
1

UNIVERSITE PARIS VI - PIERRE ET MARIE CURIE

Master Acoustique, Traitement du signal et Informatique Appliqués à la Musique

Rapport de master

Discipline : Informatique

D E E P S Y M B O L I C L E A R N I N G FO R M U S I C A L O RC H E S T R AT I O N
A N A LY S I S A N D G E N E R AT I O N

léopold crestel

Under supervision of Philippe Esling

Defended on September 5th 2015

Equipe représentations musicales

Institut de Recherche et Coordination Acoustique Musique (IRCAM)

Contents

Contents 2

I State of the art 6

1 Automatic orchestration 7
1.1 Constraint Satisfaction Problem . 8
1.2 Orchids . 8
1.3 Approaching projective orchestration . 8
1.4 Conclusion . 10

2 Deep learning 11
2.1 Introduction : Artificial Neural Networks . 11
2.2 Graphical Probabilistic Models (GPM) . 13
2.3 Restricted Boltzmann Machine . 14
2.4 Deep architectures . 20
2.5 Conclusion . 23

3 Generative models for high-dimensional time series 24
3.1 Time modelling . 24
3.2 Automatic music generation . 26
3.3 Conditional models . 29
3.4 Conclusion . 35

II CRBM-based models for symbolic music 37

4 The Harmonic Conditional RBM 38
4.1 Modelling the harmonic structure . 38
4.2 The HCRBM . 39
4.3 Pre-processing and regularization . 41

5 Results 43
5.1 Music prediction . 43
5.2 Analysis of the hyper-parameters . 47
5.3 Understanding what the model has learnt . 49
5.4 Conclusions . 54

2

CONTENTS 3

IIIAutomatic orchestration 57

6 Adaptation to the orchestration problem 58
6.1 An automatic orchestration model . 58
6.2 The orchestration prediction task . 59
6.3 Results . 62

7 Summary and future work 64
7.1 Summary . 64
7.2 Future works . 65

A Restricted Boltzmann Machines 67
A.1 Marginal distribution in a RBM . 67
A.2 Factorizing the data driven part of the log-likelihoof gradient in a RBM 68
A.3 RBM update procedure for binomial units . 68
A.4 Hyper-parameters results . 72
A.5 Qualitative analysis . 72

List of Figures 80

Bibliography 83

Abstract

Orchestration is the art of developing a musical discourse over a combinatorial set of instrumental
possibilities. For centuries, it has only been tackled in an empirical way, as a scientific theory of
orchestration appears elusive. Indeed, whereas harmony and counterpoint can rely on solid theoretical
grounds, orchestration remains taught from collections of examples drawn from the repertoire.

In this work, we try for the first time to address these questions in an automatic learning framework.
We focus our effort on projective orchestration, which is the transformation from a piece for piano to an
orchestral work. One the main objective of this project is to design a system of live orchestral projection.
This system would take as input the sequence of chords played by a pianist and generate in real time
its orchestration.

By observing a large dataset of orchestral music written by composers and their reduction for pi-
ano, we hope to be able to capture through a statistical learning method the mechanisms involved in
projective orchestration. Deep neural networks seem a promising lead for its ability to model complex
behaviour from a large dataset and in an unsupervised way. More importantly in our project, deep ar-
chitectures organize hierarchically the extracted knowledge. If we manage to build a satisfying model of
projective orchestration, it would probably highlight unknown mechanisms and increase our knowledge
for orchestration.

Before tackling the vast and relatively uncovered problem of automatic projective orchestration, we
tried to build a generative model for symbolic music for one instrument. Indeed, we believe that an
interesting first step in order to build a model for orchestration is to be able to understand the harmonic,
rhythmic and melodic structure of polyphonic music. Besides, we can rely on other work and evolve in
a more delimited framework with a solid baseline to compare with our model.

As the question raised by our work span a widely different set of knowledge, we start by briefly
introducing the state of the art in automatic orchestration, deep learning and its application to symbolic
music models. Then we propose our own model based on Conditional Restricted Boltzmann Machines
(CRBM) for symbolic music generation, compare it on a predictive task with other existing models and
propose an analysis of the musical knowledge learnt by a network. We eventually propose a first step
toward an automatic orchestration system with CRBM-based model. If we obtained poor results at
the moment, an important step has been made by defining a precise framework made of a database a
performance measure and a first baseline model.

4

Résumé

L’orchestration est l’art d’écrire de la musique pour un ensemble d’instruments en soulignant le développe-
ment du discours musical grâce aux nombreuses combinaisons d’instruments possibles. L’immensité du
sujet a longtemps laissé songer qu’il était illusoire de vouloir construire une théorie de l’orchestration
comme il en existe pour l’harmonie ou le contrepoint. L’orchestration est donc essentiellement abordée
de manière empirique et enseignée à travers une collection d’exemples "canoniques".

Nous proposons d’aborder ces questions en nous appuyant sur des méthodes d’apprentissage statis-
tiques. Nous avons concentré nos efforts suer l’orchestration projective, qui consiste à transformer une
pièce pour piano seul en pièce pour orchestre. En effet, un des principaux objectif de ce projet est
de réaliser un système de projection orchestrale temps-réel. Un tel système prendrait en entrée la
séquence polyphonique de notes jouées par un pianiste et générerait en temps-réel l’orchestration de
cette séquence.

Nous espérons parvenir à extraire les mécanismes mis en jeux lorsqu’un compositeur réalise une
orchestration en observant une large base de données de musiques orchestrales et leurs réductions pour
piano. Les réseaux de neurones profonds ont démontré leur capacité à modéliser des structures complexes
pour de grands ensembles de données et apparaissent comme une piste prometteuse pour l’orchestration
automatique. Plus qu’un simple modèle, les réseaux de neurones profonds offrent une véritable représen-
tation et hiérarchisation de l’information contenue dans ces ensembles de données. Construire un modèle
satisfaisant d’orchestration projective permettrait également de mettre en évidence et de comprendre
certains mécanismes mis en jeux et constituer un premier pas vers une théorie de l’orchestration.

Il nous a semblé que l’élaboration d’un modèle de composition automatique de séquences poly-
phoniques pour un instrument était une première étape raisonnable avant d’aborder le vaste domaine
de l’orchestration automatique. L’objectif était de s’assurer que les architectures que nous souhaitions
utiliser était capable d’apprendre les structures harmoniques, mélodiques et rythmique sous-jacentes à
toute musique polyphonique. La composition automatique offre en outre un cadre d’évaluation mieux
délimité et de nombreux modèles existants auxquels se comparer.

Notre travail aborde de nombreux champs de connaissances. Un premier chapitre introduit briève-
ment l’état de l’art en orchestration automatique, apprentissage statistique de réseaux de neurones
profonds et son application en modélisation de musique symbolique. Le chapitre suivant présente un
modèle de génération musicale que nous avons développé et qui est basé sur un modèle appelé Con-
ditional Restricted Boltzmann Machine (CRBM). Notre modèle est ensuite évalué et comparé sur une
tache de prédiction avant d’effectuer une analyse du savoir musical appris par le modèle. Nous présen-
tons finalement un modèle d’orchestration projective automatique basé sur le modèle CRBM. Bien que
les résultats soient mauvais pour l’instant, une étape importante a été franchie en définissant un cadre
de travail solide autout d’une base de données, une mesure de performance et un premier modèle auquel
se comparer.

5

Part I

State of the art

6

Chapter 1

Automatic orchestration

Orchestration can be defined as the art of writing timbres, spanning from the musical notation to the
acoustic realization of an exponential array of instrumental possibilities [TM12]. This complex discipline
involves a wide set of intricate mechanisms, most of which have not yet been satisfactorily theorized.
Indeed, famous composers often conjectured that orchestration would mainly remain an empirical disci-
pline, which could only be learned through experience and never axiomatized in books. Even if several
famous musicians have written orchestration treatises [Ber44, Koe41], those mostly remain recommen-
dations and sets of existing orchestration examples from which one can draw inspiration. This scarce
set of knowledge is to be compared with other traditional composition domains, like harmony, which
benefits from a long history of theoretical principles and research. However, alike rhythm, harmony
and intensity, timbre is "a structuring force in music" [McA13], but even for a trained composer, this
projection from the symbolic domain of the score to the acoustic world of timbre can remain particularly
elusive.

Hence, trying to build the scientific bases for an automatic orchestration system appears to be a
daunting task. The multi-dimensional structure of timbre, its temporal aspects and the combinatorial
complexity of instrumental mixtures [ECA10] make the relationships between a given orchestration and
its timbre extremely difficult to predict. Few approaches have started to be investigated in the last few
years, two of which will be briefly introduced in the following section, either using a set of constraints
rules or optimizing micro-temporal objective functions. Those two approaches can in fact be related
to the two complementary views on orchestration : projective or inductive orchestration. Projective
orchestration is performed by a composer first writing a "virtual harmonic" score (for instance solely for
a piano) and then trying to assign different voices in this score to the various orchestral instruments.
Inductive orchestration appears when a composer targets a precise timbre and seek an optimal mixture
of different instrument in the orchestra to reach this objective timbre. This inductive problem has been
the main line of research over the last years, leading to systems such as Orchids (Section 1.2).
Our objective in this work was to develop the first attempt towards a projective system, by tackling
the question of taking in input a piano score and finding potential projections of this score onto an
orchestra. In the last section, we will briefly introduce three different methods we have thought of to
address this question and provide compelling arguments on why deep learning appeared as the most
promising approach amongst these.

7

CHAPTER 1. AUTOMATIC ORCHESTRATION 8

1.1 Constraint Satisfaction Problem
One of the first attempt to produce an automatic orchestration system tried to cast the question as a
Constraint Satisfaction Problem (CSP) (for a detailed presentation of CSP applied to music, see [Tru04]).
CSPs have been widely used for automatic composition, and an automatic orchestration system based
on constraints could be defined in the symbolic realm such as proposed in [TA11] or as part of a larger
orchestration system [Car08]. Those tools are limited to symbolic constraints, typically enclosed to the
set of selected instruments and the notes they are allowed to play (pitch-range or inter-instruments
symbolic relationships). However, a major flaw of all these systems is that timbre is not taken into
consideration, whereas it is a fundamental dimension of orchestration. This remains a critical limitation
as symbolic constraints are not expressive enough to tackle the spectral complexity of orchestration.

1.2 Orchids
An inductive approach has been proposed with the Orchidée system [Car08] and later developed to
account for temporal evolution in Orchids [Esl12]. The goal of these systems is to try to match a target
timbre with a given set of instruments. A typical use case is when a composer wants to reach a certain
target timbre (often in the form of a recorded sound) through an orchestral mixture, Orchids tries to
produce an orchestration that best mimic the target while focusing on the micro-temporal structure of
sounds. Several constraints can also be imposed on the number and type of instruments.
This problem can be cast into a Multi Objective Time Series (MOTS) matching problem. Different
cost functions (objectives) are defined through the different spectro-temporal features. This defines
an optimization problem in a complex multi-dimensional space. To solve it, a multiobjective genetic
algorithm is used, which offers two advantages: fast computation despite the combinatorial explosion
and, most importantly, the fact that it offers a range of widely different solutions, which is a great
advantage in a compositional context (a variety of good solutions instead of the best one which anyways
doesn’t actually exists). Hence, instead of looking for a unique solution, the algorithm offers compro-
mises between the different objectives, by producing the Pareto front (a set in which no solution can
be considered better than the other). This occurs precisely because of the fact that the optimisation
function is multi-dimensional.Furthermore, these functions account for time varying structure as they
rely on the time series representations of spectral descriptors. This provides a major improvement over
previous systems [Car08], which relied solely on static spectral descriptor for a given target. However,
it is well-known that the perception of timbre is strongly impacted by the subtle temporal evolution of
spectral features (see [PGS+11] for a detailed study of several audio descriptors).
Orchids is strongly anchored in the inductive paradigm and provides an interesting solution to the
specific problem of looking for a target timbre. However, this tool remains limited to short temporal
evolutions. This comes from the fact that in order to reduce the search space, an instrument can play
only once without performing melodic sequences. If this was possible, the search space would be so
immense that it would become impossible to densely visit its shape and hence to find a decent solution.
Therefore, Orchids is particularly adapted for composers who want "to start from a timbral grain of
sand" that provide them a building block, but can’t perform the orchestration of a whole piece yet.

1.3 Approaching projective orchestration
In this section we introduce various ideas that could be pursued as the basis of an automatic projective
orchestration system: an extension of the Orchids system to larger time-scales, a spectral constraints

CHAPTER 1. AUTOMATIC ORCHESTRATION 9

based system, an automatic voice leading extraction tool and a deep learning based approach.

Extending the temporal scale of Orchids As stated earlier, one of the main drawback of Orchids is
that it remains confined to rather short temporal evolutions. The original idea, from [EA10], was actually
to allow composers to draw spectro-temporal maps and then to find the best orchestrations deriving from
this map. Our first idea was, therefore, to extend Orchids towards larger temporalities, by orchestrating
several shorter time frames and then trying to link those frames by choosing "similar" orchestration and
enhancing the continuity between these. This is where this method shows its limit: it seems very
difficult, if not impossible, to define a similarity measure between two unrelated orchestrations at a
symbolic level. For instance, the same spectro-temporal effect can be reached with two very different
orchestrations (i.e. set of instruments, and notes played by those instruments). Hence, trying to link
orchestrated frames would probably results in non-continuous orchestration with absolutely no macro-
temporal symbolic coherence.

Spectral constraints Another idea was to extend the CSP method to constraints specifically designed
to apply on spectro-temporal descriptors. This solution has been quickly dropped as the domain of
spectral variables and their cardinalities would lead to an exponentially growing search space. Therefore,
almost all CSP algorithms would most probably won’t be able to output a single decent solution.

Voice leading approach A radically different idea was to try to automatically extract from a sym-
bolic musical representation (e.g. a midi file) the most natural voices. Voice leading makes reference
to the way pianist or guitarist jazzmen find smooth transitions between two chords. Finding this voice
leading could rely on geometric tools by trying to find the optimal geodesic in a space adapted to chord
representations [Tym06]. In practice, the system would first perform a voice extraction, and then try to
assign an instrument to each of these voices. We could then imagine to combine Orchids and the voice
leading approach by choosing the orchestration for the first frame thanks to Orchids, and then continue
the selected solution by following the various voice leadings in the symbolic score figure 1.1 on page 10.
However, this approach is highly sensitive to the success of its components, and also lacks flexibility in
the definition of the overall orchestral form.

Deep learning approach Automatic orchestration suffers from the fact that human knowledge strug-
gle to model the correlations between high-level features and behaviors with the low-level features that
they have access to [BCV13]. From this point of view, a promising solution would be to try to automat-
ically infer the correlations between low-level symbolic representations and the higher-level information
that is contained in a complete orchestration. Indeed, we stipulate here and will work based on the
hypothesis that there exist an intuitive projection made by composers when orchestrating a piano piece.

Deep learning is a very recent research field that emerged from the field of statistical inference.
These algorithms allow to automatically extract increasingly higher-level and complex patterns from a
set of training data through a learning phase. Each layer is considered as a more abstract concept, as
it is build around a set of correlations inside his immediately lower layer (hence a higher-level concept
is a combination of lower-level knowledge). These models can be interpreted as graphical models which
have connections between units reinforced during the learning phase when a strong correlation between
them is observed. Furthermore, these graphical models with undirected connections provide the utmost
advantage of being able to simultaneously learn (analyze) correlations, but also to be able to generate
new data.

CHAPTER 1. AUTOMATIC ORCHESTRATION 10

First frameSpectral target

Figure 1.1: Voice leading combined with Orchids. The first frame is orchestrated thanks to Orchids by
trying to match a spectral target with the symbolic score acting as a constraint on usable notes. Then,
the voice leading algorithm would ensure a continuous orchestration by assigning each note to one of
the instrument chosen in the first frame by Orchids.

Hence, apart from the pleasant similarity with the way a human composer learns, statistical in-
ference methods can beneficially take advantage of the vast knowledge contained in already existing
orchestral pieces, while proposing, if not totally new by its form and concept, at least unseen orches-
trations. Moreover, this very flexible model can actually be adapted for a wide range of different tasks
by being able to learn directly from any additional information that we would incorporate in our set of
knowledge (we can for instance label orchestrated pieces by genre, and then ask the model to generate
an orchestration with respect to this genre).

1.4 Conclusion
Automatic orchestration appears as a daunting task that is yet to be understood and even researched
as only few scientific works tried to tackle its immensity. We distinguished two interesting methods
in the literature: a CSP-based approach and the Orchids system which offers a nice solution for short
temporal frames of inductive orchestration.
However, we aim in this work to address the question of projective orchestration. To propose such a
macro-temporal orchestration system, we have foreseen three promising solutions. On one hand, two
solutions would use Orchids as a starting point, one to orchestrate a first frame and then ensure the
orchestral continuity from a voice leading point of view, a second to create separate orchestral frames
that would be linked in a post-processing step. On the other hand, a radically new approach that
would use statistical inference to automatically learn orchestration rules. The high potential of the
deep learning methods and the fact that they have almost not been used in symbolic music analysis yet
brought us to choose this solution over the Orchids-based methods.

The next chapter reviews some of the most important concepts in deep learning, focusing on genera-
tive models adapted to time series, as this will be at the core of understanding both the macro-temporal
evolution of orchestration and the relationships between a piano score and its orchestral rendering.

Chapter 2

Deep learning

This chapter provides a brief introduction to deep learning, starting from its most basic concepts up
to the recent models for symbolic time series analysis. Indeed, the term deep learning actually covers
a wide range of models and trying to describe all of them is far beyond the scope of this report and
our review will thus be limited to the concepts and models that appeared relevant for symbolic music
modeling. We redirect readers interested in deep learning for Artificial Intelligence (AI) and the reason
of its development [Ben09], representation learning [BCV13] or wider overviews of the variety of models
[Sch15].

2.1 Introduction : Artificial Neural Networks
Neural Networks (NN) NN emerged as an AI attempt to model the way information is processed
by the brain[Gar15]. A NN is composed by many simple computational units called neurons that

Output

h
(l)
i

w0

w1

wN

x1

xN

1
(bias unit)

a
f(

NX

i=0

xiwi)

= f(z)

Input

Figure 2.1: A Neural Network is a connectionist architecture where simple computational units are
organized by layers. The output of a neuron is the result of its activation function applied to a weighted
sum of its input. Neurons are densely connected to each other where the output of neurons in a layer
become the input of neurons in the next layer.

11

CHAPTER 2. DEEP LEARNING 12

implement an activation function. Those neurons are connected together by weighted connections and
organized by layers. A neuron in a layer receives as input a weighted sum of the output of the neurons
in the previous layer and output the result of its activation function applied to this input (figure 2.1 on
page 11). The depth of an architecture refers to the number of layers. A deep architecture is simply an
architecture with a large number of computing layers.
The activation is a non-linear function traditionally designed to be as close as possible to the step
function while being differentiable. Good candidates for those are the sigmoid function or the hyperbolic
tangent. In the standard feed-forward neural networks illustrated in figure 2.1 on page 11, activations
flows from the input units through various hidden layers and up to the output layer.

Generalizing towards deep architecture In their classical instantiation, weights in a NN were
simultaneously trained in all the layers thanks to a global error function. This global error function is
typically defined through a classification task by comparing for a set of labelled input its original label
to the one proposed by the network. The gradient of this error is back-propagated through the network
to reach the weights in every layer [RHW88]. One issue with back-propagation is that the norm of the
gradient of the error function decreases as it is propagated through the layers. Thus the most distant
weights from the output (i.e. the first layers) of a deep architecture are changing extremely slowly. This
problem, known as gradient diffusion, made deep architecture (actually as soon as there is more than 2
hidden layers) very difficult to train. However, inspired by the depth of the brain, and using an analogy
with the representation of logic circuits [Ben09], many scientists thought that deep architectures would
perform significantly better in many tasks. Hence, many efforts have been made to find an efficient
learning procedure for deep architectures. Since a satisfying solution has been proposed in 2006 by
G.Hinton [HOT06], many state-of-the-art methods in a wide variety of domains have been beaten by
deep architectures [Sch15] and proves this approach is sounded.

The training procedure proposed by Hinton is often described as an "unsupervised greedy layer-wise"
process. The idea is to successively train each pairs of unit layers formed by a deep neural network
as separated small NN (figure 2.5 on page 21). Assembling those separated smaller architecture will
be detailed in section 2.4, and how each level is trained in section section 2.3. The weights in each
sub-models are trained by trying to minimize a reconstruction error : if the first layer is the visible layer
and the second is the hidden, a known visible vector v is passed through the network to the hidden
unit h (bottom-up pass) and then sent back to the same first visible unit (top-down pass), defining
the visible vector v′. Learning process basically consists in trying to reduce the difference between the
original vector v ans its reconstruction v′.

NN can be addressed from a probabilistic point of view, as Graphical Probabilistic Model (GPM).
A major advantage is that GPM provide a powerful and sound mathematical framework from which
many interesting theoretic results can be easily drawn. Among others, generative properties often
naturally follows the formal definition for many architectures. Indeed, if the model allows us to get the
distribution of the visible units conditionally on the hidden units, it is possible to draw sample from
this distribution in order to obtain data that look like the one existing in our training dataset. After
a first section introducing GPM, a second section is dedicated to the Restricted Boltzmann Machine
(RBM). RBM is the model used by Hinton to explain the contrastive divergence algorithms, and are
the building block of a deep architecture known as Deep Belief Network (DBN) that will be introduced
in a third section.

CHAPTER 2. DEEP LEARNING 13

2.2 Graphical Probabilistic Models (GPM)
Graphical models can be interpreted in a probabilistic framework, where each unit represents a ran-
dom binary variable that have a certain probability to be active (equals to 1) given the states of the
other units. The condition and independence relations between units can be drawn as a graph, with
computation units being its nodes and edges representing conditional dependence between units. GPM
can represent any probability distribution. In practice, it might require an infinite number of units to
model perfectly those distributions. But a good approximation can often be reached with a reasonable
number of units and an adapted architecture [FI14].

Markov Random Fields (MRF) Markov Random Field (MRF) are a certain class of GPM. A
MRF is an undirected graph where the state of a unit is given only by its neighbors. More precisely, a
MRF is a graph that respects the Markov property. The Markov property states that a random variable
is conditionally independent of all other variables given its neighborhood (see [FI14] for details).

Hidden units To model the distribution of a set of observations of dimension m, it is often required
to actually use more than m units. Hence, hidden (or latent) variables that do not correspond to
direct observations, but rather correlations between visible variables, are introduced to increase the
expressiveness of a model, and allow to represent complexes distributions. Hence, for a set of visible
variables V and hidden variables H, a model represents the joint distribution p(v,h), and the visible
unit distribution (the distribution of data that we want to model) is given by the marginal probability
p(v) =

∑
h p(v,h).

Energy-based model From the Markov property given above, it can be shown that the distribution
X = (V,H) of any MRF can be factorized as an energy-based probability distribution, also known as
Gibbs distribution [FI14]:

p(x) = 1
Z

∑
e−E(x) (2.1)

where E(x) is the energy function and Z =
∑

x e
−E(x) is the partition function that ensures that the

sum of probabilities of all the possible states is equal to one.

Learning in a MRF

Likelihood of the observation Learning in a MRF consists in finding the unknown underlying
distribution for a set of data. A common way to find this distribution among statistical models is to
rely on adjusting a set of parameters θ of the model so that the likelihood of the training set S under
the MRF distribution is maximized

max
θ
L(θ|S) = max

θ

∏
vS∈S

p(vS |θ) (2.2)

However, in order to simplify further computations, models usually rely on maximizing the logarithm
of the likelihood (called the log-likelihood function)

ln(L(θ|S)) =
∑
vS∈S

ln(1
Z

∑
h
e−E(vS ,h)) (2.3)

CHAPTER 2. DEEP LEARNING 14

Gradient ascent Since it is often impossible to analytically find the maximum of the likelihood
function, gradient ascent on the log-likelihood is used as a search procedure to find the optimal vector
parameter θopt. Gradient ascent is an iterative process which uses the derivative of the likelihood with
respect to a parameter in order to update the value of this parameter. Since we want to optimize this
value for the whole training dataset, the mean value of the log-likelihood gradient over the training set
is used (normalized by the number of example in the training database).

θ(t+1) = θ(t) + ε.
1
NS

∑
vS∈S

∂ ln(L(θ|vS))
∂θ

(2.4)

where ε is the learning rate and NS is the number of element in the training base.

Gradient of the log-likelihood For a given model θ and a given training example from the training
dataset vS ∈ S, the gradient of the log-likelihood is given by (see [FI14] for a complete derivation)

Equation 1 (Gradient of the log-likelihood in respect with the parameters)

∂ ln(L(θ|vS))
∂θ

= −
∑

h
p(h|vS)∂E(vS ,h)

∂θ
+
∑
v,h

p(h, v)∂E(v,h)
∂θ

(2.5)

This expression (2.5) can be decomposed as the difference between the expectation of the gradient of
the energy under the model distribution and the expectation of the same variable under the distribution
of the data in the training examples. It can be rewritten as

Equation 2 (Data and model driven value for the gradient of the log-likelihood)

∂ ln(L(θ|vS))
∂θ

= − Ep(h|vS)

[
∂E(vS ,h)

∂θ

]
︸ ︷︷ ︸

Expectation under data distribution

+ Ep(h,v)

[
∂E(v,h)
∂θ

]
︸ ︷︷ ︸

Expectation under model distribution

(2.6)

Updates strategies : mini-batches In practice, the parameters are not updated by computing the
average over all the example from the training set, but instead by considering iteratively subsets of the
examples (called mini-batches) over which an average update is made (typically a hundred examples).
This considerably increases the convergence of the algorithm since updates are made more recurrently.
Mini-batch update also allows to reduce the noise from using single example while allowing the use of
a Graphics Processing Unit (GPU) to decrease computation time.

2.3 Restricted Boltzmann Machine
The RBM can be introduced as a special case of MRF where each hidden unit is connected to every
visible unit (with undirected edges), and where visible (respectively hidden) units are conditionally
independent. In the first part of this section, we will detail the likelihood and derivatives for an RBM,
while making the links between the GPM and NN points of view. In a second part, we explain why
the model-driven part of the derivative of the log-likelihood is intractable (second term in (2.6)) and
introduce the algorithm approximating this quantity known as Contrastive Divergence (CD).

CHAPTER 2. DEEP LEARNING 15

Hidden units

i

j

Wij

Visible units

Figure 2.2: The graphical representation of a Restricted Boltzmann Machine (RBM). The weight Wij

represent the connection between the visible and hidden units. Visible (resp. hidden) units are con-
ditionally independent from each other (graphically represented by the absence of connection between
two visible (resp. hidden) units)

Definition of an RBM

A RBM is defined by a set of m visible units V = (V1, ..., Vm) and n hidden units H = (H(1), ...,H(n)),
and the parameters of the model are defined by the weights Wij between visible and hidden units, the
biases over visible units ai and the biases over the hidden units bj (see figure 2.2 on page 15). The
energy function of a RBM is given by

Equation 3 (Energy function of a RBM)

E(v,h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

viWijhj (2.7)

Different types of units

Depending on the underlying nature of the data that we seek to model, different types of units can be
used in a RBM. Binary units have been widely used for binary state data (for instance a musical note
being on or off), or discrete data such as pixel intensity by considering each visible unit as a pixel and
defining its intensity as the activation probability of the corresponding unit. However, when modeling
real data, Gaussian visible units [Hin10] or Rectified Linear Units [NH10] are more appropriate. Which
kind of units are the most adapted for music representation will be discussed in the next chapter (chapter
3), but all the theoretical results introduced in the following sections assume that units are binaries.

Gradient ascent in a RBM

Marginal distributions From the energy function (2.7), conditional probabilities for the hidden and
visible units can be derived (see section A.1). An important remark is that hidden (resp. visible) units
are independent given a visible state v (resp. h). Therefore, for each visible unit i and hidden unit
j

CHAPTER 2. DEEP LEARNING 16

Equation 4 (Conditional probabilities of the visible and hidden units in an RBM)

p(vi = 1|h) = sigm

b(v)
i +

∑
j

Wijhj

 (2.8)

p(hj = 1|v) = sigm

(
b

(h)
j +

∑
i

Wijvi

)
(2.9)

where sigm(x) = 1
1+e−x is the sigmoid function.

RBM in the NN paradigm The previous result shows that the RBM (built from the MRF theory),
can also be interpreted as a NN, by considering it as a one-layer feed-forward neural network. Its
activation function is thus defined by the conditional probability (in this case a sigmoid) and the value
taken by a given hidden unit for a set of visible units in the NN is equal to the mean of this hidden unit
given the visible units E [p(vi|h)] (resp. E [p(hj |v)]).

Gradient of the log-likelihood From the derivative of the log-likelihood for a graphical model (2.6),
the energy function in a RBM (2.7) and the conditional distribution of the units (2.8) we can deduce
the equation of the derivative of the log-likelihood for a RBM. For a given vector of visible unit from
the database, vS ∈ S, the left part of equation (2.6) (expectation under the data distribution) is easy
to obtain (see section A.2 for detailed explanations). For the weights between visible unit i and hidden
unit j, Wij , the equation is

∑
h
p(h|vS)∂E(vS ,h)

∂Wij
= sigm

(
m∑
k=1

WkjvS,k + bhj

)
vS,i (2.10)

which is straightforward to compute. However the right part of equation (2.6), (expectation under the
model distribution), does not factorize nicely as it is the case for the data driven term. The same
calculation gives us the following result

∑
v,h

p(h,v)∂E(v,h)
∂Wij

=
∑
v

p(v)sigm
(

m∑
k=1

Wkjvk + bhj

)
vi (2.11)

=
∑
h

p(h)sigm
(

n∑
k=1

Wkjhk + bvi

)
kj (2.12)

As h and v are binary vectors of dimensions n and m, computing the right member of the previous
equation with either the first or the second expression require a sum over 2m or 2n term, which quickly
become intractable as the size of the network grows.

Contrastive Divergence in a RBM

To overcome this intractability, Hinton [HOT06] introduced an algorithm known as CD, which relies on
two approximations of the log-likelihood gradient through Gibbs sampling [Ben09].

CHAPTER 2. DEEP LEARNING 17

...k stepp(h|v)

v0 2 S

Init

p(v|h)

h0 h1

v1 vk

hk
1 step

Figure 2.3: Gibbs sampling can be used to obtained a sample from a distribution close to the true
distribution of the RBM. The independence of the hidden and visible units allows a fast implementation
known as block sampling.

Gibbs sampling Sampling from a model consists in instantiating a random vector (v,h) from the
model probability distribution p(v,h). Sampling directly from the model distribution is often impossible.
In an RBM, it would indeed require to compute the partition function of the model (2.1) (which is
intractable as seen previously). Sampling in a RBM is useful for two purposes: both the learning
procedure and performance evaluation of the model. Indeed, generating sample is a way to observe
the structure and regularities learnt by the model. Gibbs sampling is a type of Monte Carlo Markov
Chain (MCMC) algorithm that can be used to draw sample from an unknown multivariate probability
distribution using conditional distribution of each variable. An MCMC is an iterative instantiation of
all the variables from previous known values that must be in theory repeated an infinite number of time
to reach equilibrium. It can be proved that the chain will converge towards the underlying distribution
of the model [Ben09]. MCMC is particularly adapted for an RBM since its joint probability p(v,h) is
intractable but its conditional distributions have a simple factorized expression. The Gibbs sampling
approximation (figure 2.3 on page 17) consists in :

• initialize the chain with a vector from the training database

• run only k iterations of the chain instead of running it until it converges

Using a starting vector drawn from the database can be justified by the fact that the model distribution
get closer to the data distribution as the training goes on.

Gibbs sampling in a complex MRF can be long since units have to be sampled one by one. However,
in an RBM visible and hidden units are conditionally independent. An efficient sampling known as
block sampling can then be performed, where all units in one layer are updated in parallel given the
states of the units in the other layer. Hence, learning can be performed by repeating k iterations of

• sampling a hidden vector from the visible : h ∼ p(h|v)

• sampling a visible vector from the hidden : v ∼ p(v|h)

A very surprising result is that the algorithm will provide very good results even for k = 1. More
precisely it can be shown that each step of parameter update with CD-1 will increase a lower bound
on the likelihood (???? REF ?? ? ?). It should be noted that using one step in the CD algorithm
is sufficient for automatic feature extraction, since the algorithm will therefore be fine-tuned using a

CHAPTER 2. DEEP LEARNING 18

back-propagation algorithm [BCV13]. However, when an RBM is learned for generative purposes, it
is recommended to use more steps (typically k = 10) since a precise evaluation of the joint density is
desired[Hin10]. Other forms of contrastive divergence have been investigated in the literature, among
them the Persistent Contrastive Divergence (PCD) ([Tie08]). Different tuning of the CD algorithm will
be described in the next chapter as it is different for each model.

Expectation approximation The second approximation consists in replacing the expectation over
the full data and model distribution by a single sample in (2.6). This considerably reduces the compu-
tational load and can be justified by the fact that since the updates are done for each training sample
(or mini-batch), there is a form of averaging of the approximation over many iterations. To perform
this, the update process for a mini-batch of L training example is given by

• sample hidden states given the training examples v(data,l) of the mini-batch h(data,l) ∼ p(h|v(data,l))

• sample from the model distribution (v(model,l),h(model,l)) ∼ p(v,h)

• ∆Wij =
∑L
l=1 v

(model),l
i h

(model,l)
j − v(data,l)

i h
(data,l)
j

Finally, the update rule of the RBM parameters is given by the difference between a model driven
term and a data driven term :

Equation 5 (Update rules for the parameter of a RBM)

∆Wij =< vihj >data − < vihj >model (2.13)

∆b(v)
i =< vi >data − < vi >model (2.14)

∆b(h)
j =< hj >data − < hj >model (2.15)

The computation of the data-driven values is often called positive phase and computation of the model-
driven values is the negative phase. The whole CD-k algorithm can be summed up as picking a visible
vector from the dataset, run a first bottom-up pass to obtain the model driven hidden units, perform
k − 1 Gibbs sampling steps (top-down and bottom-up passes) to obtain the model driven visible and
hidden units, compute the gradient with the collected statistics.

In practice, it is recommended to use the probability activation of the hidden and visible units when
performing CD-k since it reduces sampling noise and correspond in fact to mean values in the case of
binary units [Hin10]. However, mean values can be used only when updating the parameters, but not
during alternating Gibbs sampling phase, since it would be in contradiction with the fact that visible
and hidden units can exchange only a one bit of information. Indeed, this restriction acts as a strong
regularizer which enhances the learning.

Regularizing the learning

The performances of a RBM can be improved by imposing some "constraints" on the way the weights
of the network are learned. We can distinguish two major ways to influence the learning of a network.
First, adding a supplementary term to the error function (often called a penalty term), can indirectly
forces the behavior of network through the optimisation process (as it puts a form of learning pressure
through the error value). The second method is based on directly modifying the value of units or weights
in order to impose the desired behavior.

CHAPTER 2. DEEP LEARNING 19

Weight-decay Weight-decay is a penalty function which aims at keeping the values of the weights W
in a low range. It works by using the L2 norm of the weights W as a penalty function: 1

2 .
∑
i,jW

2
ij . The

derivative of this penalty function is null with respect to the hidden and visible biases, and equal to W
with respect to W . Hence the update rule for biases remain unchanged and becomes for the weights W
:

W
(t+1)
ij = W t

ij + ε
[
< vihj >data − < vihj >model −νW

(t)
ij

]
(2.16)

Weight-decay can be interpreted as assuming a zero-mean Gaussian prior on the weights [Hin10]. One
important reason to use weight-decay is that it prevents the networks from overfitting (with weights
arbitrarily drifting to extreme values, thus preventing interesting learning). Hence, low weights helps
CD to converge faster [Hin10]. Furthermore, weight-decay helps useless weights to converge faster to 0,
which considerably simplify the interpretation of the learnt network and allows to easily visualize the
correlation.

Sparsity Sparsity is another regularizer frequently used, whose objective is to obtain a sparse hidden
representation of an input data. It means that for a given vector from the training set, we want that only
a small number of hidden unit are activated by this vector. Model trained with a sparsity constraint
leads to more interpretable representation [Hin10], since hidden units are forced to learn higher-level
structures. This is a particularly interesting property for automatic feature extraction. The sparsity
function fsparse is defined as the cross-entropy between a desired mean activation p (fixed by the user)
and the actual mean activation of the hidden units for a given mini-batch (q = Ep(v)[p(h = 1|v)] ≈

1
Nminibatch

∑
v∈minibatch p(h = 1|v))

fsparse = −p.log(q)− (1− p).log(1− q) (2.17)

The gradient of the sparsity cost with respect to the different weights of the network can be easily
computed, since its derivative with respect to the total input of a given unit is given by (p − q). So,
with the input of a given hidden unit j defined by z =

∑
iWij .vi + bj , we have

∂fsparse

Wij
=∂S

z .
∂z
Wij

= (q − p)j .vi
∂fsparse

bj
= ∂S

z .
∂z
bj

= (q − p)j

Sparsity can also be imposed on the network by directly forcing some units being off (a method known
as dropout). For each sample from the database, we randomly set to 0 an arbitrary number of hidden
units among the one that are activated by this training example ([SHK+14]).

The complete CD-k algorithm that we implemented with all regularizers is provided in section A.3.

Semi-RBM

Definition RBM are a restricted version of a more general model: the Boltzmann Machine. The Semi-
Restricted Boltzmann Machine (SRBM) is closer to this general model, by allowing lateral connections
between visible units (figure 2.4 on page 20). The energy function of this model is defined by [OH08]:

E(v,h) = −
m∑
i=1

aivi −
n∑
j=1

bjhj −
∑
ij

viWijhj −
∑
i<i′

vivi′Lii′ (2.18)

The learning procedures for the visible to hidden connections and the biases remain identical, while
the learning procedure is additionally applied to the lateral connections

∆Lii′ =< vivi′ >data − < vivi′ >recon (2.19)

CHAPTER 2. DEEP LEARNING 20

Visible

Hidden

i

j

Wji

Lii0

i0

Figure 2.4: Semi-Restricted Boltzmann Machine. The RBM model is augmented by adding lateral
connections between the visible unit

However, the fact that visible units are no longer independent from each other prevent us from
performing block sampling when computing the visible units activation probability. Indeed, when
training a SRBM, the positive phase (computing the hidden units activation probabilities) is unchanged,
but the negative phase (computing the visible units activation probabilities) must be carefully computed.
A visible unit is conditionally dependent of the hidden units, but now also to all the other visible units.
To reach the equilibrium distribution given the hidden units, several steps of sequential updates of all
the visible units are performed (typically around 50 steps ([OH08])). The fact that block sampling is
not possible considerably slow down the training procedure.
One advantage of the SRBM is that strong pairwise correlations in the input are not masking higher
structure with weaker correlations. Indeed, lateral connections can model those pairwise interactions
and let the weights w take latent structure in charge. It can be seen as a kind of whitening property,
where the most basic pairwise correlations are removed from the information to learn. Musically, the
SRBM is an interesting starting point to infer basic harmonic rules.

2.4 Deep architectures
As the complexity of the data distribution we seek to model increases, a shallow architecture would
require an increasing number of units to obtain a good model of underlying correlations. Oppositely,
deep architectures can represent arbitrarily complex functions with a reasonable number of units. This
observation relies on more formal results in the computational complexity of circuits. It is possible to
model any boolean function with a one layer circuit of logic gates, but a more compact representation
can be obtained when implementing several layers of logic gates [BCV13]. Intuitively, this result can
be understood by thinking about polynomial factorisation.

Greedy layer-wise training

As explained in section 2.1, deep architectures can not be trained directly with the back-propagation
algorithm. The solution proposed by Hinton in 2006 [HOT06] is to train smaller 2 layers architectures
(typically a RBM but other model could be developed), composed of an input (visible) layer and a single
hidden layer and then stack them to build a deeper architecture. Each group of 2 layers are trained with

CHAPTER 2. DEEP LEARNING 21

1

2

Output

Input

3

Figure 2.5: Greedy layer-wise training of a DBN

the CD algorithm described in section 2.3. Stacking the RBM is straightforward and computationally
effortless. The first layer is trained using the training examples. Then, other layers are trained using as
input the activations of previously trained layers given the examples (figure 2.5 on page 21).

Unsupervised training An important difference with back-propagation error is that CD is an unsu-
pervised training procedure. Back-propagation requires to define an expected output of the network for
each input vector. This is typically the label associated with an input when the network is trained for
classification task. But the learning procedure in the CD algorithm is based solely on the capacity of
the network in reconstructing the observed data through a reduced representation. This is an extremely
powerful property since it allows to train a network on any data that we can find, without a painful
pre-processing step consisting for example in labelling by hand an entire dataset. Furthermore, this
procedure thrives on the intellectual idea that if we are able to reconstruct something using fewer parts,
we are learning its inherent structure.

Different levels of representations A notable property of deep architectures that has been de-
scribed by several authors is that these approaches are able to learn increasingly higher levels of ab-
straction in their successive layers [LEN08]. Image modeling gives a convenient framework to understand
this property. This leads to the paramount question in deep learning, that is to which amount we can
understand what a network has learned ? A way to understand the learning of a network is to visualize
the corresponding correlations learned in each hidden unit. The normalized input (in the sense of the
L2 norm) that maximizes the activation probability of a hidden unit is named the receptive field of this
hidden unit. Those receptive fields can be interpreted as what higher-level abstractions the network
has learned. It can be shown that the receptive field of a hidden unit j is actually the weights Wij

between this hidden unit and each visible unit. In the same way, we can observe which hidden units in
the first layer give the strongest activation for any unit in the second layer. Since each first layer unit

CHAPTER 2. DEEP LEARNING 22

Input

h
(l)
i

Figure 2.6: Different abstraction levels are hierarchically represented through successive layers of a
DBN. Here the directed connections are those pertaining to the generative model (right side of the
figure taken from [LEN08]). Be careful that the network has been represented upside-down to fit the
image.

has a receptive field which is in the visible layer, what has learnt the second layer is a weighted sum of
the receptive fields of the first layer units. We can then obtain the receptive field of each hidden layer
by back-propagating its receptive field throughout the network. For image modeling, the hierarchical
structure of the network can be easily observed through its receptive fields [LGRN09] (figure 2.6 on
page 22) This notion of receptive fields and hierarchical learning is important to visualize what the net-
work has learnt and thus have a better understanding of its behavior. Moreover, it can be interesting
to observe the creative mechanisms and patterns learned by the network in order to perform further
understanding of the underlying knowledge.

Deep Belief Networks

A DBN is obtained by stacking several RBM on top of each others. Propagating the data trough the
already trained layers is simply a forward pass (as detailed in section ??). When stacking the RBM,
two set of biases will be available for each layer of units except for the input and output layers. Indeed,
each intermediate layer is trained first as the hidden layer of an RBM and then as the visible layer of
another. This leads to two sets of biases, called generation and reconstruction biases figure 2.6 on page

CHAPTER 2. DEEP LEARNING 23

22. Recognition biases are learned as the hidden layer of the RBM and generation biases are learned
as the visible biases of the RBM stacked over the previous one. Those two sets of weights define two
different networks. One is a generative model and is used to generate data from a hidden state in the
last layer by performing a top-down pass through the network. The other is a recognition model that
outputs a hidden representation for an input by performing a bottom-up pass.

A generative models

GPM represent probability distributions. Therefore, it is possible to draw samples from the probability
distribution defined by a deep architecture. Sampling from the distribution modeled by a network is
often referred to as sampling a model. The data produced by a network will of course depend on the
examples used during the training phase and the quality of this training. Those considerations will be
discussed in the results section (chapter 5).

If we denote hl the units formed by the layer l and v the first layer formed by the visible units, the
joint distribution in a DBN is given by

Equation 6 (Sampling equation for a DBN)

p(v,h1, ...,hL) = p(hL−1, hL)
L−1∏
l=1

p(h(l−1)|hl) (2.20)

where v = h0. The generative model of a DBN is then given by the joint distribution of the two
top layers that form a RBM and the distribution of each layer conditionally on the next layer. The
conditional probabilities are easy to compute, and the joint probability formed by the top RBM can
be sampled by performing alternate Gibbs sampling. Note that even though the CD-1 approximation
is correct for the training procedure, this does not hold when sampling the model. Indeed, we don’t
simply want to reduce the reconstruction error anymore, but now really need to reach the equilibrium
distribution in the RBM.

2.5 Conclusion
Deep neural networks are a branch of graphical probabilistic models that allows to model efficiently
complex probability distributions. Training a neural network on a set of data means finding the weights
in the networks so that the probability distribution of the model is as close as possible from the probabil-
ity distribution of the training data. Training those architectures was impossible until an unsupervised
greedy layer-wise training procedure has been proposed, along with what can be considered as the
building block of a whole class of neural network: the RBM. By relying on reconstructing the input
data, increasingly higher-level representations of the data can be automatically learned. An interesting
property of these deep architectures is that they can be used as a generative model.
However, NN and deep learning have been widely investigated for machine vision tasks and engineering
systems. Thus, a lot of methods are particularly relevant for image processing (e.g. Convolutional
Neural Networks [LBBH98]), but not necessarily adapted for our symbolic music purposes. Proposing
models specifically tailored for symbolic music processing is one of the main objectives of this work.
The next section focuses on this aspect and the modelling of time series.

Chapter 3

Generative models for high-dimensional
time series

Symbolic music can be represented as a high-dimensional symbolic time series and thus benefit from
the works in this widely covered field.

3.1 Time modelling
We will focus in this section on statistical models for time series. Indeed, time is a fundamental dimension
when trying to model a musical score. As pointed out in [Tay09] time presents a rich structure that can
not be considered as a simple additional dimension of static models. In music, the multiple temporal
granularities present in the structure of a piece make it particularly difficult to model. Although it is
arduous to define the exact temporal granularities underlying a musical piece, they span the full range
from the micro-temporal structure that defines the timbre of a sound up to the macro-temporal structure
of the musical form. Between those two scales lies the note-scale temporal structure which defines the
relation between one note to the next. Previous attempts to define and automatically extract those
different temporal granularities have shown that this task is particularly intricate ([NG14]). Recent
development in deep learning have focused on efficiently modeling time series. We redirect interested
readers to [LKL14] and [Tay09] for an overview of time series modeling.

Time-series specificities

Analogously to the translation and rotational invariance propertied required for vision recognition sys-
tems, specific types of invariance might be interesting when modeling time series. Temporal translation
and scaling might be two interesting invariance properties for a model of musical time series.

The scaling property is linked to the multiple granularities in musical temporalities. In practice, this
multi-granularity generates two issues. The first one is to choose the extent of the smallest temporal
event considered. This can be compared to the sampling rate for continuous real-valued series (such as
a recorded audio signal). Since we are working with symbolic representations, it would seem logical to
choose an integer division of a beat as the smallest temporal event (for instance an eight note), called
here a quantization. Limitations of this choice arise with the representation of grace notes or rhythm
faster or asymmetric to this division, which would be removed in a first approximation. The second
issue involved by the multiple temporal granularities is that modeling the macro-temporal structure
of a musical piece requires to embed a large historical context which will act as a kind of memory.

24

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 25

It is then obvious that whatever model is chosen, the number of parameters and complexity of the
model increases concomitantly with the size of the memory, which renders inference of the parameter
of this model (training) equally complex. Besides, for a given context size, finer quantizations will also
proportionally increase the model complexity. Overall, this leads to a trade-off between the quantization
and size of the memory in our model. Hence modeling long-range dependencies of musical sequences is
a challenging task.

Oppositely, translation invariance might not be a desired property when trying to build a generative
model for musical time series. Indeed, when musical patterns are repeated (defining the same context)
or slightly variated, this repetition information is a valuable information to the overall musical form.

Traditional models

We briefly introduce in this subsection the most well-known statistical models that have been developed
to capture temporal structures, as our aim is to build a relatively compact parametric model that could
retain the underlying complex temporal structures in symbolic music. Parametric time series models
often address the joint probability of a sequence through the conditional probability of a certain time
instant given its past. This naturally induces the notion of context. An important distinction can
already be made between models that use fully observable context and models with hidden states. The
context in fully observable models is entirely defined by the previous point of the sequence whereas
hidden states also rely on previous states not directly observed on the sequence but instead inferred
from past observations of it. The use of hidden states comes from the idea that sets of points from
the observable sequence is insufficient to completely describe the state of the system and that some
underlying causes must be modeled to do so.

One of the first parametric model for time series is the autoregressive model, proposed by Yule
in the 1920’s. The output linearly depends on the N past points of the sequence plus a stochastic
term. This model becomes inefficient if an even small non-linearity is introduced in the system. N th

order Markov model has then been introduced as a fully observable non-linear system. However fully
observable systems fail to model long-range dependencies since only the last N points of the sequence
can influence the next point. This is problematic since the number of parameters increase exponentially
with the order N of the Markov model.

Introducing hidden states in the Markov Model led to the Hidden Markov Model (HMM). HMM
allow to efficiently model long range dependencies in discrete time series with a small number of pa-
rameter since the hidden states will retain only the relevant information. Neural networks have recently
shown great performances in modeling complex distribution of static data (chapter 2). The internal
representation of neurons is particularly interesting since it offers a way to observe patterns and struc-
tures learnt by the network. As pointed out by Taylor [Tay09], the fact that computation is performed
in parallel over the neurons seems to be in contradiction with the sequential nature of time series. A
first solution would be to use these static models and apply them to buffers of sequences. However,
such attempts are not really satisfactory since it dilutes the temporal nature of the data by simply
considering vectors with higher dimensions. However, it seems more interesting to decouple the time
from the other dimensions of the data, by representing those in a static structure, and treating time
through a certain context that modulates the properties of this static network.

Before trying to produce an automatic orchestration system, a first interesting step would be to pro-
duce a generative model for symbolic music. Modeling symbolic sequences of polyphonic music defines
a simpler framework to investigate learning the temporal structure of music. Above all, whereas auto-
matic orchestration is not a widely covered problem and especially not with a neural network approach,
many works on automatic composition models define a strong evaluation baseline. Besides, most of the

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 26

recent approaches in this field are based on statistical inference models and form a considerable source
of information.

3.2 Automatic music generation
Automatic composition can be approached by different methods. One popular method has been to
represent a composition problem under a constraint satisfaction problem ([Tru04, HLZ96]). Harmonic,
rhythmic or melodic rules are used to filter the set of musical possibilities by assigning penalty to
sequences that violate those rules. A drawback of those methods is that its computational load increases
exponentially with the length of the generated sequence. Another limitation is that those rules are used
by composers to avoid mistakes but are not self-sufficient to create interesting music. At the opposite
end of the spectrum, probabilistic inference based systems try to learn those rules from existing pieces of
music instead of using hand-written rules. Those models fully benefit from the vast and rich information
contained in already existing music written by human composers. This review focuses on probabilistic
inference methods.

Similarity with other problems

The problem of automatic composition for polyphonic music can be tackled from the more general frame-
work of generative models of high-dimensional time series. Among this wide domain, text-generative
models [SMH11] present a lot of similarity with our problem. Both processes are highly structured
sequential stochastic process in a discrete space. But strong differences prevent us from simply applying
the existing text modeling solutions to symbolic music generation [LP03]. Hence, while symbolic music
vocabulary is relatively small, n-grams or Markov chains fail to correctly model its complex temporal
structure composed of short to long-term interactions.

However, N-grams or HMM models have been used to learn the harmonic structure in order to
perform harmonisation ([AW05, PBM+03]), which is a very specific task where the structure of the
piece is already given trough the bass line. Recent works seem to indicate that a more elaborate and
general structure, Random Fields, are more adapted to represent higher level abstractions ([PBM+03,
BLBV12, LR14]).

Data representation

In this section, the different architectures to which we will compare our results are presented. An ar-
chitecture consists in the model used, but also the data representation which is an important milestone
when trying to build a musical model. We will focus on symbolic representation (MIDI representa-
tion) and will not analyse raw or signal driven data (waveform, spectrogram). Most symbolic music
representations can be derived from the two-dimensional piano-roll representation (figure 3.1 on page
27), with the x-axis being the time and y-axis the pitch. Pitch is discrete, often ranging from 1 to
128 (MIDI), or 1 to 88 (piano keyboard) and units are either binaries (n(x,y) indicates if pitch y is
played at time y) or continuous (intensity). Although pitch is inherently discrete in classical western
music (an octave is made of 12 semi-tones), the piano-roll representation introduces a less instinctive
temporal discretisation. It is often based on a symbolic subdivision of the quarter note, which provides
tempo-independence but does not allow for physical time evaluation.

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 27

...

128 pitches ...

time in beat
sub-division

(here 4 slot per beat)

...

...

... ...

Figure 3.1: The pianoroll representation for symbolic rhythm

Previous architectures

HMM-based models have been widely used for harmonic structure analysis [AW05, PBM+03, PR01]
or melodic composition [YAK10], but not for polyphonic composition. Indeed, HMM are not well-
suited for multi-dimensional data and, thus, remained targeted at monophonic or chord sequences.
In harmonisation models ([AW05]), an interesting "root relative" representation is used. Each note is
represented by its distance to the root (given the key), while a chord label is added to indicate the
harmonic context of the chord (its degree).

HMM are a particular case of MRF, and Lavrenko proposed to use a less constrained lattice of binary
units directly derived from the piano-roll representation[LP03]. Here, the time structure is eluded by
only considering the notes onset, while removing their duration. The efficiency of such an under-defined
representation can be doubted, but it offers a first easy-to-handle representation. Intuitively, this
representation might perform well on music strictly aligned on a temporal grid such as Bach’s chorales.
Besides, pitches are reduced to 12 through an octave-equivalent transformation. This transformation
(named pitch-class transformation here) is interesting as it can help the system focusing on the harmonic
structure of music. The field is built on directed temporal connection, which is a reasonable assumption
that only notes played in the past influence notes in the future. A more surprising and restrictive
assumption is that a certain pitch is only influenced by lower pitches at the same time. The distribution
of the field is defined through a set of feature functions and parameters, representing rules learned on
a training dataset.

Several works are based on RBM, such as systems that automatically creates Jazz melody over a
sequence of chords [BBSK10]. Here, a data representation well fitted for their problem is to perform
a separate representation of chords and melodies. However the poor temporal structure (simple con-
catenation of successive frames) of their system appears as an immediate limitation. Very recently, two
models aimed at automatic music generation specifically targeted the temporal dimension and were able
to generate interesting music sequences.

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 28

ĥ(0)

ĥ(1)

h(1)

W
W 0

W 00

W3

W2

v(1)

ĥ(2)

h(2)

v(2)

h(3)

v(3)

ĥ(3)

v(T)

ĥ(T)

h(T)

RNN

RBM

Figure 3.2: Graphical structure of the RNN-RBM. We can distinguish the two parts of the model, RNN
in blue and RBM in red.

Recurrent Temporal RBM (RTRBM) A first paper [BLBV12] introduces two models with a
temporal component used to produce polyphonic music sequences : the Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) and the Recurrent Neural Network Restricted Boltzmann Machine
(RNN-RBM) (see figure 3.2 on page 28). Those two models have been inspired by the aforemen-
tioned text-generative model [SMH11]. Beside, an interesting evaluation framework is proposed in this
article and will be used to evaluate the performances of our model (section 5.1). The general definition
of a Temporal Restricted Boltzmann Machine (TRBM) introduced by [SHT09] is a sequence of RBM
where each RBM is conditioned by the previous one. It can be seen as a HMM with an exponentially
large state space (increases with N t) but a compact parametrization (only 2 transition matrices and
biases). In fact, in the simplest TRBM, only the bias of the hidden units is affected by the previous
hidden unit.

The probability of a sequence of observation is given by

P (vT1 , hT1) = P0(v1, h1).
T∏
t=2

P (vt, ht|ht−1) (3.1)

which is the equation of an HMM, and where the conditional distribution P (Vt, Ht|Ht−1) is the distri-
bution of an RBM whose hidden bias Ht is a function of ht−1 (named dynamic bias).

P (vt, ht|ht−1) = exp(v>t bV + v>t Wht + h>t (bH +W ′ht−1) (3.2)

The main difference between the RNN-RBM model and the RTRBM is that the recurrent relation is
based on the mean-field values of the hidden units instead of their binary values. Hence, those mean-
field values units are separated from their binary alter ego and define another set of weights that models
the recurrent relations. A RNN-RBM can be trained using the Back-propagation though time (BPTT)
algorithm [RHW85].

Long Short-Term Memory (LSTM) The paper [EL08] addresses blues improvisation by proposing
a model based on a slightly modified Long Short-Term Memory (LSTM) network [ES02]. More precisely,
their model is composed of an input layer, an output layer, and a hidden layer made of a standard
feed-forward layer in parallel with several LSTM blocks, and use the same aforementioned evaluation
framework [LR14]. A LSTM block in a network plays the same role as any other computational unit

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 29

(they compute a single output value from weighted inputs), but have a more complex structure. Since
the generation process is a random selection, very unlikely musical event can still happen. Even if we
want to keep a certain amount of randomness in our generative process, we still don’t want those very
unlikely event to happen. To do so, a threshold is applied before sampling from the output distribution
in order to avoid very low probability notes to be chosen.

From this short review, we retain that a good model stands in the data representation used, the
choice of the architecture and the ability to train it correctly. Whereas most of the work in automatic
composition only rely on a qualitative evaluation of their result, the two last cited articles proposed a
common quantitative evaluation framework. For these reasons and the fact that their results were the
most interesting, we will use them as a baseline to compare our model to (see section 5.1).

3.3 Conditional models
We introduce a temporal model, the Conditional Restricted Boltzmann Machine (CRBM) proposed
for modeling motion style [Tay09]. Motion data is collected by placing sensors on the different body
parts of a walking person. This leads to sets of high-dimensional time series, and this model appeared
promising to be applied to our problem of modeling music sequences.

Model distribution

Distribution of a CRBM The energy function of a conditional RBM (figure 3.3 on page 30), is
similar to the RBM’s one, but the biases of both visible and hidden units are modified by a term
introducing a dependency to the past visible units. So, for binary visible and hidden units, it is defined
by

E(vt, ht|v<t) = −
∑
i

âi,tvi,t −
∑
ij

Wijvi,thj,t −
∑
j

b̂j,thj,t (3.3)

where the biases are defined by âi = ai +
∑
k Akivk,<t and b̂j = bj +

∑
k Bkjvk,<t. a and b are static

biases, as in the RBM model, and Aki and Bkj model the influence of the context on the current state.
We can sample this model thanks to the conditional probability of the visible units given the past

visible and current hidden, and the conditional probability of the hidden units given the past and current
visible units.

p(hj,t = 1|vt, v<t) = sigm(−b̂j,t −
∑
i

Wijvi,t) (3.4)

p(vi,t = 1|ht, v<t) = sigm(−âi,t −
∑
j

Wijhj,t) (3.5)

We can see in those equation that efficient block sampling is still allowed (no correlation between hidden
or visible units of the same layer). Besides, if N is the temporal order of the model (which means that
only the N last visible unit layers are taken into consideration), we can directly sample the (N + 1)th
visible units from the N previous visible unit from our database, without running N sampling steps
which is the case in a general Temporal RBM. Hence, this considerably increase the computational
efficiency at generation time. Generating data from a CRBM require to first feed him with a context.
Input units are clamped while sampling the next frame v(t) by alternate Gibbs sampling in the RBM
part of the model. Sampling in conditionals models is described in a next section section 3.3.

Weight updates are made by contrastive divergence :

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 30

v<t

vt�1

vt�N

Hidden layer

Visible layer
(1 pianoroll

temporal frame)

Context layer

Wij

Bkj

Aki

......

...

Figure 3.3: CRBM. The weights Aki and Bkj model the influence of the past visible states on the biases
of the current visible and hidden units.

Equation 7 (Update rules for the parameter of a RBM)

∆Wij =< vihj >data − < vihj >model (3.6)

∆b(v)
i =< vi >data − < vi >model (3.7)

∆b(h)
j =< hj >data − < hj >model (3.8)

∆Aik =< vivk,<t >data − < vivk,<t >model (3.9)
∆Bjk =< hjxk >data − < hjxk >model (3.10)

(3.11)

Conditional RBM can be stacked into a deep architecture, in the same way that RBM are stacked
to build a DBN, but one has to be aware that sampling from this model require to initialize it with
a context frame. Indeed, the top associative memory formed by the CRBM of the last layer has to
be initialized using the recognition weights of the lower layers. Since our model is context-based, it
involves to have a knowledge of the past frames. Once the context of the last layer is set, alternate
Gibbs sampling can be performed in order to reach the equilibrium distribution. A top-down pass is
then performed to sample the current frame of visible units given the context (see figure 3.4 on page
31). Note that the frame generated then define the context for the next frames that will be generated.

Gated connections

In the CRBM model, input (context) units directly influence the bias of both hidden and visible units.
If we consider the activation function, this is equivalent to shift this function towards the positive or
negative end of the abscissae. Instead of this additive interaction, the model can be influenced by the

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 31

Known units (clamped)

Inferred units

Randomly initialized units

Step 3 :
Gibbs sampling in the

top associative memory

Step 4 :
Top-down pass

Step 1 :
Infer hidden units

Temporal order

Step 2 :
Infer higher level

hidden units

Unknown units

Figure 3.4: Sampling in a multi-layer CRBM

past in a multiplicative way. Hence, those multiplicative modulations directly modify the slope of the
activation function, which in turn scales the sensibility of the activation according to the input. The
general model distribution for a Gated Conditional RBM (GCRBM) can be derived from the energy
function given by

E(v, h|x) = −
∑
ijk

Wijkvihjxk −
∑
ij

cijvihj −
∑
i

aivi −
∑
j

bjhj (3.12)

Wijk are the component of a three way tensor and cij are the gated biases. The computational cost
implied by the tensor can be reduced by factoring it into a product of pairwise interactions : Wijk =∑
f W

v
ifW

h
jfW

x
kf where the superscript indicate which unit the weight refers to, and f indexes the factors.

If # {input unit} ' # {hidden unit} ' # {input unit} ' # {factor} ' N , the complexity is reduced
from O(N3) to O(N2) (exactly O(3 ∗N2)). The energy function is thus modified :

E(v, h|x) = −
∑
f

∑
Ijk

W v
ifW

h
jfW

x
kfvihjxk −

∑
ij

cijvihj −
∑
i

aivi −
∑
j

bjhj (3.13)

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 32

k

i

j

Output layer

Hidden layer

Input layer

Wijk

Figure 3.5: Input units in a GCRBM modulates the weights between hidden and output units

A Factored Gated RBM (FGRBM) can be trained using CD. We use the following notations: at a given
time t, vi are the visible units, hj the hidden unit, xk the input units which are the visible units of the
(t −N) previous time frames and zl are the label units. The factor for the matrix Wijk is indexed by
f , for Aikl by m and for Bjkl by n. The update rules are then given by

Equation 8 (Update rules for the parameter of a FGRBM)

∆b(v)
i =< vi >data − < vi >model (3.14)

∆b(h)
j =< hj >data − < hj >model (3.15)

∆W v
if =< vi

∑
j

Wjfhj
∑
l

Wlfzl >data − < viWjfhj
∑
l

Wlfzl >model (3.16)

∆W h
jf =< hj

∑
i

Wifvi
∑
l

Wlfzl >data − < hj
∑
i

Wifvi
∑
l

Wlfzl >model (3.17)

∆W z
lf =< zl

∑
i

Wifvi
∑
j

Wjfhj >data − < zl
∑
i

Wifvi
∑
j

Wjfhj >model (3.18)

(3.19)

A style-gated factored model For modeling different motion styles, [TH09] introduced a very
interesting model where the direct influence of the past is modeled through a CRBM and stylistic
feature labels are gated on either the weights W or the dynamic biases matrices A and B. Hence
W , A and B are both 3 dimensional tensors. This model (illustrated in figure 3.6 on page 33), has
been named Style-gated Factored Conditional RBM (Style-gated FCRBM). Its impressive performances
for modeling human motion, its great modularity and the fact that it could be easily adapted to the
orchestration problem proved attractive. The adaptation to the orchestration problem will be detailed
in chapter 6), but it relies on using the style labels as the piano input and ensuring a continuity in
the orchestration using the recent past of the orchestration to dynamically bias the visible and hidden

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 33

Style
(one-hot encoding)

Features l

k

j

i

Hidden layer

Visible layer
(current frame)

Input layer
(previous frames)

Style- features connections

Weights

Visible units bias

Hidden units bias

(y)

(z)

(v<t) (v)

(h)

Factors

Figure 3.6: A style-gated FCRBM. The three sub-models are represented by three different colors. The
style features are gated on the three interactions: weights between visible and hidden units (in red),
bias on hidden units (green), bias on visible units (blue)

current unit. The energy function in a Style-gated FCRBM is given by

E(vt, ht|v<t, yt) = −
∑
f

∑
ijl

W v
ifW

h
jfW

z
lfvi,thj,tzl,t −

∑
i

âi,tvi,t −
∑
j

b̂j,thj,t (3.20)

where the dynamic biases of the visible and hidden units are defined by

âi,t = ai +
∑
m

∑
kl

AvimA
v<t
kmA

z
lmvk,<tzl,t (3.21)

b̂j,t = bj +
∑
n

∑
kl

Bh
jnB

v<t
kn Bz

lnvk,<tzl,t (3.22)

where m indexes the factor for the gated interactions between features, input and visible units and n
the factor for the gated interactions between features, input and hidden units.

A Factored Gated Conditional RBM (FGCRBM) can be trained using CD. We use the same nota-
tions as the previous model, as the update rules for b and W remain the same. The new update rules
for A and B are then given by

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 34

Equation 9 (Update rules for the parameter of a FGCRBM)

∆Avim =< vi
∑
k

Akmxk
∑
l

Almzl >data − < vi
∑
k

Akmxk
∑
l

Almzl >model (3.23)

∆Axkm =< xk
∑
i

Aimvi
∑
l

Almzl >data − < xk
∑
i

Aimvi
∑
l

Almzl >model (3.24)

∆Azlm =< zl
∑
i

Aimvi
∑
k

Akmxk >data − < zl
∑
i

Aimvi
∑
k

Akmxk >model (3.25)

∆Bz
jn =< hj

∑
k

Bknxk
∑
l

Blnzl >data − < hj
∑
k

Bknxk
∑
l

Blnzl >model (3.26)

∆Bz
kn =< xk

∑
j

Bjnhj
∑
l

Blnzl >data − < xk
∑
j

Bjnhj
∑
l

Blnzl >model (3.27)

∆Bz
ln =< zl

∑
j

Bjnhj
∑
k

Bknxk >data − < zl
∑
j

Bjnhj
∑
k

Bknxk >model (3.28)

Sampling from conditional models

As aforementioned, sampling in a conditional model requires to feed the network with N already existing
frames to build the input and the context is then shifted on the recently created frames to iteratively
generate the successive frames. Given those N past frames, the sampling process to get the N + 1th
visible frames is the same in every conditional model :

• Infer hidden context units if the model has several layers.

• Initialise the units of the penultimate layer (i.e. visible units in the model formed by the top two
layers). If the model is not stacked, this is simply the visible layer.

• Given the inferred input units and the initialised visible units, perform several Gibbs sampling
step in the top associative memory formed by the two last layers.

• If the network has more than 2 layers, perform a top-down pass through the network to the visible
layer.

Hence, we have several degrees of freedom here through the choice of the temporal order N , number
of Gibbs sampling steps, initialization of the visible units, and whether or not we actually sample the
visible unit or keep mean-field updates. The number of Gibbs sampling steps needs to be higher than
when training. Indeed, when training, one step is sufficient for approximately finding the steepest
gradient direction. Here we are looking for a value as close as possible to the model distribution and
must then let run the chain for considerably larger number of iterations. We typically set this value
between 30 and 100. Initializing the visible units can either rely on the value of the previous frame or
use randomly initialization. Although initializing at the value of the previous frame appears as a logical
choice for smooth and continuous data, this might not be the case in symbolic music series since notes
suddenly stop and their values drop from 1 to 0 between two frames. In practice, we observed this
initialization tends to favor notes staying on forever, which is clearly not a desired behavior. Hence,
we chose to initialize the visible units using a uniform random law. Two question arises: should we
initialize by sampling this distribution or just using the real probability value? Should we use binary
values or activation probability for the visible units at the end of the sampling process?

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 35

For the initialization, the answer is definitely to chose mean-field activation. Using binary values is
more likely to place us in a poor local minimum of the energy function which would be very difficult to
leave. When generating a long sequence (actually more than 1 sample), each generated frame is used
to extend the context before generating the next frame. Based on the results presented in [BLBV12]
we decided to use mean-field value as it allows exact inference.

Comparison with the RNN-RBM model

Main differences The conditional models (CRBM and derivatives) we evaluate are quite similar
to the recurrent models (RTRBM and RNN-RBM models) presented in [BLBV12]. We have actually
apprehended two main differences

• Instead of defining a simple auto-regressive relation between the past and current visible and
hidden unit (as in our model), the RTRBM and RNN-RBM models induce a Markov chain archi-
tecture on the hidden units.

• In conditional models, the complete context is directly accessible at each time frames whereas in
recurrent models, the context is expressed through a chain structure. This considerably modify
the learning procedure as recurrent models require to back-propagate through time the gradient
of different quantities which is not the case in conditional models.

Motivation for a conditional model Our choice of investigating conditional models is motivated
by several reasons

• Stacking a recurrent temporal architecture is not easy. While another RBM can be added on top
of the first, the whole temporal structure cannot be stacked. In a conditional model, stacking
the whole architecture is possible and does not significantly increases the complexity. Hence, we
address the behavior of multi-layer architectures for modeling musical sequences.

• A prime objective was to be able to understand what structure was learnt by the network. Since
the transition in the conditional model occurs from the past visible units, it is easier to understand
the learnt temporal relations (see section 5.3).

3.4 Conclusion
Time modeling in statistical models has been a stumbling question for many decades. The recent advent
of deep architecture still falls prey to this daunting problem while offering new perspectives. Among
the most promising attempts to efficiently model high-dimensional time series, two of them have been
applied to musical sequences modeling. While they are both based on Recurrent Neural Network, they
present some differences. The first model [LR14] adds a type of memory cell to a static structure, which
modulates the signal that appears between visible and hidden layers. Its ability to automatically scale
the size of its time memory according to the context and model very long time lags makes it particularly
fitted for modeling the macro-temporal structure that occurs in musical series. The second model, a
RNN-RBM [BLBV12], includes in a static RBM model a temporal structure similar to a Markov chain.
The two cited articles are the only one, at our best knowledge, to provide a quantitative evaluation and
will then be used as a baseline to evaluate our proposed model.

We propose to extend the model based on a CRBM [Tay09, TH09] where the context modifies in an
additive way the biases of both the visible and hidden units and a Gated RBM (GRBM) where context

CHAPTER 3. GENERATIVE MODELS FOR HIGH-DIMENSIONAL TIME SERIES 36

units modulate the weights Wij of a standard RBM in a multiplicative 3-way interaction. Those two
models can be factored to reduce the number of parameters and in the case of the 3-way interaction be
able to perform efficient matrix computation. Finally, those two models can be mixed into a complex
structure called GCRBM which can also be factored (FGCRBM).

Those architectures present several advantages. They are generative (a requirement in our case) and
offer a great modularity. The different parts of the architectures can be connected in many different
ways, by gating the bias only, the weights, both or use the difference between gated connection and
dynamic biases to add different kinds of context. An unparalleled advantage is the possibility to easily
observe the temporal relations learnt through the auto-regressive matrices A and B. This is particularly
interesting since it is then possible to "understand" how the network generates music.

Part II

CRBM-based models for symbolic
music

37

Chapter 4

The Harmonic Conditional RBM

In this chapter, we introduce our model that rely on the temporal structure of the CRBM model [Tay09]
(section 3.3), combined with a SRBM model [OH08] (section 2.3) in order to model the harmonic
structure. Generative models usually lack of quantitative evaluation of their performances. Hence, we
have investigated the performances of a range of CRBM-based models (already existing models but not
applied to music generation) on a prediction task, and compare them with previous music generation
models introduced in the previous chapter (section 3.2).

We used the same data representation than most of the work introduced in the state of the art
(section 3.2). Hence, each visible unit represent a pitch and the vector of visible units represent a
temporal frame of the pianoroll. We usually set the number of visible units (possible pitches) to 88,
which is the size of a piano keyboard. Several pre-processing can be applied to this data representation
that can considerably modify the performances of the models. Those occur mainly at two level: on
the pitches (pitch-class or root centric) or on the rhythm (quantization). There are detailed in the last
section of this chapter. Since those models are sensitive to the tuning of their hyper-parameters (such as
learning rate, sparsity or weight decay), we performed an automatic search based on a kernel function
fitting in order to find the optimal set of parameters and will present the quantitative evaluation of all
models in the next chapter.

4.1 Modelling the harmonic structure
Before trying to model a complex system with both temporal and harmonic relations, we tried to model
an harmonic structure without any temporal context. Even if it is clear that the harmonic structure
cannot be agnostic of time, it seems reasonable to think that a model able to understand isolated
chords would be a good starting point to build a model for musical sequences. Inspired by the data
representation of [LP03], we discarded the temporal dimension by considering isolated chord and trained
several models with this data representation.

Polyphonic music have a strong harmonic structure, which we could model by including lateral
connections between the visible units, alike the model proposed in [OH08] (section 2.3). Allowing every
kind of connections between the units leads to a very general model, but would require a huge number
of training example and a long training time to explore every kind of combinations. A more structured
type of lateral connections can be used, that would quickly capture the underlying harmonic regularities
and provide an inherent shifting and transposition invariance in the relation between notes.

38

CHAPTER 4. THE HARMONIC CONDITIONAL RBM 39

13

Figure 4.1: Chords learned by a Harmonic RBM trained on Bach’s 4 voices Chorales. No temporal
structure is modeled here, and the half note duration is arbitrarily chosen. Most of the chords are very
classical (in red a major chord) while more exotic chord are still learned by the model (minor seventh).

Harmonic RBM

A first hypothesis was that the lateral weight from a visible unit i to another visible unit i′ only depends
on the difference between the indexes i and i′, which means that the connection depends solely on the
interval between two notes. For instance, we hypothesized (and will confirm), that lateral connections
between units separated by a 5th (interval of 7) will be stronger than lateral connections for an interval-
lag of 1 (a semi-tone). A consequence is that negative and positive interval share the same weights.

∆Lτ =
∑
i

< vivi+τ >data − < vivi+τ >model (4.1)

=
∑
i

< vivi+τ >data − < vivi+τ−τ >model (4.2)

= ∆L−τ (4.3)

A 3rd below has the same influence on a note that a 3rd above. In this model, the lateral connections L
are then represented by a vector. For a given note n, L(i) represents the lateral weight from the note at
pitch n+ i and n− i. The size of the vector determines the maximum range of the lateral connections.
For instance, a vector L of size 12 is limited to a range of plus or minus an octave.

The energy function of this model is then given by

E(v,h) = −
∑
i∈vis

aivi −
∑
j∈hid

bjhj −
∑
ij

Wijvihj −
τmax∑
τ=1

 ∑
{i,i′,|i−i′|=τ}

vivi′Lτ

 (4.4)

The update rule for the lateral connections when training the network with CD is

∆Lτ = 1
card {i, i′, |i− i′| = τ}

.

 ∑
{i,i′,|i−i′|=τ}

< vivi′ >data − < vivi′ >model

 (4.5)

After training this model on Bach chorales, we observed that (compared with a standard RBM)
chords learned by our model were very clearly indicative of musical chords (figure 4.1 on page 39). This
encouraging result drove us to build a temporal model based on this first building block.

4.2 The HCRBM

Training the model

Energy function Adding the temporal structure of a CRBM to the Harmonic RBM leads to an
energy-based model described by figure 4.2 on page 40 and defined by the following function

E(v,h) = −
∑
i∈vis

âivi −
∑
j∈hid

b̂jhj −
∑
ij

Wijvihj −
τmax∑
τ=1

 ∑
{i,i′,|i−i′|=τ}

vivi′Lτ

 (4.6)

CHAPTER 4. THE HARMONIC CONDITIONAL RBM 40

k

j

Visible layer

Hidden layer

Input layer

Wij

Aik

Bjk

i i0

L⌧

Units clamped
when sampling

Figure 4.2: The HCRBM model. Lateral structured connections are added to the standard CRBM
model. Units crossed in red are clamped to the value of past visible units during the sampling.

where âi = ai +
∑
k Akivk,<t and b̂j = bj +

∑
k Bkjvk,<t are the dynamic biases defined as previously.

Update rules All the weights are trained by contrastive divergence and follows exactly the same
update rules than for previous model. They are reminded here for convenience :

Equation 10 (Update rules for the parameter of a Harmonic Contrastive RBM (HCRBM))

∆b(v)
i =< vi >data − < vi >model (4.7)

∆b(h)
j =< hj >data − < hj >model (4.8)

∆Wij =< vihj >data − < vihj >model (4.9)
∆Aik =< vixk >data − < vixk >model (4.10)
∆Bjk =< hjxk >data − < hjxk >model (4.11)

∆Lτ = 1
card {i, i′, |i− i′| = τ}

.

 ∑
{i,i′,|i−i′|=τ}

< vivi′ >data − < vivi′ >model

 (4.12)

Collecting statistics One can notice that inferring the hidden units given the visible and context
units is not changed in this model, as compared to a standard CRBM. Computing the visible units
distribution given the hidden units remains the major difficulty of this model. As for the SRBM, block
Gibbs sampling is not possible, and a long unit by unit update step has to be ran. Indeed, for each

CHAPTER 4. THE HARMONIC CONDITIONAL RBM 41

i

j

Visible

Hidden 1

Hidden 2

Past 2

Past 1

Figure 4.3: Stacked HCRBM. Harmonic connections are in red, and only present for the visible (first)
layer. Temporal connections are in blue.

visible unit, we have easily access only to its probability distribution conditionally on the hidden units
and, this is the problem, the other visible units (see section 2.3 for more details).

Stacking HCRBM The HCRBM can be stacked in a deep architecture. Indeed, it is possible to use
the same model with lateral connections as a second layer. However the hidden layer a priori don’t have
a lateral structure as strong as the visible layer have. Beside, as it is explained in the next sub-section,
sampling from a HCRBM is laborious. So we chose to stack over a first HCRBM a standard CRBM
structure figure 4.3 on page 41 rather than stacking several HCRBM on top of each others.

Sampling from a HCRBM As for the training phase, sampling from a HCRBM is a long process
since block sampling is not possible. However, we proposed in our model to stack a CRBM on top of the
first layer HCRBM. Then alternate Gibbs sampling is performed in the top associative memory formed
by this CRBM, where fast block sampling is possible, and a single top-down pass is performed through
the HCRBM. Hence, sampling from a stacked architecture is faster in our model.

4.3 Pre-processing and regularization
Efficient modeling always include a crucial pre-processing step (whitening, PCA). This section introduces
the pre-processing we thought relevant for music modeling. Rhythmic pre-processing is mainly linked to
the question of quantization (number of frame per quarter note). However, several pitch pre-processing
have been presented in the introduction (section 3.2). We decided to test two pre-processing :

CHAPTER 4. THE HARMONIC CONDITIONAL RBM 42

Root
position

Window 1 Window 2

N1 N-1

Figure 4.4: The root of the penultimate frame is used as reference. In black the original score, in green
the root-centric representation.

• Pitch-class transformation: The number of pitch is reduced to twelve by computing the modulo
12 for each note. This an octave equivalent transformation. Note that if the same pitch-class is
represented at several octaves, it is counted only once in the transformed version.

• Root-centric transformation: based on the representation in [AW05]. For each window of N time
frames, where the N th represent the current time t, all notes of this window are centered around
the root of the N − 1 frame (see figure figure 4.4 on page 42). This is supposed to emulate a kind
of translation invariance property.

Chapter 5

Results

One paramount issue with unsupervised generative models lays in how to perform their evaluation.
While a qualitative evaluation appears natural, the subjectivity of such an analysis is ill-suited for
discriminating between different models. Quantitative evaluations of a generative model often rely on
a concomitant task that naturally embeds an objective measure of accuracy. We decided to base our
evaluation on a symbolic polyphonic melody prediction task.

This remainder of this chapter is organized as follows. The first section compare the results of our
method and several models for the prediction task. The second section introduces a method for finding
the best hyper-parameters when training our model and discusses the influence of various parameters
over the results. The last section is dedicated to try to understand what the model has truly learnt.
Hence, we perform a qualitative evaluation of our model by listening to generated examples, observing
the learnt weights and discussing advantages and limitations through a critical judgement of those
results.

5.1 Music prediction

Evaluation

For a generative model, estimating the log-likelihood of a test set under the trained model distribution
might be the most reliable method for objective evaluation [BLBV12]. Indeed, this demonstrates the
actual ability of the network to produce sequences that closely resembles those that we wanted to learn
(and, therefore, if the model has grasped the underlying structure of the data). Expected log-likelihood
[AW05, BLBV12] is given by p(vt|θ, v<t) where vt is the current sample of the test sequence and v<t
contains the past context of this sequence. Hence, this measure is defined as

D = Etest [−log(p(vt|θ, v<t))] (5.1)

One of the major issue with models based on RBM is that computing the likelihood of a training set
given a model require the computation of the partition function which is often intractable. Annealed
Importance Sampling (AIS) [SM08] allows an estimation of this partition function, but is unsuited for
conditional models. Indeed, the partition function of a RBM depend only on the weights of the model,
while the partition function in a conditional model also depends on the context units (Z(v<y)). Hence,
the partition function changes for every new sample and the generalization of AIS to conditional models
is not straightforward.

43

CHAPTER 5. RESULTS 44

Another way to evaluate the performances of a generative model is by solving a correlated prob-
lem (requiring to understand the same underlying structure) that naturally defines an objective er-
ror function. The most frequently used tasks for music generative models are melodic prediction
[LR14, BLBV12, LP03] or polyphonic transcription [BLBV12]. In polyphonic transcription task, the
model is used as a probabilistic prior to improve the performance of a purely signal-based multi-pitch
estimator. On the other hand, the prediction task consists in trying to infer the next point in a sequence
of polyphonic symbolic music.

The polyphonic transcription framework implies to develop a relatively accurate multi-pitch estima-
tor and tackle a set of complex signal-based problems. For those reasons, the prediction task has been
preferred in this work. Given a certain temporal granularity, the prediction task consists in finding the
next frames in the chords representation given the past N −1th frames. Short-term prediction (predict-
ing 1 frame) is usually preferred to long-term prediction (2 and more frames) and our model have been
evaluated on short-term prediction tasks in order to compare equally to the state-of-art baselines.

Datasets

We used the four midi datasets introduced in [BLBV12] :

• JSB Chorales: 382 four-part harmonized chorales by J.S. Bach

• Piano-midi.de: 124 classical piano scores

• Notthingham: 1037 folk tunes scores

• MuseData: 883 orchestral and piano scores

Those datasets are available on this website. Note that all sets are split between training, validating
and testing datasets. Since we did not use a validation step, we append this set to the training set. We
reduced the number of pitches to 88 (between midi note 21 and 108) to avoid unused visible unit while
having a sufficient ambitus.

Models

Except for repeat and random models that are purely indicative, we trained and tested five models plus
our proposed model

• Random. The predicted frame is randomly drawn from a uniform distribution in [0, 1]

• Repeat. The predicted frame is simply the repetition of the previous frame. This is the most basic
1-order predictive model.

• N -order RBM. This defines a concatenation of N RBM, ie. 88 ∗N visible units. Training is made
with windows of length N , and for the prediction task, the N th frame is generated by sampling
in the RBM while clamping the N − 1th first units.

• CRBM. The input units represent the context (N −1 frames) and the visible units are the current
frame. Sampling has been described in section 3.3.

• HCRBM. Our model, detailed in chapter 4.

http://www-etud.iro.umontreal.ca/~boulanni/icml2012

CHAPTER 5. RESULTS 45

For statistical models, the test sample is obtained by inferring the visible units given the context, as
previously detailed. For each model, several architectures have been developed (i.e. number of layers,
number of units in those layers), with several hyper-parameters configurations, whose influence is fully
analyzed in (section 5.2).

Measure

Frame-level accuracy For evaluating accuracy, previous studies relied on the expected frame-level
accuracy [BLBV12, LR14], defined by the formula

Accuracy = TP (t)
TP (t) + FP (t) + FN(t) (5.2)

where TP (t) is the number of notes correctly predicted (true positives). FP (t) is the number of notes
predicted which are not in the original sequence (false positive) and FN(t) is the number on unreported
notes (false negative).

Instead of binary values, activation probabilities are used for the predicted samples in order to reduce
the sampling noise. If this probability is intractable, one should sample many predicted frames for a
single time and compute the mean value of those samples.

Even though the frame-level accuracy has been repeatedly used as a baseline evaluation, we discov-
ered a previously non-described effect to its use while performing our experiments. Hence, as the size of
frames decrease, more and more are just repetitions between successive time step. We assessed this with
a simple repeat model, which with a quantization of 32 (i.e. 8 frames in a quarter note), obtained an
accuracy score of 95.9% , which is ridiculously high for an extremely limited model. Hence we decided
to propose a novel evaluation measure based on an event-level testing.

Event-level accuracy We propose to rely on a more robust event-level accuracy, which measures the
similarity between a true and a predicted frame each time a new event occurs (either a note on or off),
instead of every new time frame. However, the prediction remains based on the t−N last frames, not
events. Training a model for the event-level prediction task is slightly different, since only the frames
where an new event occurs are kept as training examples.

We evaluated our models on both frame-level and event-level accuracy, and discuss the pros and
cons of each measure.

Results

Frame-level accuracy The predictive task defined in the state of the art is evaluated on a frame
level. Hence, we compared our model with the baseline on this particular task. The results for the
different models are summarized in table (figure 5.1 on page 46). For each model, we picked the best
results from a grid-search performed over the architecture and the hyper-parameters. The two models
that constituted our baseline have been also added, while we don’t know if it was a frame-level accuracy
or an event-level accuracy. [BLBV12] also gave the results for the models in [LP03] and [AW05].

We use the same quantization as the one used by [BLBV12] which is 1 frame per quarter note.
Models has been trained on the Compute Canada/Calcul Québec cluster which offered large computing
resources.

As aforementioned, frame-level accuracy can be doubted and strongly depends on the quantization.
When the quantization increases, more and more frames are just repeated between two successive time
step. If we use a quantization of 32 (i.e. 8 frames in a quarter note), the repeat model obtains an

CHAPTER 5. RESULTS 46

Model Frame Acc %
Piano-midi Nottingham MuseData JSB Chorales

Random 3.25% 3.54% 2.48% 4.22%
HMM [AW05] - - - 16.32%

Repeat 26.59% 55.62% 21.07% 39.60%
Random fields [LP03] 18.37% 55.34% 18.39% 22.93%

LSTM with Rprop [LR14] - - - 31.91%
RNN-RBM [BLBV12] 28.92 75.40% 34.02% 33.12%

Temporal RBM 14.74% 46.29% 10.85% 30.52%
CRBM 19.14% 63.35% 18.54 31.18%
HCRBM - - - -

Figure 5.1: Frame-level expected accuracy for various musical models. The quantization is one frame
per quarter note.

Model Frame Acc %
JSB Chorales

Random 4.23%
Repeat 18.6%
GCRBM 8.58%

Temporal RBM 27.77%
CRBM 26.15%
HCRBM 28.07%

Figure 5.2: Event-level expected accuracy for various musical models

accuracy score of 95.9% , which is ridiculously high for a very limited model. Worst, if we increase
the quantization, event a model such as the RNN-RBM will learn to simply repeat the previous frame.
Hence we decided to propose an alternative event-level evaluation.

Event-level accuracy The results for the event-level accuracy are displayed in figure 5.2 on page
46), with a (context) quantization of 4 frames per quarter notes (16th notes). On this new task,
despite the lack of comparison elements, the three models temporal-RBM, CRBM and HCRBM strongly
outperformed the simple repetition model. The factored-gated model performed the worse and didn’t
managed to provide satisfactory results. This might come from the fact that the structure model
(making the assumptions of three-way interactions) is not appropriate for this task.

Discussion : which pre-processing should we use ? The two pre-processing we have presented
have not improved the results. The pitch-class evaluation is different since the prediction task is only
performed for vectors of length 12. This vector can be extended in several way to an 88 vector, but it is
either inefficient (defining C4 to B4 at the value of the pitch -class) or ambiguous (continuous principle,
but what if two notes are equidistant from an other ?) and eventually leads to poor results. Octave
is important when performing a prediction and we loose too much information with the pitch-class
pre-processing. The root-centric pre-processing did not modify the performances and can be considered
useless since it did not reduce the computation load neither. We believe that another pre-processing
which consists in transposing all the pieces to the same tonality (C major/minor) would be the best

CHAPTER 5. RESULTS 47

pre-processing [BLBV12]. However, it is a complex pre-processing which imply to be able to find the
tonality (possibly several) of the piece. This should be addressed in a future work.

Discussion : which model is the best ? On the frame-level accuracy, the CRBM and temporal
RBM models obtained good results, but not as good as the RNN-RBM model.

For the event-level accuracy, the HCRBM results were slightly better than the other models. This
is an enthusiastic result since the lateral connections we added to the standard CRBM model seem to
be an improvement.

However the differences between it and the two other temporal models (temporal RBM and the
CRBM) is small enough to doubt that the model is significantly better. We lacked of time to test the
model on the three other databases, but this has to be done in a future work. The doubt we have is
reinforced by the fact that we expected the CRBM then HCRBM would be successively better, which
is not the case.

Eventually, we will see in a next section that the CRBM actually performed better than the HCRBM
model when generating long sequences (section 5.3).

Discussion : which evaluation is the best ? Both method have their drawbacks. Frame-level is
quantization sensitive, which is a negative point. The best quantization will depend on the database.
Hence this model is not generalizable to any data set. Besides, an objective for a generative model
would be to be able to produce any kind of music, which would require to train the model on a very
large and diverse database. In this case, which quantization choose for the whole set ?

On an other side, a model trained at an event level will be very limited when generating sequences.
Indeed, since its training examples were all transitions, the model try at each frame to create a new
event. Hence, the generated sequences are then very monotones (see section section 5.3).

Anyway, the good performances of a model on the predictive task does not guarantee its ability
to generate interesting musical sequences. Indeed, forecasting and modelling are two different tasks.
Modelling requires to really capture the long-time dependencies. We will see in the qualitative evaluation
section that despite the CRBM was not performing as well as the temporal RBM on the predictive task,
it is a better generative model.

However, we believe that for a given model, the tuning of the hyper-parameters that gives the best
predictive score is most likely to generate interesting sequences. The next section is dedicated to this
hyper-parameter analysis.

5.2 Analysis of the hyper-parameters
As the different hyper-parameters involved in the learning process can have a varying influence over
the quality of the distribution learnt, being able to find the best set of hyper-parameters can condition
the quality of the results for a model. After a first grid-search for the different models, we decided to
run an advanced hyper-parameter analysis on the CRBM, since it was the most interesting generative
model (see section 5.3).

List

We analyzed the influence of the set of hyper-parameters and range of values listed in figure 5.3 on page
48 (the role of the different hyper-parameters can be found in the description of the RBM algorithm

CHAPTER 5. RESULTS 48

Architecture
Number of layer [1, 4]

Units per layer {50, 64, 100, 200, 300, 400, 512, 600, 700
800, 900, 1024, 1100, 1200, 1300, 1400, 1500}

Temporal order {4, 8, 12, 16, 24, 32}

Training parameter Learning rate [1e− 4, 5e− 2]
Momentum [0, 0.99]

Regularization

Weight decay [0.000001, 0.01]
Sparsity target [0.001, 0.5]
Sparsity beta [0, 0.99]

Sparsity lambda [0, 0.99]

Figure 5.3: List of the tested hyper-parameter and their range of value

insection A.3). For continuous intervals, the tested values are randomly chosen inside the corresponding
range.

Method

The number of potential combinations to be evaluated for the hyper-parameters is huge. For instance,
even if we discretized the continuous intervals to only 5 possible values per parameter, exhaustively
browsing the whole hyper-parameter space would require to train more than 6 million architectures.
Since the training time of a network is approximately an hour for 100 epochs of a hundred mini-batches,
this solution is clearly infeasible.

In [BB12] it is suggested that a random search is more efficient than a grid-search for high-
dimensional hyper-parameter spaces. Hence, a first step consists in evaluating on the predictive task a
finite set (the number defined by the available parallelism) of randomly chosen hyper-parameters points
in the 9-dimensional hyper-parameter space. Each architecture associated to a point is trained over 100
epochs. Then, a Gaussian kernel is fitted on the accuracy distribution of those randomly chosen points.
By picking the maximum of this function, we should be able to find an hyper-parameter point for which
the results are closer to the best possible for a given model.

Results

The search for hyper-parameters has been performed on the Compute Canada/Calcul Québec cluster.
The complete search is not finished yet. However, a large number of architectures have already been
tested, and the results can be observed in appendix (see section A.4).

Analysis

The search for the optimal hyper-parameters set several expected beahviour. The results improve with
the temporal order, and with the sparsity target until the value 25 before starting decreasing. Since
we use a fixed number of epochs (100) ,it is normal that the performances decreased after with a small
learning rate, but does not mean that a lower learning rate is worst. It simply means that more training
epoxhs would be necessary.

A more surprising result is that the result were better with a low weight decay term. This will
actually be explained in detail in the next section (section 5.3). Briefly, the reason is that the weight
decay forces the weight to have a Gaussian distribution centred around zero. However, to model the

CHAPTER 5. RESULTS 49

strong sparsity of the data, most of the weights need to be negative, which is in contradiction with a
strong weight decay coefficient.

5.3 Understanding what the model has learnt

Generated sequences

The core purpose of our model was to generate (potentially infinite) sequences of music. However,
conditional models need a context whose size depend on the order of the model. Hence, all the generated
sequences are initialized with the first two bars of an already existing music file from the test set of the
JSB Chorales database. Therefore, the first two bars of each generated midi file have been written by
Bach himself, the rest has been generated by the network.

We generated several sequences from the different models, either trained on a frame level or an event
level (available at this Dropbox link). At the root of this repository, two folder contains event or frame
level models. Generated sequences for each model can be found in the CRBM, HCRBM, temporal RBM
and FGRBM folders.

In our opinion, the best generated samples are from the CRBM model trained on an event level,
and can be found at Event_level/CRBM.

Importance of the dynamic bias over visible units Temporal RBM and FGRBM generate
somehow "unstable" sequences for which the number of notes explodes over time. If we attentively
compare those two models with the CRBM, it seems clear that the only real difference between them
is the absence of control from the input (the past) over the bias of the visible (present) units in the
first two models. Hence, a direct influence of the context over the biases of the visible unit (matrix A
in conditional models, present in RNN-RBM as W ′′) seems to be necessary for conditional generative
models.

Consistency of the prediction task The examples are sorted by models, and inside each model
by their score on the prediction task. A positive result is that for a given model the best architectures
for prediction are also the one providing the most interesting sequences. Hence, this shows that our
assumption on the prediction task providing a certain consistency with our generative objective, by
understanding the underlying structure of the musical data seems to prove correct.

CRBM : event or frame level ? The CRBM model undoubtedly outputs the most satisfactory
results. We have presented both the result for a model trained at a frame level and at an event level,
since they gave very different results. In both cases the model failed at learning a consistent temporal
structure over long horizons.

For the frame-level learning, if a short quantization is chosen, notes are over-sustained. This can be
observed on the transition matrix A. This matrix is defined for n in [|1 : N |] where N is the temporal
order of the model. For each n, the larger A(i, j, n) is, the more likely a transition from the note j at
time t − n to the note i at time t is. Furthermore, the diagonal of the frame-level transition matrix
A (which represent a note sustained from a frame to another) is considerably stronger than the other
coefficients (which represent a note changing between two frames). Hence, when generating, a note
on at a given moment tends to stay on until the end of the piece. Oppositely, for a model trained on
an event-level, this effect is bypassed, but a note can start or end at each new frame, producing very

https://www.dropbox.com/sh/6lwa0gkc899t69h/AADKaZ-uivd8qlVV1dbxUdkMa?dl=0
https://www.dropbox.com/sh/5f5joa2f2j51rxt/AAB4LggD6in0AI21myLtMlDsa?dl=0

CHAPTER 5. RESULTS 50

A 1 lay 1 nt 1 Max : 4.2752 Min : −1.3053 Mean : −0.012281

Vi
si

bl
e

Past
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

A 1 lay 1 nt 1 Max : 0.72596 Min : −0.41976 Mean : −0.018172

Vi
si

bl
e

Past
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 5.4: Two transition matrices A from frame t− 1. The diagonal is in red. On the left the model
has been trained on a frame level, on the right on an event level. We can observe the sustain problem
appearing as the strong diagonal of the left matrix. Since the lower and higher notes never appeared in
the training sequences, the transition toward them are close to -1 (complete inhibition).

"agitated" sequence. The transition matrix A of two CRBM, one trained at an event level the other at
a frame levels are presented in figure 5.4 on page 50.

Number of Gibbs sampling steps Whereas using a single Gibbs sampling step when training
a model with contrastive divergence is sufficient to approximately find the steepest direction of the
gradient, this is clearly insufficient to reach the equilibrium distribution of the model. Hence, a larger
number of alternate Gibbs sampling step is required when sampling from the model (section 2.3).
Samples drawn from the model with different number of Gibbs sampling steps are presented in the
results at Event_level/CRBM.

Initialization of the sampled frame As discussed before (section 3.3), the current sampling frame
need to be initialized before starting Gibbs sampling. It can be set at the value of the previous frame or
randomly initialized. This initialization slightly influence the result and, surprisingly, we found that the
random initialization provided better results (can be observed at at Event_level/CRBM/1/Init_previous).

Harmonic modeling: HRBM

As explained in the previous chapter (section 4.1), We have first tackled the harmonic problem by testing
different models with no temporal connections. Adding the lateral connections greatly improved the
quality of the generated chords. After training, the lateral connections in a Harmonic RBM matched our
expectations since the consonant relations (minor or major third, fifth, octave...) were favored against
dissonances (second, augmented fourth). These lateral connections can be observed on figure 5.5 on
page 51. A midi example for this model can be found at this (link HRBM).

https://www.dropbox.com/sh/5w28jbn2ofypp28/AAArxhqMXdIXzu8lY3Jg5nela?dl=0
https://www.dropbox.com/sh/5w28jbn2ofypp28/AAArxhqMXdIXzu8lY3Jg5nela?dl=0
https://www.dropbox.com/sh/0yzrjbeesp1ryv5/AAA0wmGV84HNN-UCxwpXVNAja?dl=0

CHAPTER 5. RESULTS 51

0 2 4 6 8 10 12

Lateral connections from x to y

Ltau

Lag (tau)

Figure 5.5: Lateral connections in a HRBM. The value for each time lag represents the influence of a
visible unit over other visible units at interval τ . It can be noticed that this is mainly an inhibitive
influence (weights are negatives). In blue a fifth (which is also a negative fourth) and in red second
minor

Time modeling: CRBM

The temporal structure learnt by a CRBM can be observed through the matrices A and B. Since
A directly explains the influence from the input units (past) on the visible units (present), observing
its content gives many information on the knowledge acquired by the network. Matrices A are 3-
dimensional: V isible × Input × Time. Clamping one dimension to a certain value and observing the
resulting 2-dimensional matrix gives information about the influence of the two other variable over the
third one.

Except when mentioned, the generated sequences drawn from the CRBM observed here are from
the models which provided the best performance on the predictive test.

At: Observing the matrix A for a given time t gives information about the transition from the note j
at time t− n to the note i at time t (corresponding to the discussion between event and frame level in
(figure 5.4 on page 50). The same matrix A for a time-lag of 1 and for a time-lag of 16 (the maximum
for this architecture) are given in figure 5.6 on page 52. We can see that for the recent past (time-lag of
1), weights are particularly high on the diagonal and around, especially for low and high pitches. This
suggest that transition from a pitch to another mainly occurs for small intervals, which is in accordance
with what could be our intuitive construction of a melodic line. For larger time lags, the weights become

CHAPTER 5. RESULTS 52

A 1 lay 1 nt 1 Max : 0.72596 Min : −0.41976 Mean : −0.018172

Vi
si

bl
e

Past
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

A 1 lay 1 nt 16 Max : 0.40239 Min : −0.70801 Mean : −0.017186

Vi
si

bl
e

Past
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Figure 5.6: Matrices A1 and A16 represent the influence of the frame t− 1 and t− 16 on the current
frame. Diagonal is represented by a thin red line.

more diffuse since larger gaps become more probable. The difference between the range of values (min
and max in the title of the figures) for the two time lag is also noteworthy. The long time-lag matrix
A(16) exhibits an inhibitive influence (negative weights) that can be understood as a "note stop" signal
whereas the short time-lag matrix has an excitatory influence (positive weights, note on signal).

Ai : Looking at the transition matrix for a given visible unit can be understood as a voice-leading
matrix (see figure 5.7 on page 53). Ai is a matrix whose column are time-frames and rows are pitches.
It embeds how the network learned melodic pathes that are more likely to end on a certain pitch i.

Temporal and harmonic connections: HCRBM

The core idea behind our proposal of the HCRBM model was to impose both a strong temporal and
harmonic structure. Unfortunately, the generated sequences did not showed this expected stronger
understanding (link HCRBM)

A first observation is that the harmonic structure is insufficient. All the weights are negatives, which
means that all the notes have an inhibitory influence over each others. Besides, the weights that have
the higher value (here the closest to zero), i.e. the most stimulated intervals, are the most unexpected
(augmented fourth, major second...) (see appendix figure A.8 on page 73).

We believe that this can be explained by the fact that the temporal and lateral connections have
been in constant and unresolved conflict during the learning phase. Indeed, those two interactions both
modify the biases of the visible units. Hence, both are using the same mechanism to model different
causes. The fact that our learning data often embeds frame repeated from one to another, combined
to the sparsity of the input data leads to a kind of explaining away problem between the lateral and
temporal weights (see figure 5.8 on page 53). Indeed, since v(t− 1) ∼ v(t) for most units, the temporal
connection A tends to absorb the effect of the lateral connections L. This effect during the generation
process can be observed on the figure in appendix (figure A.11 on page 77).

https://www.dropbox.com/sh/y2z3k56yuq0f3dn/AADJbgLwbaPb1459XSRqB_Zea?dl=0

CHAPTER 5. RESULTS 53

A 1 lay 1 on vis 34 Max : 0.25154 Min : −0.34505 Mean : −0.015776

Vi
si

bl
e

Past
246810121416

10

20

30

40

50

60

70

80

A 1 lay 1 on vis 76 Max : 0.4559 Min : −0.34255 Mean : −0.017413

Vi
si

bl
e

Past
246810121416

10

20

30

40

50

60

70

80

Figure 5.7: Voice leading matrices for input units 34 and 76. Be careful that time indices are for
negative time lag: 1 means t − 1. Hence, the time runs from the left to the right part of the graph.
Lower pitches are at the bottom and higher at the top. The highest weights often form a diffuse cloud
around the next visible note. Some matrices exhibit strong temporal structure, such as the transition
matrix towards pitch 76, which shows an ascending melody

i0

ik

Ai0k

Aik

L⌧=|i�i0|

Figure 5.8: Explaining away between temporal and lateral weights. Since ∆Lii′=τ =< vivi′ >data − <
vivi′ >model, if Aik and Ai′k have already large values, < vivi′ >data<< vivi′ >model and ∆Lii′=τ < 0
even if it should have been greater than 0.

CHAPTER 5. RESULTS 54

Weights values

Collapsing sequences : However, this does not explain the fact that the generated sequences col-
lapsed after a few notes. Indeed, it has been observed that for some poorly trained CRBM and most
of the HCRBM the generated sequences start with four notes chords and end after only a few notes by
playing only silences. Our guess was that thisinhibitive behaviour might be predicted by observing the
mean value of input weight of visible units. The more this value is negative, the more inhibitive signals
this visible units should receive. A boxplot of the mean input weights received by visible units (figure
A.9 on page 74) indicates that there is no direct relation between this quantity and the behaviour of
the model. Hence, we did not find any explanation or cause for this collapsing behaviour.

Modelling the sparsity of the data By observing the histograms of the weights of a CRBM (see
appendix figure A.10 on page 76), one can notice that most of the weights are negative. Negative
weights can be understood as an inhibitive influence, and the network learn those negative weights to
emulate the sparse nature of the data. This is particularly obvious when looking at the visible biases.

Observing the latent units

The hidden units of a correctly trained network often represent rich, hierarchically organized along the
layers and distributed representations [LEN08]. To check if latent representations learnt by the network
are meaningful in the sense that they all represent different and interesting patterns, one can observe
the activations of the hidden units for several visible vectors from the training dataset. This allows to
see if a hidden unit is constantly on or off (which means that it is a useless unit) or if different visible
vectors activate the same pattern of hidden units.

To really observe the pattern represented by the hidden units of a RBM, one possible way is to
clamp the hidden unit we want to observe and perform alternate Gibbs sampling while keeping this
unit clamped. This method can be used to visualize hidden units in a Temporal RBM. For context
based models such as the CRBM or HCRBM, this observation will be conditioned by input units. A
possible solution is to fix a context, clamp a hidden unit and observe the activated visible units. This
could be seen as observing a hidden unit conditionally on a certain context (see figure 5.9 on page 55)

Observing those hidden patterns, we can see that given a certain context, the hidden units actually
all play almost the same role. Indeed, the bias imposed by the context unit is so strong that the
activations become almost entirely determined by the past visible units. One might be afraid that the
generation process becomes entirely deterministic. This is not the case, and a sufficient amount of
randomness is kept to produce various series from the same context sequence (listen to Same context).

5.4 Conclusions
In this chapter we introduced a new model, the Harmonic Conditional RBM. We evaluated its per-
formance and the performances of several already existing models (CRBM, RBM) on a short-term
predictive task thanks to the frame-level accuracy. The fact that this measure depends on the quantiza-
tion is a major drawback and we proposed an other measure called event-level accuracy. We evaluated
our model with this measure and used it to perform a search for the optimal set of hyper-parameters
of the CRBM model. The optimal set of hyper-parameters found has been used to train an HCRBM
and provided the best performances among the tested architectures. We eventually proposed a qualita-
tive evaluation of the CRBM model by observing the weights learnt and the sequences generated after
training the network on the JSB Chorales database.

https://www.dropbox.com/sh/kmzb9gwwdmwr83a/AACHPN1PgMJvNo7Xley9TU5Ha?dl=0

CHAPTER 5. RESULTS 55

Hidden units activation Mean : 0.026759

H
id

de
n

ac
tiv

at
io

n

10 20 30 40 50 60 70 80 90 100
Visible vectors drawn from training db

200

400

600

800

1000

1200

1400

1600

1800

2000

Context pianoroll

Time
5 10 15

Vi
si

bl
e

ac
itv

at
io

n

10

20

30

40

50

60

70

80

Hidden receptive fields Max : 0.98616

Hidden
10 20 30 40

Vi
si

bl
e

ac
itv

at
io

n

10

20

30

40

50

60

70

80

Figure 5.9: Observing the latent units. The figure on the left shows the activation of each hidden
units (here 2000) given 100 randomly chosen vectors from the testing dataset. We can observe the effect
of the sparsity constraint which impose that a hidden unit is rarely on for successive different input
vectors. The figure on the right shows the context given activations of the visible units given a hidden
unit. Those values are shown for the 40 maximally activated hidden units in the present context.

CHAPTER 5. RESULTS 56

Even if the pre-processing we evaluated in this work have not increased the results, we still believe
that this is an important step. It is more than probable that transposing all the pieces in the same
tonality (for instance C major/minor) as proposed by [BLBV12] would increase the performances of our
model. It has not been tested in this work since it is a complicated processing which requires to first
estimate the tonality (possibly several) of each piece. This should be addressed in a future work.

We believe that log-likelihood is a more reliable evaluation framework than the predictive task when
working on generative models. Investigate the neural autoregressive distribution estimator (NADE)
([LM11]) architecture, trying to include it in the CRBM model and then being able to compute the
log-likelihood of a test dataset in a reasonable amount of time is an important future step.

The harmonic connections added to the CRBM model have improved the results on the predictive
task, but generated sequences that appeared us less interesting that the one produced by the CRBM.
The fact that no harmonic structure has been learnt can be explained by a conflict between lateral and
temporal connections during the training phase. Hence, we decided to focus on the CRBM model for the
qualitative evaluation and analysis of the learnt knowledge. An important distinction between frame-
level and event-level training and evaluation has been made. We believe that for generative purposes,
the model must be trained on a frame level to learn repeated or sustained notes. However, we obtained
more interesting sequences when training models on an event-level. Hence, the qualitative evaluation
of our work has been made in an event level framework.

The CRBM-based model presents the advantage to clearly showing the structures learnt by the
network. However, its temporal structures seems to be more adapted to data that vary smoothly and
which involve short-term dependences. The RNN-RBM embed the temporal structure in the hidden
state transition long-time dependences are immediately embedded in the first layer. In the CRBM
model, we hopped that those long-term dependences would be embedded when stacking a second layer
on top of the first layer, but failed at training this second layer.

Future works

We think that the CRBM model should be investigated further by understanding why multi-layer
architectures failed and solve this problem. The special nature of the data, sparse in high-dimension
and binaries, have not been fully understood and integrated in our model, and this is probably in this
direction that major improvement can be made. We should run an hyper-parameter search on the
HCRBM that should increase the performance of this model on the predictive task. Because training
a HCRBM is long (block sampling is impossible), we did not have the time to run it yet. We think
that the conditional architecture should be investigated further, perhaps by considering an other data
representation that would be more adapted to the special nature of the data. Indeed, the strong
sparsity in the pianoroll representation impose constraints on the weights during the training phase
that are perhaps not adapted to a conditional model.

Part III

Automatic orchestration

57

Chapter 6

Adaptation to the orchestration
problem

This short part introduces an adaptation of the CRBM and the Style-gated FCRBM models to the
automatic orchestration problem. The idea is to feed the network with the parallel information of an
orchestral piece and its reduction for piano. We shortly describe the model in a first section, then present
a quantitative evaluation framework for the automatic orchestration task called predictive orchestration
and the result of our model in this framework. Despite the poor results we have obtained for the
moment, we present some generated orchestration and how we plan to improve those first results.

6.1 An automatic orchestration model
In this section we introduces two automatic projective orchestration systems based on conditional mod-
els. There is a strong correlation between an orchestration and its reduction for piano. Harmony, rhythm
and melodies are basically the same, and the orchestration is simply a projection of those structure on
different instruments. Despite the apparent complexity of this problem, the state of possible combina-
tions for an orchestration is drastically reduced when defined conditionally on a piano reduction. Hence
the two models we propose here learn on a parallel database of orchestral music and its reduction for
piano. There are merely an adaptation of two conditional models that have been previously introduced
: the CRBM and the FGCRBM (see section 3.3).

We first thought of using lateral connections between instruments to model their co-occurrences (for
instance the fact that woods often play together). As we have seen in the previous chapter that using
both lateral and temporal connections could lead to a conflict when training those two different kind of
weights (figure 5.8 on page 53), we have not pushed this idea any further, and instead focused on gated
connections that appeared more adapted to our problem [TH09].

The visible units represent the note played by the orchestra at a given moment. Each instrument
score can be represented by a pianoroll. The visible units are then simply a concatenation of the vectors
formed by those pianorolls at a given moment. Note that in order to avoid useless visible units, the
number of note for each instrument has been reduced to the range covered by each instrument in the
database. For each time frame, the context is defined by :

• the current piano frame which defines the melodic, rhythmic and harmonic structure

• the N last orchestrated frames to ensure a continuity in the orchestration. N thus defines the
order of the model.

58

CHAPTER 6. ADAPTATION TO THE ORCHESTRATION PROBLEM 59

j Hidden layer

(h)

...

Ins.1 Ins.2 Ins.N

Orchestra
(time t)

Ins.1

Ins.N
Orchestra
(time < t)

...
...

...

Time t-1

Time t-N

Piano
Time t

Figure 6.1: The CRBM model applied to orchestration. Context units are the concatenation of the
recent past for the orchestra part and the current frame of the piano part.

Those two models are represented in figure 6.1 on page 59 and figure 6.2 on page 60. The more
complex FGCRBM model has been motivated by the fact that the gated connections (from the current
piano frame) are able to modify the energy landscape. The CRBM model defined by the current
orchestral frame and its recent past is modulated by the piano units.

Toward an orchestral piano

The original objective was to be able to generate in real time an orchestration from a midi piano input.
Before even considering the implementation of the algorithm, the real time framework imposes strong
constraints over the architecture of the network. Once trained, sampling a FGCRBM is very fast since
since block Gibbs sampling is possible. However, several step of Gibbs sampling are required to obtain
a sample representative of the model distribution, and here a trade off must be found between speed
and quality.

6.2 The orchestration prediction task
A first definition As the automatic generation problem, automatic orchestration suffers from the
lack of quantitative evaluation. The different work on the domain mainly rely on qualitative evaluation
[HSD12]. To our best knowledge, there has not been any attempt in the automatic orchestration field
to define a task associated to performance measure. We propose here a first attempt for fill this gap by
defining the orchestration prediction task.

An orchestral sequence is defined by a sequence of matrices indexed by the time t M(t). The
dimension of a matrix M(t) is the number of instrument per the number of pitch : Ninstrument × 88.

CHAPTER 6. ADAPTATION TO THE ORCHESTRATION PROBLEM 60

Piano
(time t)

Features l
j

Hidden layer

(y)

(z)

(h)

Factors

...

...

Ins.1 Ins.2 Ins.N

Orchestra
(time t)

Ins.1

Ins.N

Orchestra
(time < t)

...
...

...

Time t-1

Time t-N

Figure 6.2: The FGCRBM model applied to orchestration. Context units are the concatentation of the
recent past of of the orchestra, and style units are defined by the current frame of piano part.

We reduce the number of possible pitch to those of a grand piano (88 pitch from). One can argue that
the ambitus of a piccolo for instance goes higher than the highest note of a piano in frequency. Since we
work only with symbolic notations, the symbolic score of a piccolo is comprised in the symbolic score
of a piano (the piccolo play the note written on the score an octave higher). In our framework we chose
14 instruments indexed by :

1. Violin 6. Timpani 11. Oboe
2. Viola 7. Trumpet 12. Bassoon
3. Cello 8. Trombone 13. Clarinet
4. Double-bass 9. Tuba 14.Flute
5. Harp 10. French or Eng. horn

For each line of the matrix, i.e. each instrument, we can compute the frame-level accuracy as
presented in the previous section, and then sum the accuracy of all the instrument

Accorchestral =
Ninstrument∑

i=1
Acc(M(i, t)) (6.1)

where M(i, t) is 88 size vector constituted by the pitches of the instrument i. Note that in order to
compare different models, it is necessary to have the same number of instruments Ninstruments.

CHAPTER 6. ADAPTATION TO THE ORCHESTRATION PROBLEM 61

True frame

Prediction frame

TP

1

FP

S(3, 1)

FP

S(3, 4)

FN

min(S(3, 1), S(3, 4))

Figure 6.3: Definition of the true positive, false positive and false negative for the orchestral prediction
task

Toward a better definition We propose an other definition for the orchestral predictive task that we
have not had the time to test. It would include a knowledge about the similarity between instruments.
Indeed, if in the original score a viola plays a certain note, it is a less important mistake if a violin
playing the same note is proposed than if a trumpet is proposed.

If Mpred(t) is the predicted orchestral matrix at time t and Mtrue(t) the original matrix, we define
the orchestral accuracy as following :

Accorch(t) =
88∑
p=1

Accorch(p, t) (6.2)

where for all p in [1, 88]

Accorch(p, t) = TP (p, t)
TP (p, t) + FP (p, t) + FN(p, t) (6.3)

False negative and false positive are defined through a similarity matrix S where S(i, j) is the cost of
replacing the instrument i by the instrument (see figure figure 6.3 on page 61).

• A true positive note is defined by Mpred(i, p, t) = Mtrue(i, p, t) = 1. TP (p, t) is equal to the
number of true positive notes.

• A false positive note is a note present in the prediction vectorMpred(p, t) but not in the true vector
Mtrue(p, t). Each false positive note j is assigned a cost S(̂i, j) where î = argmini∈IonS(i, j) where
Ion is the set of notes equal to 1 in the true vector Mtrue(p, t). FP (p, t) is equal to the weighted
sum of the false positive notes

∑
j∈fp S(î, j).

• A false negative note is a note present in the true vectorMtrue(p, t) but not in the prediction vector
Mpred(p, t). Each false negative note i is assigned a cost S(i, ĵ) where ĵ = argminj∈JonS(i, j)
where Jo, is the set of notes equal to 1 in the prediction vector Mtrue(p, t). FP (p, t) is equal to
the weighted sum of the false negative notes

∑
i∈fn S(i, ĵ).

A first remark on the matrix S(i, j) is that its diagonal, while unused, should be equal to zeros, and
that a low value describe two almost similar instruments. Its definition remain problematic and could

CHAPTER 6. ADAPTATION TO THE ORCHESTRATION PROBLEM 62

Model Orchestral Frame Acc %
DOSIM

Random 0.52%
Repeat 93.25%
CRBM 1.96%

FGCRBM 2.01%

Figure 6.4: Event-level expected accuracy for various musical models

be defined either from spectral properties or perceptual studies. The idea is to describe a similarity of
timbre between two instruments.

6.3 Results

Datasets

We used a parallel database generated from a database used for a software called Digital Orchestra
Simulator (DOSIM) [DOS]. The database is composed by 76 xml files. The quality of the orchestra-
tions or the transcriptions were variable, and we kept only 39 files. Among them, some part were not
orchestrated or not transcripted. Only the part were both a piano and an orchestra part were simulta-
neously available have been kept. Several reduction were often available for the same orchestral score.
Since they were all mixed in the same xml file and some of them split between left and right hand, the
best way we found to extract the piano part while keeping this process automatic was to simply add all
the tracks marked as "reduction" to form a single track. Hence, the reduction we used were sometimes
overloaded with more notes that a pianist could actually play.

We split this set of files between training and testing files. We used the second half of Arabesque n°1
from Debussy and an orchestrated version by Denis Bouliane as a test file. The rest of the database was
used to train the networks. Eventually, we obtained 33829 training frames and 1472 testing frames.

Models

We evaluated the two models presented at the beginning of this chapter (chapter 6) : the CRBM and
the FGCRBM applied to projective orchestration. The quantization was in 64th-note (16 notes in a
quarter note) to capture the smallest event.

The CRBM has two layers of 500 units for the first layer and 750 for the second. A temporal order
of 16 was used. The FGCRBM has one layer of 1200 hidden units. 600 factors units, 300 features units
and a temporal order of 16 were used.

Both were trained on 300 epochs using 10 steps of contrastive divergence. The learning parameters
were set to 1e−3 for the learning rate, 2e−4 for the weight decay, and 0.9 for the momentum. The
sparsity parameters were set to 0.1 for the sparsity target, 0.5 for the sparsity coefficient (β) and 0.9
for the sparsity momentum (λ).

Results

The results for the CRBM and the FGCRBM models on the orchestral predictive task are presented in
table (figure 6.4 on page 62).

CHAPTER 6. ADAPTATION TO THE ORCHESTRATION PROBLEM 63

The results are bad for the moment, and those two architectures failed at capturing the most basic
correlations between the piano score and the orchestra score. The orchestration of the last half of
Debussy’s Arabesque can be heard here (FGCRBM orchestration).

A first remark is that we have not tested enough parametrization to assert that those models adapted
or not. Indeed, the number of factors for instance can have a great impact over the performances of the
model. An other option would be to share weights, for instance to consider that the weights between
all the notes of a same instrument and its factors are the same. This would reduce greatly the number
of weights and then facilitate the training procedure. Eventually, the intensity of the note has not been
taken into account, but would be important in a further development.

https://www.dropbox.com/sh/dsi661ckzr1v228/AADCszuxHzpQyygio18Oy8Kpa?dl=0

Chapter 7

Summary and future work

7.1 Summary
Automatic orchestration is a daunting task that has been tackled by only a few works. Our initial
goal was to build an automatic projective orchestration system. Deep neural networks appeared as an
interesting solution to assess this vast problem. An orchestral score can be represented as a binary
high-dimensional time series, and the conditional models appeared to be a promising solution in order
to model the complex distribution that represent a set of orchestral scores.

Chapter 1 introduced the state of the art in automatic orchestration. We can distinguish two in-
teresting approaches : a CSP-based approach which is limited and the Orchids system which is a nice
solution for inductive orchestration, but not adapted for long temporal frames. Since we focused on
projective orchestration, we proposed three new approaches : an Orchids based solution enhanced by
an orchestral continuity principle, a voice leading approach, and a radically different solution based on
statistical inference to automatically learn orchestration rules. The high potential of the deep learning
methods and the fact that they have almost not been used in symbolic music analysis yet brought us
to choose this solution over the Orchids-based methods. Chapter 2 reviews some of the most impor-
tant concepts in deep learning, focusing on generative models adapted to time series. The Restricted
Boltzmann Machine is introduced through the prism of Graphical Probabilistic Models which defines
a powerful theoretic framework. The Semi-RBM model is then introduced as a promising model for
modeling harmonic structures. Chapter 3 is dedicated to time modeling in generative statistical mod-
els. Among the most promising attempts to efficiently model high-dimensional time series, two of them
applied to polyphonic musical sequences modeling can be distinguished in the literature. A first model
is based on LSTM memory cells, and a second on a RNN-RBM architecture. Both models are based on
Recurrent Neural Networks and have been qualitatively evaluated. Hence, they will constitute a solid
baseline for the models we tried to develop.

In chapter 4, we adapted conditional models for music modeling and proposed a model for poly-
phonic musical sequences called Harmonic Conditional RBM. The HCRBM model is obtained by adding
lateral connections between visible units in a standard CRBM model. Those architectures present the
advantages of being generative and easy to train. Beside, they offer the possibility to easily observe
the knowledge learnt by the network. In chapter 5, we evaluated the performance of our model and
the performances of several already existing models (RBM, CRBM and GCRBM) on a short-term pre-
dictive task. We used the frame-level accuracy measure which is the canonic measure, but noticed
the fact that it is sensible to the quantization. We proposed an event-level accuracy measure to solve
this problem. Among the presented models, the CRBM model had the best results when using the

64

CHAPTER 7. SUMMARY AND FUTURE WORK 65

frame-level accuracy (31.18%), but not as good as the Recurrent Neural Networks that constituted our
baseline. (33.12%). Note that the HCRBM has not been tested yet on a frame-level. The HCRBM
had the best results for the event-level measure (28.07%). We then used the event-level measure to
perform a search for the optimal set of hyper-parameters of the CRBM model. The optimal set of
hyper-parameters found has been actually used to train an HCRBM and provided the best perfor-
mances among the tested architectures. We eventually proposed a qualitative evaluation of the CRBM
model by observing the weights learnt and the sequences generated after training the network on the
JSB Chorales database. This quantitative evaluation gave us a lot of information about the ability of
the proposed models for musical sequences modeling. First, the temporal relations learnt by conditional
models are not able to represent long-range dependences since they only depends on the last N visible
frames. However, interesting structures were learnt at a short-term level. The HCRBM model failed
to learn harmonic structure because of a conflict between temporal and harmonic weights during the
learning phase. Eventually, the most interesting sequences were generated by the CRBM model trained
on an event-level.

An orchestration system based on conditional models is eventually introduced in chapter 6. We
adapted two models, the CRBM and the FGCRBM to the projective orchestration problem. In those
models, we try to predict each frame of the orchestral score thanks to the current piano frame and the
recent past orchestral frames. We defined an evaluation framework which consists in a predictive task
based on a frame-level accuracy measure. We also introduce a measure that would take similarities
between instruments into considerations. We eventually tested our models in this framework. The
results are poor for the moment, and the models obviously failed to learn any structure.

7.2 Future works
Our HCRBM model for musical sequences must be investigated further. In particular, a long but nec-
essary hyper-parameter search must be ran. Another major improvement would be to used a validation
test. Besides, we believe that our model can be greatly improved by changing the data representation
and pre-processing. Indeed, we believe that the conditional models we tried to use are not adapted for
the data we wanted to model. Especially the strong sparsity of the data is problematic and an other
data representation could avoid this. A pre-processing step consisting in transposing all the pieces to
the same tonality (C major/minor) should also greatly improve the results.

For the evaluation of the models, log-likelihood should be performed instead of a prediction task.
To do so, either AIS should be performed to evaluate the partition function, which will be very-long
for conditional models, either an architecture based on NADE should be developed, where the joint
probability of visible and hidden units is easier to compute.

There is still a lot of work to do in order to obtain a projective orchestration system. First of all, it
would surely benefit from the data representation and pre-processing improvement we could find for the
aforementioned music sequences model. To improve the models themselves, we think that conditional
models are a great lead, but could be simplified by sharing weights among the same instruments for
instance. Sharing weights would reduce the number of weights and facilitate the training of the model.
Beside, we have not tried enough configuration to draw negative conclusions, and a long yet necessary
hyper-parameter search must be ran on this particular task for those two models.

A immediate improvement of those models would be to include intensity in the data representation.
It would gives a precious information since a loud section would be orchestrated with a lot of instrument
whereas a low intensity section would be orchestrated with fewer instruments.

CHAPTER 7. SUMMARY AND FUTURE WORK 66

A long-term improvement would be to add signal information to this model. This would be obtained
by adding an information such as a spectrogram to the purely symbolic representation. Hence, a timbral
target could be added. Those architecture would probably require a large number of hidden units and
long training time. Hence, an auxiliary objective is to develop a complete and efficient toolbox for deep-
learning applied to music, implementing most of the recent algorithm and being able to take advantage
of the most recent GPU architectures to reduce the computation time to its minimum.

Appendix A

Restricted Boltzmann Machines

A.1 Marginal distribution in a RBM
In order to obtain the conditional probability of a given visible units knowing the hidden units, we first
need the marginal distribution of the hidden units

p(h) =
∑

v
p(v,h) = 1

Z

∑
v
e−E(v,h) = 1

Z

∑
v
e
∑m

i=1 aivi+
∑n

j=1 bjhj+
∑m

i=1

∑n

j=1 viWijhj (A.1)

= 1
Z

∏
j

ebjhj
∑
h

∏
ie
vi(ai+

∑
j
Wijhj) (A.2)

Since v = (v1, ..., vm), the sum over can be decomposed as

p(h) = 1
Z

∏
j

ebjhj
∑
v1

∑
v2

...
∑
vm

∏
i

e
vi(ai+

∑
j
Wijhj)

= 1
Z

∏
j

ebjhj
∏
i

∑
vi

e
vi(ai+

∑
j
Wijhj)

Because V is a binary variable, the sum over all the possible value of vi is reduced to a sum over two
terms, and

p(h) = 1
Z

∏
j

ebjhj
∏
i

1 + e
ai+
∑

j
Wijhj

From the marginal distribution of the hidden unit, we can get the conditional distribution of the visible
units given the hidden units

p(v|h) = p(v,h)
p(h)

=

1
Z

∏
j
ebjhj

∏
i
e
vi(ai+

∑
j
Wijhj)

1
Z

∏
j
ebjhj

∏
i

1 + e
ai+
∑

j
Wijhj

=

∏
i
e
vi(ai+

∑
j
Wijhj)

∏
i

(1 + e
ai+
∑

j
Wijhj)

Hence for each visible unit i and hidden unit j

67

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 68

Equation 11 (Conditional probabilities of the visible and hidden units in an RBM)

p(vi = 1|h) = sigm

ai +
∑
j

Wijhj

 (A.3)

p(hj = 1|v) = sigm

(
bj +

∑
i

Wijvi

)
(A.4)

where sigm(x) = 1
1+e−x is the sigmoid function.

A.2 Factorizing the data driven part of the log-likelihoof gradient in
a RBM

The data driven part of the equation factorizes smoothly

∑
h
p(h|vS)∂E(vS ,h)

∂Wij
=
∑

h
p(h|vS)vSi hj (A.5)

The vector h can be decomposed in its jth coordinate hj and the other coordinates h−j .

∑
h
p(h|vS)∂E(vS ,h)

∂Wij
=
∑

h
p(hj ,h−j |vS)hjvSi (A.6)

=
∑
h−j

p(h−j |v)

︸ ︷︷ ︸
=1

∑
hj

p(hj |vS) hj︸︷︷︸
∈{0,1}

vSi (A.7)

= p(hj |vS)vSi (A.8)

Hence, ∑
h
p(h|vS)∂E(vS ,h)

∂Wij
= sigm

(
m∑
k=1

Wkjvk + bhj

)
vSi (A.9)

A.3 RBM update procedure for binomial units
The CD-K algorithm for a RBM is here derived in a very practical way, in a Matlab-like syntax but
with some short-cuts.

• Binary states must always be used for the hidden units when visible units are going to be recon-
structed from those hidden units. In practice, it means that hidden states can take the mean-field
value only on the last update (negative phase), and be sampled otherwise. Visible units can always
take the mean-field value [Hin10].

• Momentum set to zero for the first epochs, since the previous values are not meaningful (think
about a ball rolling down a surface).

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 69

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

Learning
r
ate (all)

x
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Learning
r
ate (all)

fitted curve

Figure A.1: Box plot and best fitting curve for the learning rate on the CRBM model.

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

Momentum (all)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.05

0.1

0.15

0.2

0.25

0.3
Momentum (all)

fitted curve

Figure A.2: Box plot and best fitting curve for the momentum on the CRBM model.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 70

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

SparsBeta (all)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.05

0.1

0.15

0.2

0.25

0.3
SparsBeta (all)

fitted curve

Figure A.3: Box plot and best fitting curve for the sparsity coefficient on the CRBM model.

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

SparsLambda (all)

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.05

0.1

0.15

0.2

0.25

0.3
SparsLambda (all)

fitted curve

Figure A.4: Box plot and best fitting curve for the sparsity momentum on the CRBM model.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 71

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

SparsTarget (all)

x
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y

0

0.05

0.1

0.15

0.2

0.25

0.3
SparsTarget (all)

fitted curve

Figure A.5: Box plot and best fitting curve for the sparsity target on the CRBM model.

1 2 3 5 6 9

0.05

0.1

0.15

0.2

0.25

Temporal
o
rder (all)

x
0 5 10 15 20 25 30 35

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Temporal
o
rder (all)

fitted curve

Figure A.6: Box plot and best fitting curve for the temporal order on the CRBM model.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 72

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

Weight
d
ecay (all)

x
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

y

0

0.05

0.1

0.15

0.2

0.25

0.3

Weight
d
ecay (all)

fitted curve

Figure A.7: Box plot and best fitting curve for the weight decay on the CRBM model.

A.4 Hyper-parameters results

A.5 Qualitative analysis

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 73

0 2 4 6 8 10 12
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
Lpos 1

W
ei

gh
t a

m
pl

itu
de

Interval lag

A 1 lay 1 nt 1 Max : 7.9614 Min : −6.8251 Mean : −0.049995

Vi
si

bl
e

Past
10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

B1lay1nt1 Max : 0.76501 Min : −1.3125 Mean : −0.038788

H
id

de
n

Past
10 20 30 40 50 60 70 80

100

200

300

400

500

600

W1lay1 Max : 8.2538 Min : −4.7571 Mean : −0.10335

H
id

de
n

Visible
10 20 30 40 50 60 70 80

100

200

300

400

500

600

Figure A.8: Harmonic and temporal connections in a HCRBM. No classic harmonic relations are high-
lighted by the harmonic connections. Temporal connections looks like one of a CRBM, but with lower
values.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 74

Model
Convergent Divergent Normal

M
ea

n
va

lu
e

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

Mean value for the input weights of the visible units

Model
Convergent Divergent Normal

M
ea

n
va

lu
e

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
Mean value for all the weights

Figure A.9: Mean over the visible units of their input weight. This value as been computed on several
model for the three types of observed behaviour : collapsing series, diverging (number of notes per time
frame explodes) or normal series (number of notes stays between 3 and 5 at each time frame). Note
that only the input visible units for pitch between 40 and 70 (on the 88 notes scale) have been taken
into account since extreme note are often constantly off.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 75

Algorithm 1 Mini-batch CD-K algorithm in a RBM
1: procedure CD-K(N,M)
2: ε : learning rate
3: λ : momentum
4: α : weight decay
5: β : sparsity rate
6: for N epochs do
7: for M mini-batch do
8: for vdata ∈M do
9: hdata ∼ p(h|vdata) . Positive phase

10: h0 = hdata . Negative phase
11: for k = 1

...K − 1 do
12: vk ← p(v|hk−1)
13: hk ∼ p(h|vk)
14: vmodel ← p(v|hK)
15: hmodel ← p(h|vmodel)
16: q = λspars.q + (1− λspars).EM

[
h2
model

]
. Compute sparsity terms

17: SW = (q − p)vi
18: Sh = q − p

19: ∆Wij = λ.∆Wij+(1−α).ε.
{

1
|M | .

∑
vdata∈M

[(vihj)data − (vihj)model]− αWij − β.SW

}

20: ∆b(v)
i = λ.∆b(v)

i + (1− α).ε.
{

1
|M | .

∑
vdata∈M

[< vi >data − < vi >model]
}

21: ∆b(h)
j = λ.∆b(h)

j +(1−α).ε.
{

1
|M | .

∑
vdata∈M

[< hj >data − < hj >model]− β.Sh

}

Collects
statistics

Weights up-
date

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 76

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14
x 10

4 W
1l

ay
1
 Max : 3.3355 Min : −1.3908 Mean : −0.030481

N
um

be
r

Weight value
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8
x 10

4 A 1 lay 1 Max : 0.72596 Min : −0.70801 Mean : −0.017348

N
um

be
r

Weight value

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

16
x 10

5 B
1l

ay
1
 Max : 0.33799 Min : −0.69535 Mean : −0.015197

N
um

be
r

Weight value
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35

40

45

bi
1l

ay
1
 Max : 0.62063 Min : −0.74344 Mean : −0.51646

N
um

be
r

Weight value

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

bj
1l

ay
1
 Max : 1.7306 Min : −1.276 Mean : −0.47535

N
um

be
r

Weight value

Figure A.10: Histograms of the weights of a CRBM. We can notice that most of the weights are
negative, especially for the visible units biases. This a consequence of the spare nature of the data we
try to model.

APPENDIX A. RESTRICTED BOLTZMANN MACHINES 77

0 10 20 30 40 50 60 70 80 90
−10

−8

−6

−4

−2

0

2

4
Impact of the different weight in the actiavtio function

Am
pl

itu
de

Visible unit

top−down
static bias
dynamic bias

0 10 20 30 40 50 60 70 80 90
−120

−100

−80

−60

−40

−20

0

20

40

60

80
Impact of the different weight in the actiavtio function

Am
pl

itu
de

Visible unit

top−down
lateral
static bias
dynamic bias

Figure A.11: Influence of the different weights over the activation of the visible units. On the
left for the CRBM, on the right for the HCRBM. We can observe that whereas the different influences
in the CRBM are equally distributed for the middle pitches, the temporal connections in the HCRBM
totally overweights the other contributions.

Glossary

AI Artificial Intelligence.

AIS Annealed Importance Sampling.

BPTT Back-propagation though time.

CD Contrastive Divergence.

CRBM Conditional Restricted Boltzmann Machine.

CSP Constraint Satisfaction Problem.

DBN Deep Belief Network.

DOSIM Digital Orchestra Simulator.

FGCRBM Factored Gated Conditional RBM.

FGRBM Factored Gated RBM.

GCRBM Gated Conditional RBM.

GPM Graphical Probabilistic Model.

GPU Graphics Processing Unit.

GRBM Gated RBM.

HCRBM Harmonic Contrastive RBM.

HMM Hidden Markov Model.

MCMC Monte Carlo Markov Chain.

MOTS Multi Objective Time Series.

MRF Markov Random Field.

NN Neural Networks.

78

GLOSSARY 79

PCD Persistent Contrastive Divergence.

RBM Restricted Boltzmann Machine.

RNN-RBM Recurrent Neural Network Restricted Boltzmann Machine.

RTRBM Recurrent Temporal Restricted Boltzmann Machine.

SRBM Semi-Restricted Boltzmann Machine.

Style-gated FCRBM Style-gated Factored Conditional RBM.

TRBM Temporal Restricted Boltzmann Machine.

List of Figures

1.1 Voice leading combined with Orchids. The first frame is orchestrated thanks to Orchids
by trying to match a spectral target with the symbolic score acting as a constraint on
usable notes. Then, the voice leading algorithm would ensure a continuous orchestration by
assigning each note to one of the instrument chosen in the first frame by Orchids. 10

2.1 A Neural Network is a connectionist architecture where simple computational units are
organized by layers. The output of a neuron is the result of its activation function applied to
a weighted sum of its input. Neurons are densely connected to each other where the output
of neurons in a layer become the input of neurons in the next layer. 11

2.2 The graphical representation of a Restricted Boltzmann Machine (RBM). The weight Wij

represent the connection between the visible and hidden units. Visible (resp. hidden) units
are conditionally independent from each other (graphically represented by the absence of
connection between two visible (resp. hidden) units) . 15

2.3 Gibbs sampling can be used to obtained a sample from a distribution close to the true
distribution of the RBM. The independence of the hidden and visible units allows a fast
implementation known as block sampling. 17

2.4 Semi-Restricted Boltzmann Machine. The RBM model is augmented by adding lateral con-
nections between the visible unit . 20

2.5 Greedy layer-wise training of a DBN . 21
2.6 Different abstraction levels are hierarchically represented through successive layers of a DBN.

Here the directed connections are those pertaining to the generative model (right side of the
figure taken from [LEN08]). Be careful that the network has been represented upside-down
to fit the image. 22

3.1 The pianoroll representation for symbolic rhythm . 27
3.2 Graphical structure of the RNN-RBM. We can distinguish the two parts of the model, RNN

in blue and RBM in red. 28
3.3 CRBM. The weights Aki and Bkj model the influence of the past visible states on the biases

of the current visible and hidden units. 30
3.4 Sampling in a multi-layer CRBM . 31
3.5 Input units in a GCRBM modulates the weights between hidden and output units 32
3.6 A style-gated FCRBM. The three sub-models are represented by three different colors. The

style features are gated on the three interactions: weights between visible and hidden units
(in red), bias on hidden units (green), bias on visible units (blue) 33

80

List of Figures 81

4.1 Chords learned by a Harmonic RBM trained on Bach’s 4 voices Chorales. No temporal
structure is modeled here, and the half note duration is arbitrarily chosen. Most of the
chords are very classical (in red a major chord) while more exotic chord are still learned by
the model (minor seventh). 39

4.2 The HCRBM model. Lateral structured connections are added to the standard CRBM
model. Units crossed in red are clamped to the value of past visible units during the sampling. 40

4.3 Stacked HCRBM. Harmonic connections are in red, and only present for the visible (first)
layer. Temporal connections are in blue. 41

4.4 Root-centric transformation . 42

5.1 Frame-level expected accuracy for various musical models. The quantization is one frame
per quarter note. 46

5.2 Event-level expected accuracy for various musical models 46
5.3 List of the tested hyper-parameter and their range of value 48
5.4 Two transition matrices A from frame t − 1. The diagonal is in red. On the left the model

has been trained on a frame level, on the right on an event level. We can observe the sustain
problem appearing as the strong diagonal of the left matrix. Since the lower and higher
notes never appeared in the training sequences, the transition toward them are close to -1
(complete inhibition). 50

5.5 Lateral connections in a HRBM. The value for each time lag represents the influence of a
visible unit over other visible units at interval τ . It can be noticed that this is mainly an
inhibitive influence (weights are negatives). In blue a fifth (which is also a negative fourth)
and in red second minor . 51

5.6 Matrices A1 and A16 represent the influence of the frame t− 1 and t− 16 on the current
frame. Diagonal is represented by a thin red line. 52

5.7 Voice leading matrices for input units 34 and 76. Be careful that time indices are for negative
time lag: 1 means t − 1. Hence, the time runs from the left to the right part of the graph.
Lower pitches are at the bottom and higher at the top. The highest weights often form a
diffuse cloud around the next visible note. Some matrices exhibit strong temporal structure,
such as the transition matrix towards pitch 76, which shows an ascending melody 53

5.8 Explaining away between temporal and lateral weights. Since ∆Lii′=τ =< vivi′ >data − <
vivi′ >model, if Aik and Ai′k have already large values, < vivi′ >data<< vivi′ >model and
∆Lii′=τ < 0 even if it should have been greater than 0. 53

5.9 Observing the latent units. The figure on the left shows the activation of each hidden
units (here 2000) given 100 randomly chosen vectors from the testing dataset. We can observe
the effect of the sparsity constraint which impose that a hidden unit is rarely on for successive
different input vectors. The figure on the right shows the context given activations of the
visible units given a hidden unit. Those values are shown for the 40 maximally activated
hidden units in the present context. 55

6.1 The CRBM model applied to orchestration. Context units are the concatenation of the
recent past for the orchestra part and the current frame of the piano part. 59

6.2 The FGCRBM model applied to orchestration. Context units are the concatentation of the
recent past of of the orchestra, and style units are defined by the current frame of piano part. 60

6.3 Definition of the true positive, false positive and false negative for the orchestral prediction
task . 61

6.4 Event-level expected accuracy for various musical models 62

List of Figures 82

A.1 Box plot and best fitting curve for the learning rate on the CRBM model. 69
A.2 Box plot and best fitting curve for the momentum on the CRBM model. 69
A.3 Box plot and best fitting curve for the sparsity coefficient on the CRBM model. 70
A.4 Box plot and best fitting curve for the sparsity momentum on the CRBM model. 70
A.5 Box plot and best fitting curve for the sparsity target on the CRBM model. 71
A.6 Box plot and best fitting curve for the temporal order on the CRBM model. 71
A.7 Box plot and best fitting curve for the weight decay on the CRBM model. 72
A.8 Harmonic and temporal connections in a HCRBM. No classic harmonic relations are high-

lighted by the harmonic connections. Temporal connections looks like one of a CRBM, but
with lower values. 73

A.9 Mean over the visible units of their input weight. This value as been computed on several
model for the three types of observed behaviour : collapsing series, diverging (number of
notes per time frame explodes) or normal series (number of notes stays between 3 and 5 at
each time frame). Note that only the input visible units for pitch between 40 and 70 (on the
88 notes scale) have been taken into account since extreme note are often constantly off. . . 74

A.10 Histograms of the weights of a CRBM. We can notice that most of the weights are
negative, especially for the visible units biases. This a consequence of the spare nature of
the data we try to model. 76

A.11 Influence of the different weights over the activation of the visible units. On
the left for the CRBM, on the right for the HCRBM. We can observe that whereas the
different influences in the CRBM are equally distributed for the middle pitches, the temporal
connections in the HCRBM totally overweights the other contributions. 77

Bibliography

[AW05] Moray Allan and Christopher KI Williams. Harmonising chorales by probabilistic inference.
Advances in neural information processing systems, 17:25–32, 2005.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13(1):281–305, 2012.

[BBSK10] Greg Bickerman, Sam Bosley, Peter Swire, and Robert M Keller. Learning to create jazz
melodies using deep belief nets. 2010.

[BCV13] Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning: A review
and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
35(8):1798–1828, 2013.

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends in Machine
Learning, 2(1):1–127, 2009.

[Ber44] Hector Berlioz. Grand traité d’instrumentation et d’orchestration modernes. Schonenberger,
1844.

[BLBV12] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal
dependencies in high-dimensional sequences: Application to polyphonic music generation
and transcription. arXiv preprint arXiv:1206.6392, 2012.

[Car08] Grégoire Carpentier. Approche computationnelle de l’orchestration musicale : Optimisation
multicritère sous contraintes de combinaisons instrumentales dans de grandes banques de
sons. PhD thesis, IRCAM, 2008.

[DOS] DOSIM : digital orchestration simulator. http://www.dosimmusic.com/index.html. Ac-
cessed: 2015-01-27.

[EA10] Philippe Esling and Carlos Agon. Composition of sound mixtures with spectral maquettes.
In International Computer Music Conference, 2010.

[ECA10] Philippe Esling, Grégoire Carpentier, and Carlos Agon. Dynamic musical orchestration using
genetic algorithms and a spectro-temporal description of musical instruments. Applications
of Evolutionary Computation, pages 371–380, 2010.

[EL08] Douglas Eck and Jasmin Lapalme. Learning musical structure directly from sequences of
music. University of Montreal, Department of Computer Science, CP, 6128, 2008.

83

http://www.dosimmusic.com/index.html

BIBLIOGRAPHY 84

[ES02] Douglas Eck and Juergen Schmidhuber. Finding temporal structure in music: Blues im-
provisation with lstm recurrent networks. In Neural Networks for Signal Processing, 2002.
Proceedings of the 2002 12th IEEE Workshop on, pages 747–756. IEEE, 2002.

[Esl12] Philippe Esling. Multiobjective time series matching and classification. PhD thesis, IRCAM,
2012.

[FI14] Asja Fischer and Christian Igel. Training restricted boltzmann machines: An introduction.
Pattern Recognition, 47(1):25–39, 2014.

[Gar15] James Garson. Connectionism. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Spring 2015 edition, 2015.

[Hin10] Geoffrey Hinton. A practical guide to training restricted boltzmann machines. Momentum,
9(1):926, 2010.

[HLZ96] Martin Henz, Stefan Lauer, and Detlev Zimmermann. Compoze-intention-based music
composition through constraint programming. In Tools with Artificial Intelligence, 1996.,
Proceedings Eighth IEEE International Conference on, pages 118–121. IEEE, 1996.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[HSD12] Eliot Handelman, Andie Sigler, and David Donna. Automatic orchestration for automatic
composition. In Proc. of MUME, pages 43–48, 2012.

[Koe41] Charles Koechlin. Traité de l’orchestration. Éditions Max Eschig, 1941.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LEN08] Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net model for
visual area v2. In Advances in neural information processing systems, pages 873–880, 2008.

[LGRN09] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages 609–616. ACM,
2009.

[LKL14] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning
and deep learning for time-series modeling. Pattern Recognition Letters, 42:11–24, 2014.

[LM11] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In
International Conference on Artificial Intelligence and Statistics, pages 29–37, 2011.

[LP03] Victor Lavrenko and Jeremy Pickens. Polyphonic music modeling with random fields. In
Proceedings of the eleventh ACM international conference on Multimedia, pages 120–129.
ACM, 2003.

[LR14] I.-Ting Liu and Bhiksha Ramakrishnan. Bach in 2014: Music composition with recurrent
neural network. CoRR, abs/1412.3191, 2014.

BIBLIOGRAPHY 85

[McA13] Stephen McAdams. Timbre as a structuring force in music. In Proceedings of Meetings on
Acoustics, volume 19, page 035050. Acoustical Society of America, 2013.

[NG14] Henri NG. Inférence de connaissances signal symboliques à partir de séries temporelles
multivariées pour l’orchestration musicale. Master’s thesis, IRCAM, 2014.

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

[OH08] Simon Osindero and Geoffrey E Hinton. Modeling image patches with a directed hierarchy
of markov random fields. In Advances in neural information processing systems, pages
1121–1128, 2008.

[PBM+03] Jeremy Pickens, Juan Pablo Bello, Giuliano Monti, Mark Sandler, Tim Crawford, Matthew
Dovey, and Don Byrd. Polyphonic score retrieval using polyphonic audio queries: A har-
monic modeling approach. Journal of New Music Research, 32(2):223–236, 2003.

[PGS+11] Geoffroy Peeters, Bruno L Giordano, Patrick Susini, Nicolas Misdariis, and Stephen
McAdams. The timbre toolbox: Extracting audio descriptors from musical signals. The
Journal of the Acoustical Society of America, 130(5):2902–2916, 2011.

[PR01] François Pachet and Pierre Roy. Musical harmonization with constraints: A survey.
Constraints, 6(1):7–19, 2001.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-
sentations by error propagation. Technical report, DTIC Document, 1985.

[RHW88] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Cognitive modeling, 5:3, 1988.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[SHT09] Ilya Sutskever, Geoffrey E Hinton, and Graham W Taylor. The recurrent temporal restricted
boltzmann machine. In Advances in Neural Information Processing Systems, pages 1601–
1608, 2009.

[SM08] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In Proceedings of the 25th international conference on Machine learning, pages 872–879.
ACM, 2008.

[SMH11] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 1017–1024, 2011.

[TA11] Charlotte Truchet and Gerard Assayag. Constraint Programming in Music. Wiley, May
2011.

BIBLIOGRAPHY 86

[Tay09] Graham William Taylor. Composable, distributed-state models for high-dimensional time
series. PhD thesis, University of Toronto, 2009.

[TH09] Graham W Taylor and Geoffrey E Hinton. Factored conditional restricted boltzmann ma-
chines for modeling motion style. In Proceedings of the 26th annual international conference
on machine learning, pages 1025–1032. ACM, 2009.

[Tie08] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the
likelihood gradient. In Proceedings of the 25th international conference on Machine learning,
pages 1064–1071. ACM, 2008.

[TM12] Damien Tardieu and Stephen McAdams. Perception of dyads of impulsive and sustained
instrument sounds. Music Perception, 30(2):117–128, 2012.

[Tru04] Charlotte Truchet. Contraintes, recherche locale et composition assistée par ordinateur.
Unpublished doctoral dissertation, Université Paris, 2004.

[Tym06] Dmitri Tymoczko. The geometry of musical chords. Science, 313(5783):72–74, 2006.

[YAK10] Ryosuke Yamanishi, Keisuke Akita, and Shohei Kato. Automated composing system for sub-
melody using hmm: A support system for composing music. In HyunSeung Yang, Rainer
Malaka, Junichi Hoshino, and JungHyun Han, editors, Entertainment Computing - ICEC
2010, volume 6243 of Lecture Notes in Computer Science, pages 425–427. Springer Berlin
Heidelberg, 2010.

	Contents
	State of the art
	Automatic orchestration
	Constraint Satisfaction Problem
	Orchids
	Approaching projective orchestration
	Conclusion

	Deep learning
	Introduction : Artificial Neural Networks
	Graphical Probabilistic Models (GPM)
	Restricted Boltzmann Machine
	Deep architectures
	Conclusion

	Generative models for high-dimensional time series
	Time modelling
	Automatic music generation
	Conditional models
	Conclusion

	CRBM-based models for symbolic music
	The Harmonic Conditional RBM
	Modelling the harmonic structure
	The HCRBM
	Pre-processing and regularization

	Results
	Music prediction
	Analysis of the hyper-parameters
	Understanding what the model has learnt
	Conclusions

	Automatic orchestration
	Adaptation to the orchestration problem
	An automatic orchestration model
	The orchestration prediction task
	Results

	Summary and future work
	Summary
	Future works

	Restricted Boltzmann Machines
	Marginal distribution in a RBM
	Factorizing the data driven part of the log-likelihoof gradient in a RBM
	RBM update procedure for binomial units
	Hyper-parameters results
	Qualitative analysis

	List of Figures
	Bibliography

