorithm:

(5.1) Precision = TP
TP +FP

It measures the algorithm’s ability to not label an incorrect segment as correct.

Recall on the other hand is defined as the ratio of the number of correct segments

reported to the total number of correct segments in the manual segmentation:

(5.2) Recall = TP
TP +FN

It measures the algorithm’s ability to find all the correct segments. In addition

to precision and recall, we also compute the F-measure, which is measures the

algorithm’s accuracy, given by:

(5.3) F1 = 2× Precision×Recall
Precision+Recall

We have taken steps in our experimental setup to address the segmentation

challenges mentioned previously: ambiguity, granularity, dimensionality.

Ambiguity As all gesture sequences in our datasets are continuous, i.e., smooth

transitions from one gesture to another, the exact frame of transition cannot be
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Figure 5.2: Manual segmentation variation example taken from the Tai-Chi
dataset. The greyed areas indicate the range of variations between different
human labelers.

accurately determined. Therefore, in order to account for this inherent ambiguity

in manual segmentation, we allow a range of frames to be specified as the ground

truth taken by human subjects. The ranges vary in size according to different

judgments of segmentation points between human labelers as seen in Figure ??.

A cut generated by the algorithm is considered correct, or true positive, if it falls

within its corresponding range, and if it falls outside of this range, the segment is

considered false positive. Finally, a segment is false negative if it fails to generate

a cut where there should be one.

Granularity Next, to address the issue of possible differences in segmentation

granularity due to varying subjective judgments, we choose the algorithm’s param-

eter values that maximize the segmentation results on a few observation sequences

in order to fix the level of granularity taken by the manual segmentation. Those

values are then applied to the entire database without adjustments so as to achieve

a consistent comparison between experiments.

Dimensionality In high-dimensional data, there often exists a high number of

DoFs containing irrelevant activity. In order to improve the algorithm’s perfor-

mance in handling data with high-dimensionality, we follow a similar approach as

Lin et al. [43] to extract the significant DoFs. DoFs are considered significant if

they undertake large range of motions. These DoF are selected by first computing

the standard deviation of each DoF in a given data sequence. The obtained stan-

dard deviations are then grouped via k-means clustering where k = 2. The cluster

with the larger centroid contains DoFs that have the highest variations and hence

are taken as significant features for the given data sequence. The feature space can

be further reduced by calculating correlations between the significant DoFs and

removing the redundant DoFs when correlations are found to be over 80%. Figure
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?? shows the extracted significant DoFs (denoted by dark lines) of two sequences

from the Tai-Chi dataset.
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Figure 5.3: Extraction of significant DoFs from two example Tai-Chi sequences.
The dark lines indicate the significant DoFs whereas the lighter lines indicate the
insignificant DoFs.

5.1.4 Analysis procedures: incremental clustering

The purpose for this set of experiments is to determine if the clustering algo-

rithm based on Kullback-Leibler divergence is able to produce accurate labels. In

this part, we test the clustering algorithm on manually segmented but unlabeled

data. Because our incremental clustering algorithm combines the learning of the

motion-sound relationship, we cannot dissociate the evaluation of the correctly la-

beled segments from the evaluation of the learned HMM-based models. Therefore,

in addition to labeling accuracy of the segments, we also evaluate the system’s

ability to generate corresponding sound and motion parameters.
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5.1.5 Analysis procedures: combined incremental learning
system

In this set of experiments, we evaluate the final synthesis results of the full

combined algorithm. The incremental clustering module takes as inputs segmented

data from the automatic segmentation module and performs simultaneous cluster-

ing and learning of these motion-sound pairs. We compare the synthesis results

from our extension of the system to results from the original system proposed by

Françoise et al. [21] in order to assess the feasibility of such an extension.

5.2 Segmentation of Continuous Data Sequences

The 1st experiment will motivate the use of multimodal approach to segmen-

tation of coupled motion and audio sequences. The 2nd experiment validates the

consistency of the algorithm by comparing segmentation results of same sequences

performed by different subjects. Finally, the last experiment further validates

algorithm’s consistency by testing it on ambiguous musically-inspired gestures.

It aims to determine if the algorithm produces the same segmentation cuts in

repetitions of the same sequences.

5.2.1 Parameter tuning

Before evaluating the segmentation results, we first study the behaviors of the

small set of free parameters required by the algorithm. They are: σ (bandwidth

of the Guassian kernel), C (transition cost to a new state), and W (window size).

Although some parameters (σ) can be automatically estimated from the distri-

bution using methods detailed in the proposed approach section, further tuning

is necessary in order to achieve optimal results. For the sake of exposition, we

evaluate the parameters using just one of the motion sequences from the Tai-Chi

dataset. The same evaluation procedure for parameter selection is applied to all

other motion sequences in subsequent experiments. In the experiments that follow,

the exact values are not as important as the behavior when changing these values.

5.2.1.1 Influence of σ

σ is the bandwidth, or the smoothing parameter, of the Gaussian kernel. It

controls how finely grained the pdf will represent the underlying data. To illustrate

its effect, we performed segmentation on a short sub-sequence from the Tai-Chi

dataset, varying the σ value at each trial. We also wanted to see the effect filtering

and smoothing has on the segmentation, so we compared segmentation results
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from un-preprocessed gyroscope data gathered from one sensor with results from

preprocessed version of the same data. Figure 5.4 shows the results. We see that,

sigma = 0.17 sigma = 0.26 sigma = 0.28

(a) Un-preprocessed data

sigma = 0.17 sigma = 0.26 sigma = 0.28

(b) Preprocessed data

Figure 5.4: Influence of σ on segmentation over time. The leftmost plot shows the
original signals on which the segmentation is performed. (a) shows the segmenta-
tion results on raw data while (b) shows the segmentation results on smoothed
data.

across both un-preprocessed and preprocessed data, as σ decreases, the number

of segmentation points increase, which aligns with its expected behavior of over-

fitting the data when its values are small. σ therefore plays the role of determining

the granularity of the segmentation. In addition to the general behavior of σ as it

increases its value, we also want to investigate the effect smoothing has on the

segmentation result. As we can see, un-preprocessed data contains more noise of

which σ is sensitive to pick up. As a result, at the same σ values, there will be

more cuts detected by the algorithm on un-preprocessed data than on preprocessed

data with smoother curves.

Furthermore, we can see in Figure 5.5 the evolution of the number of segmen-

tation cuts as σ changes values and their differences across noisy signals versus

smooth signals. The figure shows that when there is less noise in the signal, the

number of segmentation converges to zero quicker. This indicates that when we

are dealing with noisy data such as those with large DoF, we will expect to choose

a larger σ value than in cases of smooth signals.
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(b) Preprocessed data

Figure 5.5: Number of cuts over time as σ increases. Two cases are examined here:
segmentation on un-preprocessed data and segmentation on preprocessed data.

5.2.1.2 Influence of C

C encodes the cost in changing to a new HMM state in the segmentation

algorithm. It can be interpreted as the resistance of a state to change from its

current state. It has similar behaviors as σ in that as its values decrease, more

segmentation cuts result (Figure 5.6). Figure 5.6

C = 11 C = 25C = 6

(a) Un-preprocessed data

C = 11 C = 25C = 6

(b) Preprocessed data

Figure 5.6: Influence of C on segmentation over time.

C is also subject to the same influence signal noise has on the number of

cuts (Figure 5.7). However, it is worth noting that C is much less sensitive to

value changes than σ. The range in which σ goes from over-segmentation to no

segmentation is very small – [.15, .36], whereas for C, its range is much larger –

[5, 30]. This indicates that C will be chosen at larger intervals than σ.
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Figure 5.7: Number of cuts over time as C increases.

5.2.1.3 Influence of window size

Window size controls the amount of data represented by one pdf. In other

words, it determines the size of variations we wish the algorithm to detect. A

small window size such as 3 would allow the algorithm to pick up small variations

as change points in the signal and hence represent segmentation locations. On

the other hand, a large window size would allow the algorithm to treat small

variations in the signal as generated by the same pdf and hence no cuts will be

given at those points. We notice in Figure 5.8 that the noisier a signal, the more

inertia (provided by larger window sizes) is needed for the algorithm to disregard

variations. However, when the signal is smooth, the algorithm is able to reach

similar results in much shorter amount of time as W contributes the most to the

algorithm’s computational cost. So when considering a real-time application, small

window sizes are desired, hence motivating a preprocessing step involving filtering

and smoothing.

Summary The selection of parameter values is highly dependent on the type of

signals received by the algorithm. It also controls the performance of the overall

segmentation. While there are no exact values for these parameters that can be

applied across all signal types, this section gives an intuition for tuning these

parameters in order to optimize the algorithm’s performance.

5.2.2 Segmentation results on gesture-only data

In this experiment, we compare the segmentation results on gesture data from

2 types of motion sequences from the Tai-Chi dataset. One sequence, huit-boucle

contains repetitions of the figure-"8" motion with a different gesture interspersed

in between the repetition. Another sequence, sequence-debut contains continuous

performance of a series of non-repetitive gestures commonly found in Tai-Chi
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window size = 5 window size = 10 window size = 50

(a) Un-preprocessed data

window size = 5 window size = 10

(b) Preprocessed data

Figure 5.8: Influence of window size on segmentation over time.

movements. The purpose of the experiment is to evaluate the types of gesture

sequences the algorithm excels at and identify the weak points of the algorithm.

For this experiment, we consider gesture-only data (audio is not yet introduced

at this point) in order to evaluate the algorithm’s performance on the motion

segmentation task. Results from this section will be used to motivate the use of

multimodal data. As mentioned previously, data from all sensors are preprocessed

(filtered and smoothed) before being sent to the algorithm. For the algorithm

parameter values, please refer to Table 5.1.

Parameter σ C W

Value .265 11 1

Table 5.1: Gesture-only segmentation algorithm parameters

Figure 5.9 shows segmentation points generated by the algorithm compared

against the manual segmentation points. Figure 5.10 shows the details of the

algorithm segmentation with original waveforms. We can see from these two plots

that huit-boucle performs significantly better than sequence-debut given the same

parameter settings. In Figure 5.10, we notice the extracted axes in huit-boucle

are more correlated (move roughly in the same directions) than extracted axes in

sequence-debut. As a result, the algorithm is able to detect instances where sharp

transitions occur. This contributes to the lower accuracy, as represented by the

F-measure in Table 5.3, of sequence-debut. For both sequences, recall is higher than
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(a) Segmentation results of huit-boucle sequence
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(b) Segmentaiton results of sequence-debut sequence

Figure 5.9: Gesture-only segmentation results on Tai-Chi data. It compares motion
segmentation points assigned by a human observer with those by the algorithm.

precision, implying that while the algorithm has ability to report segmentation

that matches well with the manual segmentation, it is likely to produce noise in

the segmentation.

Summary With gesture-only data, the algorithm performs well with sequences

that have clear visual pattern. In huit-boucle, it is clear that the sequence contains

a repetitive gesture with 2 different gestures laced in between. However for

sequence-debut, it is unclear at the signal level, to even human observers, where

segmentation cuts should be placed due to the lack of correlation between extracted

gesture features.

5.2.3 Improving segmentation using multimodal features

In this experiment, Canonical Correlation Analysis (CCA) is used to extract

the most correlated motion and sound features. As a reminder, the sound features

are represented by MFCCs extracted from audio recordings of the vocalizations

made by the participant while performing Tai-Chi movements. The gesture and
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(a) Segmentation results of huit-boucle sequence
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(b) Segmentaiton results of sequence-debut sequence

Figure 5.10: Gesture-only segmentation results on Tai-Chi data (detailed). It
compares motion segmentation points assigned by a human observer with those
by the algorithm.

sound features are normalized to have zero mean and one variance. The hybrid

data then gets passed to the segmentation algorithm. In order to motivate the

use of multimodal data, we compare the multimodal segmentation results to the

results of gesture-only segmentation from previous section. Table 5.2 shows the

parameters used to analyze all datasets in this experiment.

Parameter σ C W

Value .28 13.5 2

Table 5.2: Hybrid segmentation algorithm parameters

The algorithm is tested on the same sequences from the previous experiment

that contain accompanying audio with parameters shown in Table 5.2. For both

sequences, the multimodal approach shows comparable result or improvement.

5.11.

The precision-recall table is shown in 5.3.
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Sequence Type Sequence Precision Recall F-measure

huit-boucle
Gesture-only 100 88 94

Hybrid 94 94 94

sequence-debut
Gesture-only 80 25 38

Hybrid 81 87 84

Table 5.3: Precision-Recall table of gesture-only and hybrid segmentation results.

Summary Segmentation results improve significantly for sequence-debut while

keeping the parameters the same. Segmentation based on multimodal data thus

demonstrates more consistent and stable results across different observation

sequences. This is because the audio information can provide better representation

of the direction of the movement, hence improving the segmentation results.

5.2.4 Discussion

The algorithm has shown promising results in segmenting two types of mo-

tion sequences: one with repetitive gestures and another with continuous, non-

repetitive gestures. The algorithm is able to arrive at similar cuts as manual

segmentation.

The algorithm’s performance is highly dependent on a good preprocessing

step that extracts pertinent information about the gestures performed and the

audio that accompanies the gestures. Therefore, the use of CCA has been shown to

improve the segmentation result when compared to gesture-only segmentation. We

also note that higher-dimensional vectors perform worse as they have increased

probability to contain irrelevant data, contributing to the overall noise of the signal.

So dimensionality reduction methods are applied as a preprocessing step.

5.3 Incremental Clustering of Motion-Sound
Segments

In this section, we will test the performance of the incremental clustering

algorithm on manual segmentation data. For the 1st experiment, we will evaluate

the accuracy of the labels produced by the clustering algorithm. Since motion-

sound relationship is simultaneously modeled during the clustering step, we will

also evaluate how well the models have learned the relationship by re-generating

motion trajectories.

The incremental clustering algorithm is tested on the two Tai-Chi sequences

used in earlier experiments.
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5.3.1 Labeling accuracy

The incremental learning algorithm outputs a set of labels associated with each

sequence according to clustering results. These labeling results from the algorithm

are compared against the original labels show in Figure 5.12. The algorithm

is able to reproduce the original labels for sequence-debut. For huit-boucle, the

algorithmically generated labels differ from the manual labels in sections where

transitions occur. In those transitional gestures, the gestures are divided into two

smaller gestures by the human observer. However, at the signal level, those two

gestures are combined as one gesture by the algorithm.

5.3.2 Resynthesis of movement parameters

With the labels generated from the clustering algorithm, we can resynthesize

the movement trajectories from three axes of the gyroscope data. Results are

shown in Figure 5.13. Trajectories from both sequences can be re-synthesized with

high fidelity. In huit-boucle, the synthesized trajectories lose precision in sections

where labeling results from the previous section differ.

Summary Incremental clustering has been shown to generate labels that are

consistent with manual labels, provided that the manual labels correspond directly

to changes in the gesture at the signal level. We have also shown in this section

that given algorithmically generated labels, the system is able to recover the

original motion trajectories with high fidelity.

5.3.3 Discussion

We have shown that the automatic segmentation algorithm works well with

signals that have been preprocessed. The performance of the algorithm is highly

dependent on the parameter values, thus making parameter tuning a necessity in

ensuring good performance. However, the process of manual tuning can be labor-

intensive. We have supplied intuition for the setting of the three free parameters

used by the model.

For incremental clustering, the algorithm has displayed almost identical la-

beling results as manual labels. Because models of motion and sound are learned

simultaneously during clustering, movement trajectories can be generated in real-

time. The resynthesis results are shown to be comparable to results from batch

learning. This shows promise in generating the corresponding sound trajectories

which will be covered in the next section.
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5.4 Combining Online Segmentation and Incremental
Clustering: An Incremental Learning System

The incremental clustering algorithm is able to incrementally label and learn

the gesture primitives. In this section, we perform experiments with segments

generated from the segmentation algorithm.

5.4.1 Labeling accuracy

To test labeling accuracy, the incremental clustering algorithm is run on both

manual segments and algorithmic segments. Their labeling results are compared

to the ground truth labels assigned by a human subject. In Figure 5.14, we have

labeling from the repetitive sequence – namely huit-boucle. We see that the in-

cremental labeling of the algorithmic segments outputs accurate labels except in

the middle sections where the 2 separate gestures are treated as one complete

gesture by the segmentation algorithm. This reflects inaccuracy on the part of the

segmentation algorithm rather than the incremental clustering algorithm.

For non-repetitive sequences, we ignore labeling errors that are results of errors

in algorithmically-produced segments. Instead, we focus on what is consistent here

across the 2 incremental clustering result, which is that all labels are different,

indicating that no repetition is found by the incremental clustering algorithm,

which agrees with the ground truth labels.

Summary We can see from this section that the labeling results from the clus-

tering algorithm can help us better understand the meaning of the segments.

For example, in the non-repetitive sequence where the segmentation algorithm

performs less well, we can see from the labeling results that the reason is because

there is no repeating pattern in the sequence.

5.4.2 Movement trajectory resynthesis

Our goal of the incremental system is to resynthesize motion trajectory from

learned models, which can then be used to generate the corresponding sound

parameters for audio synthesis.

Figure 5.16 shows the motion trajectory of the repetitive huit-boucle sequence

for one axis of the gyroscope data resynthesized from the trained segment models

built during the incremental learning phase. The solid lines are the trajectories

generated using algorithmically determined segmentation and labels. The dotted

lines are generated using manual segmentation and labels from incremental

clustering. Finally, the dashed lines are the original motion trajectory. We can see
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that the combined algorithm is able to reproduce the original motion trajectory

quite well. Overshooting or undershooting happens when there’s a slight offset in

the algorithmic segmentation.

Figure 5.17 shows resynthesis results from the non-repetitive sequence. Again,

the motion trajectory is recovered quite well. Inaccuracies result again from errors

in the segmentation. We can see that the problematic section in the resynthe-

sis corresponds to the problematic segmentation produced by the segmentation

algorithm.

5.4.3 Sound trajectory synthesis

Figure 5.18 shows an example sound trajectory synthesized from the movement

trajectory by learning a multimodal model on the repetitive sequence. Trajectory

from the combined algorithm are shown in solid line, from incremental-only in

small dashes, and from ground truth in large dashes. The sound parameter used

is loudness.

Considering the inaccuracies that have potentially accumulated along the way

from the segmentation algorithm, the clustering algorithm, and finally the motion

resynthesis, the sound parameter generation results are good and follow quite well

the directions of the original trajectory.

5.4.4 Discussion

We have succeeded in performing the complete workflow of the incremental

learning system, from unsupervised segmentation, to incremental clustering, to

motion trajectory resynthesis, and finally to the produced sound trajectory synthe-

sis. There are many complex components involved and many details to look at and

compare at each step.

We conducted a set of experiments to evaluate the performance of joint segmen-

tation and clustering, which is a challenging task. For segmentation, the algorithm

is able to arrive at similar cuts as manual segmentation. For incremental cluster-

ing, the labeling performance is highly dependent on good segmentation results.

If good segmentation is given, the combined incremental clustering and learning

algorithm is able to arrive at comparable results as results from non-incremental

learning. This shows promise toward developing an incremental learning system

for interactive design of gesture-sound mappings.
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(b) sequence-debut

Figure 5.11: Comparison of segmentation based on gesture-only data and multi-
modal data. The waveform is comprised of two most correlated sound (correspond-
ing to loudness) and motion features (corresponding to gyroscope feature) as found
by CCA. The green line is the sound feature whereas the orange line is the motion
feature.
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(b) Labeling results of sequence-debut sequence

Figure 5.12: Labeling results from incremental clustering, compared with original
labels.
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(b) Motion trajectory resynthesis comparison for sequence-
debut sequence

Figure 5.13: Motion trajectory resynthesis of three axes from gyroscope data.
Shaded regions indicate the variance between algorithm-generated trajectory and
original trajectory.
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Figure 5.14: Labeling results of repetitive sequence (huit-boucle). Colors represent
labels.

Figure 5.15: Labeling results of non-repetitive sequence (sequence-debut). Again
colors represent labels.
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Figure 5.16: Motion resynthesis results for repetitive sequence (huit-boucle): com-
bined (solid line), incremental-only (small dashes), ground truth (large dashes).

Figure 5.17: Motion resynthesis results for non-repetitive sequence (sequence-
debut): combined (solid line), incremental-only (small dashes), ground truth (large
dashes).
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Figure 5.18: Comparison of synthesized sound trajectory: combined (solid line),
incremental-only (small dashes), ground truth (large dashes)
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CONCLUSION

This thesis has introduced an incremental learning system for building

models of gesture and sound relationships. It serves as an extension to the

Mapping-by-Demonstration system proposed by Françoise et al. [21]. It

consists of two modules – automatic segmentation and incremental clustering. The

automatic segmentation module breaks up continuous streaming motion-sound

data into distinct segments, whereas the incremental clustering module performs

the labeling of the algorithmic segments and simultaneously learns the mapping

between gesture and sound components. These two modules combine to construct

an integrated online training phase for learning gesture-sound mappings.

We tested our algorithm on a dataset consisted of Tai-Chi movement sequences

and vocalizations of the gestures. We have shown that it achieves performance

comparable to the original batch learning system. However, the overall perfor-

mance is highly dependent on the performance of the segmentation algorithm.

If the segmentation algorithm produces semantically meaningful segments, the

incremental clustering module will be able to group similar segments together

and build models that accurate represent the data. The system has demonstrated

the promise of an incremental algorithm for enhancing user experience and aug-

menting learning capabilities in an interactive gestural sound control system. The

implementation of autonomous segmentation and clustering algorithms supports

a more continuous interaction with the mapping design system.
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6.0.1 Summary of Findings

We tested our algorithm on a dataset consisted of Tai-Chi movement sequences

and vocalizations of the gestures. We have shown that it achieves performance

comparable to the original batch learning system. However, the overall perfor-

mance is highly dependent on the performance of the segmentation algorithm.

If the segmentation algorithm produces semantically meaningful segments, the

incremental clustering module will be able to group similar segments together and

build models that accurately represent the data. The system has demonstrated

the promise of an incremental algorithm for enhancing user experience and aug-

menting learning capabilities in an interactive gestural sound control system.

The implementation of autonomous segmentation and clustering algorithms sup-

ports a more continuous interaction with the mapping design system. This work

demonstrates a promising move toward a real-time incremental learning system

for sound design using gestures.

6.0.2 Future Work

For this round, we tested our data on Tai-Chi datasets. For future work, We

hope to complete a more comprehensive study using more complex motion-sound

data involving musical gestures. We also hope to develop a complete evaluation

methodology for the combined system.
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