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Summary

This internship report deals with the synthesis of sound textures based on a
statistical description. The synthesis model under investigation was proposed
by Josh McDermott and Eero Simoncelli in 2011 (McDermott & Simoncelli,
2011). First the definition of what is a sound texture will be discussed. This
is followed by a description of the model under investigation. Insights on the
theoretical aspects of the model and on its implementation will be given. The
limitations of the algorithm will be discussed and related to the theoretical
definition of sound textures. Some proposition to possibly improve the im-
plementation are made. Finally some preliminary work on identifying links
between higher-level parameters, such as density, and low-level statistics will
be presented.

Keywords : sound textures, statistics, auditory perception

Ce rapport de stage traite de la synthèse des textures sonores basée sur
une description statistique du son. Le modèle de synthèse étudié est le
modèle introduit par Josh McDermott et Eero Simoncelli en 2011 (McDer-
mott & Simoncelli, 2011). Après avoir essayé de définir plus précisément
en quoi consiste exactement une texture sonore, nous détaillerons le fonc-
tionnement du modèle sur le plan théorique. Une description détaillée de
l’implémentation sera également présentée. Des propositions pour améliorer
l’implémentation seront présentées. Les limites des possibilités de synthèse
du modèle seront discutées et mises en relation avec la conception théorique
que nous avons des textures sonores. Finalement un travail préliminaire por-
tant sur l’identification de liens entre des paramètres de haut-niveau, tels que
la densité d’une texture sonore, et l’encodage statistique de bas-niveau sera
présenté.
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1 Introduction

Sound textures synthesis is a rather complex problem, involving different
research fields such as signal processing, acoustics and auditory perception.
The goal is to synthesize sounds which present internal variations, some tex-
tured quality, but which somehow remain similar over time.
Many different approaches to sound textures have been proposed so far. This
work focuses on a recent synthesis method, proposed by Josh McDermott and
Eero Simoncelli in 2011, which is based on a completely statistical descrip-
tion of sound textures. But the statistics used in the model are abstract and
do not provide an intuitive platform for sound synthesis and transformation.
An important part of this work is dedicated to understanding what statistics
can encode about sound textures, and what they cannot. It seems that some
sounds are well synthesized using statistics, some others are not. Does that
mean that the sounds that don’t fit in a statistical description are not sound
textures ?
In order to get more intuitive control over the synthesis model we would need
to link the statistics of the model with higher-level physically descriptive pa-
rameters, such as density, which would be general and apply to all sound
textures. We present some preliminary steps towards identifying those links.

6



2 What is a sound texture ?

Before going any further into sound texture synthesis it seems a good idea
to try to define what exactly we are trying to synthesize.
At first sight sound textures seem to be a rather common and obvious class of
sound. One immediately thinks of natural sounds such as rain, wind, water
streams, bird songs etc. But we rarely hear only rain, we might more proba-
bly hear a storm with rain falling, wind blowing and some thunder cracks. Do
all these events put together still create a sound texture ? Walking through
the countryside, we could also include less natural sounds like crowds, mo-
tor sounds, cars passing on a highway. But if the traffic gets sparser where
individual cars can be perceived, can this still be considered a sound texture
? Even if we get some general intuition about sound textures by considering
examples, defining more clearly the class of sound textures is necessary if we
want to determine wether or not our sound texture synthesis is “good”. But
by gaining in abstraction and formalization we also narrow our idea of what
a sound texture is and reject a lot of potentially interesting candidates. As
Strobl and Eckel state, “ there is no valid universal description of what is
a sound texture” (Strobl & Eckel, 2006). Daniel Mölhmann also suggests
that there exist two ways of dening sound textures, the “narrow” definition
and the “wide” definition (Mölhmann, 2011, pp. 18-19). “Narrow” deals
only with simplistic sound textures which are very dense and noisy, like rain.
“Wide” definition includes sounds that have much more complex high-level
patterns, e.g. Lu et al. (2004) or Misra, Cook, and Wang (2006)).

Most researchers on sound textures often agree on defining sound textures
as a sound that is made of a random superposition of acoustical events that
exhibit some sort of similarity. This concept was first introduced by Nicolas
Saint-Arnaud (Saint-Arnaud, 1995). Saint-Arnaud suggests that sound tex-
tures are presented as built on two levels. A low-level which consists of sound
atoms. These are basically the single acoustical events e.g. a rain drop, a
car passing, a voice in the crowd. The high-level refers to the organization
of these events, i.e. their distribution over time. These distributions will
most likely be driven by stochastic processes. This model of sound texture,
although compact and elegant, seems in certain cases less applicable. For
example, the sound of a water stream: how can individual atoms be defined
? Is it realistic to say that water flowing is an aggregate of water drops ?
In the case of wind, the notion of individual atoms is also ill-defined. Of
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course it is because wind makes no sound, we hear it as its interaction with
other elements, such as leaves. But wind is also commonly identified with
the whistling sound that is produced when it passes through narrow openings
producing resonances, or by the aerodynamic interactions with the buildings.
In such cases, the atomic description seems less pertinent.
The two other very important concepts introduced by Saint-Arnaud are the
notions of constant long-term characteristics and attention span. Constant
long-term characteristics refers to the fact that properties of the sound tex-
ture must remain constant over time, although it is not specified which prop-
erties exactly. We can understand it as statistical homogeneity in the distri-
bution of the atoms over time, but also as a similarity between each atom.
This idea is well described by the curves of figure [1]. The constant long-term
characteristics of sound textures implies that the information conveyed comes
to a saturation point after a certain amount of time. This is in contrast to
signals such as music and speech, which typically have constantly evolving
semantic content (if we do no not consider minimalistic or repetitive music),
and has a potential for constantly increasing information.

Figure 1: Illustration of constant long-term characteristics for sound textures
(image from Saint-Arnaud)

According to Saint-Arnaud, attention span is ”the maximum time between
events before they become distinct”. The previous example of the highway is
a good example. If cars get too sparse they will not be perceived as a whole
but as distinct events and therefore not as a sound texture. But it does not
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mean that we cannot perceive individual events in a sound texture. In his at-
tempt to derive a general typology for sounds, Pierre Schaeffer delivers some
interesting thoughts about what he already considered as sound textures : ”
It only depends on our own will to hear the sounds of gravels falling from a
truck as coming from a unique source (the action of the truck), or as made
out of multiple sources (each gravel falling on another).”1 (Schaeffer, 1966).
This quote perfectly summarizes all the perceptual ambiguity of sound tex-
tures.
For the rest of this report we will try to stick to Saint-Arnaud’s definition
since it is the most commonly used and it is also quite general. But we shall
keep in mind that sound textures are complex objects and that maybe no
definition is general enough to encapsulate all of their subtlety.

1”En effet il dépend de notre volonté d’entendre le son d’une coulée de cailloux
comme provenant d’une cause unique (la benne qui se déverse), ou comme composée
d’impulsions brèves dues à une multiplicité de causes analogues (chaque caillou tombant
sur les précédents).”(Pierre Schaeffer, 1966, Traité des objets musicaux ,p. 454 )
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3 Overview of the algorithm under investiga-

tion

Since the pioneering works of Saint-Arnaud and Popat in the mid 1990’s,
sound textures synthesis has been capturing more and more of the audio
analysis and synthesis community’s interest. Many different models have
been proposed, using such varied methods as wavelet tree learning (Dubnov
et al., 2002), time-frequency LPC (Athineos & Ellis, 2003, Zhu & Wyse,
2004), and granular synthesis (Hoskinson & Pai, 2001, Schwarz et al., 2006).
For the purpose of this work, we will focus on a new recent and promising
model, based on statistical analysis informed by the response of the periph-
eral auditory system (McDermott et al. 2009, McDermott & Simoncelli,
2011). This model is based on the idea that our perception of sound tex-
tures can be described by a certain well-chosen set of statistics. If this is the
case, given a sufficient set of statistics it should be possible to re-synthesize
a perceptually equivalent texture by constructing a sound with the desired
statistics. This logic is inspired by research on visual textures (Portilla &
Simoncelli, 2000).
McDermott’s model is particularly interesting for two main reasons. Firstly,
because it doesn’t use sampled sound but generates sound textures from
scratch, by iteratively imposing the right statistics on white noise. The only
information we need is the statistics of the desired sound texture. Moreover,
since the synthesis is based on statistics, we can generate examples of any
length. This is potentially beneficial when applied to domains where we have
strong constraints on the storable amount of data, such as video games. The
second reason is that it produced very compelling results on varied sound
texture examples such as water, waves, wind, insects and even mechanical
sounds. We are thus tempted to think that this model constitutes a quite
general model for sound texture synthesis.
It is however important to note that McDermott’s approach differs from other
works on sound texture in that sound synthesis is not the ultimate goal but
is used as a mean to demonstrate certain hypotheses about the perception of
sound textures. As he explains in his 2011 paper : ”Our goal in synthesizing
sounds was not to render maximally realistic sounds [...] but rather to test
hypotheses about how the brain represents sound texture”.
The first stage of the model is based on the processing of the auditory periph-
ery. An ERB filter bank and non-linear compression are used to simulate the
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processing of the basilar membrane. The basic hypothesis of the synthesis
model is that simple statistics from the early stages of auditory processing
are used at a later stage to recognize and distinguish sound textures. In
his latest researchMcDermott demonstrates the sufficiency of time-averaged
statistics for texture recognition and categorization (McDermott, Schemitsch
& Simoncelli, 2013). The underlying idea is that when listening to sound tex-
tures we do not focus on individual events but rather on a global behavior
of the sound events, which can be coded by time-averaged statistics. One
might think about thermodynamics and the use of statistical descriptions for
the diffusion of gases, rather than modeling the trajectory of each particle.

We will now enter technical explanations of the statistics used in the model.
We will then discuss the implementation of this model, including the method
used to impose the desired statistics on the synthesized sound. We believe
that it is important to separate the general idea of the model, based on strong
perceptual assumptions, from its actual implementation. The synthesis re-
lies mainly on conjugate gradient descent to compute the envelopes. This
method does not guarantee that the resulting envelopes will have the desired
statistics. Because the synthesized sounds cannot be expected to have the
exact statistics desired it can be unclear if the loss in quality of the synthesis
is due to a perceptually inadequate description of the signal or because the
gradient descent did not find an optimal solution.

3.1 Statistics of the auditory periphery

The philosophy of Josh McDermott’s algorithm is to compute a set of statis-
tics from a recorded sound texture and then to create a synthetic sound with
matching statistics. We are thus actually performing a type of re-synthesis
of the original sound, based upon statistical data.
The choice of statistics were informed by the response of the peripheral au-
ditory system. There are two stages involved in the computation of these
statistics. The whole process is summarized in figure [2].
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Figure 2: Stages involved in the computation of the statistics (image from
McDermott).

In the first stage the sound signal is processed through a bank of 30 band-
pass auditory filters that decomposes the sound into acoustic frequency sub
bands. These filters are cosine-shaped filters spread on an ERB scale. Each
filter overlaps the adjacent one by 50%. The envelope of each sub band is
then extracted using a Hilbert transform, these envelopes are then further
processed using a nonlinear compression, informed by auditory perception.
We shall call the resulting envelopes the sub band envelopes. The model’s
statistics are calculated on these sub bands. The set of statistics used to de-
scribe the temporal trajectories of these envelopes and their interdependence
are first-order moments (M) - mean, variance, skewness and kurtosis - and
correlations (C).
Noting sk(t) the envelope of the k-th sub band the moments are defined as
follows :
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Mean :
M1k = µk =

∑
t

w(t)sk(t)

Variance :

M2k =
σ2
k

µ2
k

=
1

µ2
k

∑
t

w(t)(sk(t)− µk)2

Skewness :

M3k =
1

σ3
k

∑
t

w(t)(sk(t)− µk)3

Kurtosis :

M4k =
1

σ4
k

∑
t

w(t)(sk(t)− µk)4

A windowing function w(t) can optionally be used. In our experiments we
used a rectangular window (i.e. a constant scaling factor, effectively no win-
dowing). The four first-order moments describe the energy distribution of the
texture. If we had envelopes with gaussian distribution for example, the sole
knowledge of the mean and the variance would be sufficient to re-construct
the original texture. But textures are more complicated than gaussian noise,
hence the use of skewness and kurtosis for a more complete description.

3.1.1 An Intuitive Discussion of the Statistical Description

In order to get some intuition about what each statistic is coding, we show
spectrogram examples of the re-synthesis of a texture made of periodic broad-
band noise bursts (figure [3], top), each time omitting a different statistic.
Moments capture information about the shape of the envelope histogram, i.e.
the distribution of the energy. The variance describes the degree to which the
amplitude of the envelope is not close to the mean. Higher-order marginals
characterize both the peakedness and the sparsity of the sound texture. For
example the presence of a certain events of amplitude much greater than the
mean will tend to increase the skewness of the distribution. If we get many
of these events then the mean will increase. High kurtosis may reflect the
presence of impulsive sound events (Erdreich, 1986), whereas low kurtosis
may characterize slowly modulated sounds.
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Figure 3: Re-synthesis of a stream of periodic broadband noise bursts, omit-
ting variance, skewness and kurtosis. Top is original, bottom is re-synthesis.

Correlations between envelope sub bands are computed as :

Cjk =
1

σjσk

∑
t

w(t)(sj(t)− µj)(sk(t)− µk)

where σj is the standard deviation of sj(t). The correlation of the sub bands
encodes the degree of temporal synchronicity of the envelopes. This can
be seen as describing the vertical structure in the spectrogram. Correlation
between envelopes is not sufficient to capture the frequency structure of the
texture. A finer level of correlation is thus introduced : C1 correlations. In
the second stage each of the sub band envelopes are processed through a bank
of bandpass modulation filters. In the case of C1 correlations, a bank of 6
octave-spaced filters is used. Their center frequencies vary from 3 Hz to 100
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Hz. These filters overlap by 75%. The resulting signals are called modulation
bands. C1 correlations are correlations between similar modulation bands of
different sub band envelopes. Noting b̂j,n the n-th modulation band of the
j-th auditory band, C1 is computed as :

C1jk =
1

σj,nσk,n

∑
t

w(t)b̂j,n(t)b̂k,n(t)

where σj,n is the standard deviation of b̂j,n(t). There is also another type of
correlation, C2 correlation, which consists of correlations between different
modulation bands on the same sub band envelope. Their role is to cap-
ture the phase relationships inside a certain sub band. Their computation
is slightly more complicated since it involves squaring analytic versions of
the neighboring modulation band in order to double its frequency and thus
compare the phase. Details can be found in the original paper of McDermott
and Simoncelli (McDermott & Simoncelli, 2011). In practice, the use of this
statistic didn’t seem to improve the synthesis and we omitted it in most of
the experiments.
Figure [4] shows re-synthesis of periodic broadband noise bursts with omit-
ting all the correlations. We clearly see the loss structure with frequency.

Figure 4: Re-synthesis of a stream of periodic broadband noise bursts, omit-
ting all correlations.

The last type of statistic used is the modulation power. Modulation power
is the variance of the modulation bands. The modulation power is computed
using a different filter bank to that used for C1 and C2 correlations. The
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bank consists of 20 bandpass modulation filters. These modulation filters are
tuned to capture slow rate modulations; their center frequencies vary from
0.5 Hz to 200 Hz with logarithmic spread. They also overlap by 75%.
Noting bk,n the n-th modulation band of the k-th auditory band, modulation
power is computed as :

MPkn =
1

σ2
k

∑
t

w(t)bk,n(t)2

where σk is the standard deviation of sk(t), the corresponding sub band en-
velope.
Modulation power being related to the energy of each modulation band,
it can be viewed as a logarithmically sampled power spectrum (with some
smoothing due to the overlapping filters) for each sub band envelope. The
Wiener-Khinchin theorem stating that power spectrum is the Fourier trans-
form of the autocorrelation function, modulation power is related to the
autocorrelation function and describes the time structure of each sub band
envelope.

3.2 Current implementation

3.2.1 Gradient descent

In order to obtain envelopes with the desired statistics gradient descent is
used. Gradient descent is a technique used for optimization problems. Given
a certain constraint function f and an initial vector xn, we want to find a
new vector, x′n that minimizes f . We can proceed by iteratively imposing:

x′n = xn − γ
∂f(xn)

∂xn

x′n being the new value of the vector after the next step of the gradient descent
and γ a parameter related to the step size of the descent. Geometrically, the
algorithm is considering the constraint function as an N -dimensional surface.
Starting from a point defined by the initial ’guess’ xn (in our case one of the
sub band envelopes of the initial white noise), the algorithm tries to move
towards a local minimum in the function. The direction chosen by simple
gradient descent is that of the direction of the negative gradient. This is lo-

16



cally the direction of steepest descent. The choice of the step size determines
the rate of descent and can strongly effect the solution obtained. Too small
a step size and the algorithm will converge to a solution slowly, too large
and a true minimum may never be reached. With an appropriate step size
eventually we are sure to come close to a minimum, but we have no guarantee
that it will be a global minimum.
Carl Rasmussen’s ”minimize” MATLAB function is used for all gradient de-
scent calculations.

In the current implementation of the algorithm, the minimized function
D
(
S, Ŝ

)
is the sum of the squared differences between the desired set of

statistics Si and the current set Ŝi. Index i denotes an individual statistic
from the set (moment, correlation,...).

D(S, Ŝ) =
∑

i∈stats
(Si − Ŝi)

2

The desired set of statistics Si is computed from the original texture and is
constant. The current set Ŝi is computed for each sub band envelope. The sub
bands envelopes are not updated altogether but one after another, in order
of decreasing energy, and an independent gradient descent is performed for
each of them.
Naming xn a certain sub band envelope, the gradient of D

(
S, Ŝ

)
regarding

this sub band envelope is :

∂D(S, Ŝ)

∂xn
=

∑
i∈stats

−2(Si − Ŝi)
∂Ŝi

∂xn

Therefore the gradient at each iteration is entirely determined by the deriva-
tive of each of the statistics regarding the sub band envelope being optimized.
Also the gradient is not dependent on the sub band being considered. After
each iteration xn is slightly modified so that Ŝi gets closer to Si. D(S, Ŝ)
always being positive (sum of squared real numbers), the convergence to
the global minimum would imply that we are exactly matching the desired
statistics for this sub band, assuming such a solution exists.
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3.2.2 Imposition of the statistics

In this section we will discuss how gradient descent is used to impose the
desired statistics on the sub band envelopes. Here iteration will refer to an
iteration of the global process of the algorithm and not to a step of the gra-
dient descent.
In order to impose the desired statistics on each sub band envelope the en-
velope of each sub band signal is separated from the phase (also called ”fine
structure”). The envelopes are extracted by taking the absolute value of the
analytic signal (the analytic signal is generated using a Hilbert transform).
The phases are obtained by dividing the analytic signal by the envelope. Gra-
dient descent is then used to impose the desired statistics, as described above.
However, only a few steps are taken in the gradient descent (between 5 and
15) at each iteration. Thus after an iteration of the algorithm the statistics
are only partly imposed. This is because the re-combined signals (envelopes
and phases) are no longer guaranteed to be band limited after the gradient
descent. And so after each iteration the updated envelopes are re-combined
with the phases (non-updated) to create updated sub band signals. These
are then re-filtered using the original auditory filter bank (these filters have
a half cosine frequency response, two passes gives a cosine squared response.
With 50% overlap the combined frequency response of this filter bank is flat).
The implementation is represented in figure [5].
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Figure 5: Current implementation (image from McDermott).

This is a very awkward choice of implementation because by filtering we
lose a little of the optimization made during the gradient descent. Also it
is very strange to re-introduce the phases since the model is entirely based
on statistics of the envelopes. And so this implementation compromises the
optimization process.

Introducing another way of imposing the statistics is not such an easy thing
to do. The main problem is that the bandwidth of the sub band signals can-
not be guaranteed to remain band limited after gradient descent. We can’t
impose bandwidth constraints on the envelopes because they are computed
by taking the absolute value of an analytic signal, they can have discontinu-
ities. However we intuitively understand that, apart from a supposedly small
number of points of discontinuity, the envelope of a low frequency sub band
with narrow bandwidth is necessarily smoother than that of a high frequency
sub band with large bandwidth.
One way to implement the imposition of the statistics in one single gradient
descent, without intermediate merging and splitting, would be to have the
envelopes down sampled at different rates. The Nyquist frequency would
thus impose the sub band envelope frequency limit. But we would then have
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to deal with multi-rate signals, which would greatly complexify the compu-
tation of statistics, particularly the correlations.

Another way that would avoid multi-rate computations would be to use a
signal model for the envelopes, and compute the gradient not regarding the
samples of the envelopes, but regarding the parameters of the model. A b-
spline model would here come handy because it yields easy relations when
deriving regarding the spline parameters. If we define envelopes xn as splines
of basis Bm(n) and of M coefficients αm we have :

xn =
M∑

m=1

αmBm(n)

For m ≥ 3 (i.e. using at least quadratic b-splines), these envelopes will be
band limited by the number M of breakpoints.
Then the gradient of the statistics of the sub band being updated is :

∂Ŝi

∂αm

=
∂Ŝi

∂xn

∂xn
∂αm

=
∂Ŝi

∂xn
Bm(n)

So it is just the gradient of the statistics regarding the envelope (that we
already know) multiplied by the basis function.
Unfortunately due to time limitations those methods haven’t been imple-
mented or tested. It should be noted that while using such a signal model
for the envelopes may band limit the envelopes during gradient descent, it
does not guarantee that the sub band signals will be band limited when the
envelope is re-combined with the phase. Also even if imposing the statistics
in one single gradient descent is neater, maybe slightly faster, and allows
more control over the algorithm, it may not yield better convergence of the
statistics, or better sounding results.
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4 Synthesis limitations

McDermott’s algorithm provides to this date the most compelling sound
texture synthesis without using original sound samples (such as in granular
synthesis). However there are still many cases where the algorithm yields
results that are not very convincing, or really far from the original examples.
This algorithm seems to be particularly efficient in the case of very noisy
and dense textures, thus implicitly fitting to the ”narrow” definition of sound
textures, but comes more unstable in other cases.
Sound examples would be more representative but as a substitute we use
spectrograms to compare original sounds and re-synthesis.

4.1 Limitations due to frequency resolution

Due to the logarithmic spacing of the auditory filters, there is a larger band-
width at high frequency. Fine frequency structure, such as a resonance cannot
be captured with those filters. This is demonstrated on the example below
(figure [6]). The sound texture is made of small cereal grains being poured
in a cup. The resonance of the cup can clearly be seen on the spectrogram of
the original sound. After re-synthesis, the frequency structure is completely
lost. Only remains a resonance around 300 Hz. Indeed filters being narrower
at low frequencies, low frequency resonances are still captured.
For the same reasons of frequency resolution of the model, phenomenons such
as chirps cannot be captured. This is particularly obvious in the example of
a sound texture made of insects sounds (figure [7]).
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Figure 6: Example of re-synthesis of a sound of grains falling in a cup. Top
is original, bottom is re-synthesis.
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Figure 7: Example of re-synthesis of an insects sound texture. Top is original,
bottom is re-synthesis.

We clearly see on the previous example that the chirped shape of individual
events is lost after re-synthesis. The re-synthesized events are just bursts of
noise.
What is surprising about this example is that even if we can clearly see the
degradation introduced by the algorithm, the re-synthesized texture sounds
very close to the original. This is the real power of the algorithm : even
if the synthesized sounds are only made of amplitude modulated noise, the
use of perceptual assumptions ensures that our perception will get ”fooled”.
However when listening carefully we can clearly hear the difference. We are
not able to distinguish individual events from the mass in re-synthesized
texture (we are for example unable to count the number of chirps, which we
could do with the original texture).
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4.2 About homogeneity

It seems that the sounds the algorithm failed most at re-synthesizing were
sounds that were statistically varying over time, i.e. sounds that were not
homogeneous. The sound texture considered here consists of gravels falling.
The re-synthesis yielded a very bad sounding result. The loss of time and
frequency structure can be seen on the spectrograms of figure [8].

Figure 8: Example of re-synthesis of a gravels sound. Top is original, bottom
is re-synthesis.

In order to demonstrate that the statistics are varying over time we split
the original sound into smaller segments of constant length and compute
statistics on each of these segments. On figure [9] we plot moments over
different time segments for the gravel sound. Each blue curve is a moment
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over a certain segment. If we compare with figure [10], where is plotted the
same analysis for a fountain sound, we can see that we have much more
variability for the gravel sound. Such behavior is also found when looking at
other statistics. This variability is the sign of a sound that is not statistically
homogeneous.
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Figure 9: Moments over different time segments, for a gravel sound. There
are 11 segments of 1 second, overlapping by 20%. Each blue curve is a
moment over a certain segment. The red curve is the mean over all segments.

When measuring the statistics as time-averaged for the whole sound we mea-
sure something that is close to the red curve. For a sound that exhibits such
variability as the gravel sound, the re-synthesis will necessarily yield a sound
that is not close to the original.
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Figure 10: Moments over different time segments, for a fountain sound. There
are 11 segments of 1 second, overlapping by 20%. Each blue curve is a
moment over a certain segment. The red curve is the mean over all segments.

To get a more precise measure of statistical homogeneity we compute the
variance of a statistic (here we choose modulation power) over time segments
as a function of the length of the segments. We do it for three sounds:
gravels, fountain and pink noise. The idea is to compare at which rate
the variance increases for sounds of different homogeneity. Indeed there is
a natural increase of the variance when the number of samples (e.g. the
segment length) gets smaller. This is why pink noise is chosen as a reference
for statistical homogeneity.
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Figure 11: Variance of the modulation power over time segments as a function
of the length of the segments.

The results are quite clear. The fountain sound evolves similarly to pink
noise for all but the shortest time scales. The gravel sound appears as more
heterogeneous at each time scale.
Homogeneity is often considered as a defining feature of sound textures. This
is what Saint-Arnaud describes as constant long-term characteristics (cf first
section). We are however convinced that the sounds we are dealing with here
clearly belong to the category of sound textures, if such a category does exist.
The gravel sound is a sound texture even if it is not homogeneous. This might
be evidence that time-scale could have an important role in the definition of
what a sound texture is. As seen on figure [11] the gravel sound seems
to be homogeneous for long segments (large time-scale). But its variance
increases exponentially at short time-scale. This would suggest that sound
textures are a multi-scale phenomena. Maybe including statistics of statistics
(such as the variance of certain statistics) to the set of statistics used in the
algorithm would allow to re-synthesize textures with a more complex high-
level structure such as the gravel sound.
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5 Understanding statistics : building the in-

tuition

As we’ve seen previously the present algorithm provides mainly a framework
to re-synthesize an existing sound texture. Our ultimate goal would be to
find meaningful ways of manipulating the statistics to induce modifications
of a sound texture. Our work constitutes only a preliminary step towards
this direction. In the next section a preliminary look at the possibility of
modifying sound textures via their statistics is presented.

5.1 Interpolation between sound textures.

5.1.1 Motivations

Finding relationships in a set of 1515 statistics is not something we can figure
out at first sight. As a first approach, interpolation between two different
textures seems to be an attractive way to modify a sound texture without
a thorough understanding of the statistics. In fact interpolation between
statistics has already been used in visual texture processing to produce in-
teresting mixes between textures (Portilla & Simoncelli, 2000).

Given a certain set of statistics Ai corresponding to a texture A and Bi

another set of statistics corresponding to a texture B, we define a texture C
whose statistics Ci are obtained by:

Ci = (1− x)Ai + xBi, ∀i ∈ stats, x ∈ [0, 1]

which is just linear interpolation between Ai and Bi.
The underlying idea of interpolation is that the generated sound texture C
would be perceptually ”in-between” A and B. However we have to note that
there is absolutely no guarantee that similarities in statistics correspond to
similarities in perception. Interpolation for modulation power is especially
meaningless. If we consider the case of two periodic sound textures of differ-
ent rate, interpolation will not yield a modulation power with energy located
on a modulation band of an intermediate rate, but a modulation power with
energy spread on the two modulation bands corresponding to the rates of
the original sound textures. The interpolated texture will thus not have an
intermediate rate, but an undetermined superposition of two rates.
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Before trying to use a more refined interpolation method, we first investi-
gate the simplest case of rain textures, where we interpolate between rains
of different densities but having modulation power close to that of noise.

5.1.2 The example of rain

The hard rain sound in this example is statistically very close to complete
noise. As an experiment we try to interpolate between a light rain sound
where we can hear some diffuse background rain with seemingly sparse drops
in the foreground and its spectrally matched noise version. The spectrally
matched noise is simply gaussian white noise filtered to match the spectral
shape of the hard rain. By using different values of the x parameter we ex-
pect to hear the presence of more or less foreground, as we tend towards the
lighter rain sound.
Unfortunately the interpolated texture doesn’t vary much with the value of
x. We are not convinced that what we obtain is an intermediate version
between the two sounds, or a rain that varies in intensity, but rather some
blurred version of the light rain sound. Rigorous perceptual tests would be
necessary to evaluate the pertinence of interpolation in this case and in gen-
eral.
Moreover even if ”good” interpolations were achieved, the main problem of
interpolation is that it doesn’t help in understanding the relationships be-
tween the statistics, or how they might vary with control parameters (phys-
ical or perceptual). In the following we shall consider textures with varying
density; density typically being a fundamental parameter of textures (Saint-
Arnaud, 1995).

5.2 Identifying higher-level parameters.

A way to understand and control sound texture synthesis via a statistical
model is too find higher-level relationships between the variation of the statis-
tics and the control parameter. If we could find some general pattern in the
way the statistics evolve when a sound is, for example, increasing in den-
sity, it may be possible to induce variations of density starting from a given
example of sound texture.
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5.2.1 Use of principal component analysis

Principal components analysis (PCA) is a well-known method for identifying
statistical relationships from experimental data. PCA aims at reducing the
dimensionality of the problem by projecting our data on a subspace while
keeping the variance of the data distribution. The algorithm successively
searches for the dimension along which the data variance is maximum, the
objective being to attribute most of the variance to a lower dimensional space.

We started by generating a set of artificially generated sound textures. These
textures where made of 5 seconds streams of short filtered noise events with
center frequency and bandwidth randomized. A set of 10 sound textures were
synthesized, their density, defined as the number of events per second, was
increasing from 5 to 160 (details on the artificial sound textures in Appendix
1). We first applied PCA on the set of 10 sound textures, analyzing only the
envelope moments over the 20th auditory sub band. We thus had 10 subjects
and 4 variables. The results of the analysis are shown on figure [12].

30



Figure 12: Results of PCA analysis on a set of 10 sound textures (red crosses)
of increasing density. The 4 variables (blue segments) are the moments over
one band. 99% of the variance of the data is expressed on the first two
components.

Once projected on the first two components, subjects are ordered by increas-
ing density, almost following a curve. This analysis confirms the intuition
we had in (3.1.1), with some refinement : when textures get sparser their
skewness and variance increase. Higher density textures tend to be driven
mainly by mean.
We then complete this analysis by including the moments over all the audi-
tory sub bands (figure [13]).
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Figure 13: Results of PCA analysis on the same set of sound textures, in-
cluding the moments for each sub bands (128 variables). Still 96% of the
variance of the data is expressed on the first two components.

This analysis confirms the tendency observed in the former, though it is
now harder to interpret, since we have a larger number of variables (128).
Nevertheless, what we observe is mainly a spread of the variables around the
4 variables of the former analysis. Means over each band and kurtosis over
each band tend to be grouped together. Only variance and skewness slightly
overlap.
Such analysis thus suggest that we might be able to derive a model for the
variation of density of sound textures. Given that principal components are
formed of linear combinations of the original variables, if we could fit a curve
to the distribution of subjects, we could then directly map variations on this
curve to variations of the original variables. However we would have to make
sure that PCA explains a sufficient percentage of the original variability of
the subjects distribution.
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5.2.2 Applying PCA on higher density sound textures

So far we have considered textures of relatively low density (up to 160 events
per second). In order to get closer to real life sound textures we now generate
artificial textures with higher density (cf Appendix 1). Randomization of the
amplitude was also introduced. The objective remains the same : trying to
point out relationships between the statistics when a higher level parameter,
here density, varies. First analysis only includes moments (figure [14]). The
density increases from 5 to 100.

Figure 14: Results of PCA analysis on a set of 5 textures, using the 4 first-
order moments. About 90% of the data variance is explained on the first two
components. Textures have been annotated with their density.

The results are not as good as for lower density textures. Indeed when dealing
with high density textures we have a massive overlap between events. The
analysis we made about how skewness and variance coded sparsity is thus
less applicable in this case.
Interestingly, if we include more of the statistics in the PCA analysis we can
see a tendency in the resulting analysis. The analysis illustrated in figure [15]
includes moments (without kurtosis), sub bands envelopes correlations (C)
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and modulation power (MP). Kurtosis was removed because it didn’t prove
to be very relevant for synthesis and it has an almost unpredictable behavior
when dealing with high density textures which could upset the analysis. We
still have a significant amount of the variance of the data explained on the
first two components (83%), which means that we have achieved a drastic
dimensionality reduction losing surprisingly little information. The texture
distribution could almost be fitted with a linear curve, but the first texture
is an outlier.

Figure 15: PCA analysis on a larger set of textures, using the 3 first-order
moments, envelopes correlations and modulation power for each sub bands
. Only 83% of the data variance is explained on the first two components.
Textures have been annotated with their density.

The results of this analysis show that the variation of the statistics of the
textures under investigation does have some tendency. The moments of the
simple textures analyzed (figure [12] and [13]) vary in a predictable way, this
show promise for the possibility of modeling of the variation of moments with
density. In the following we will investigate the other statistics of the model
and their variation with density.
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5.2.3 Correlations

We will briefly introduce the variations of correlations with density through
a simple example (quasi-periodic texture made of broadband noise bursts).
For this example we use a linear filter bank instead of the usual logarithmic
filter bank to simplify visualization.
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Figure 16: Comparison of correlations for a texture with a density of 4 (left)
and a density of 30 (right).

In this example all bands are highly correlated since we are dealing with
broadband events, and it makes a flat correlation. Using logarithmic filters,
we would have more energy in the high frequency bands. Increasing the
density has the effect of scaling down the correlations. Although it may
seem counter-intuitive at first sight, because both textures have the same
frequency structure, it actually makes sense if we consider that increasing
the density is like tending towards white noise. High density textures would
then exhibit correlations that are close to that of noise, whereas low density
textures would be more correlated.

5.2.4 Modulation power

As discussed in (3.1.1) the modulation power encodes the temporal structure
of the sub band envelopes. The evolution of modulation power for an artificial
texture (similar to those of used in the PCA analysis above) with density
increasing from 100 to 800 events per second is presented in figure [17].
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Figure 17: Modulation power for artificial textures with randomized events.
These for examples have densities of 100, 200, 400 ad 800 (cf Appendix for
details).

Although there is no precise pattern in the evolution of modulation power we
can note that at low density the energy seems to rather spread over the low
rate modulation bands (left of the picture). When density increases, mod-
ulation power progressively shifts to the right, to the high rate modulation
bands. In fact, as the density increases the modulation power tends towards
that of noise.
The role of the modulation power can be illustrated more clearly with a more
deterministic signal. Here we consider the modulation power of signals com-
posed of quasi-periodic broadband events (figure [18]), the rate going from
10 Hz to 30Hz.
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Figure 18: Modulation power for periodic artificial textures with broadband
events. Rate increases from 10 Hz to 30 Hz.

We can see that there is a large spread of energy over modulation bands
for the low rate texture. The signal being made of quasi-periodic events, its
envelope has an almost harmonic spectrum. Since the modulation filters are
narrower at low frequency, the presence of higher harmonics in the envelopes
induces a spread of energy over the modulation bands. But since the filter
gets wider at high frequencies, all the harmonics of the envelopes are covered
by a single modulation filter (though there is some spread over the neighbor-
ing modulation bands due to the overlap of the filters). Thus rate changes
between high-rate textures consists mainly of a shift of the modulation power.

We tried to apply this observation to a quasi periodic texture, in the follow-
ing case a sample of a helicopter. In order to have control over the rate of the
helicopter sound an artificial helicopter texture was synthesized (Appendix
1). For two sounds of close rates, all the statistics but the modulation power
remained quite similar. By manually shifting by one band the part of the
modulation power which coded the low frequency periodic noise bursts of the
helicopter sound and keeping all the other statistics, we managed to synthe-
size an helicopter sound of lower rate and higher rate. This rate change is
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analogous to the pitch shifting of harmonic sounds.
This experiment was performed for small rate changes. For larger rate change
we would need to model the change of the spectral envelopes of the modula-
tion power, very much like when pitch-shifting a sound with a phase vocoder.
For larger shifts of rate the other statistics will also change significantly. An
important conclusion from the above observations is that for textures with
randomly distributed events the modulation power tends towards that of
noise with increasing density, while for quasi periodic textures the modula-
tion power varies in a way analogous to the pitch shifting of quasi harmonic
sounds.

6 Conclusion

This work presented investigations on the use of a statistical description to
synthesize sound textures. We have seen that the algorithm we have been us-
ing, despite producing very compelling results in some cases, does not cover
all the generality of what a sound texture can be.
Limitations in the algorithm may arise from its current implementation,
which allows very little control on how the statistics converge. Suggestions
have been made on how to improve the implementation, for example using a
spline model for the envelopes, though it might be a deeper problem of the
combination of phase and envelope. But most probably limitations are due
to the use of an incomplete set of statistics. We have seen that sound textures
with multi-scale patterns and long-term modulations cannot be correctly en-
coded with the current set of statistics. Using statistics of statistics might be
a possible solution to improve this point while still only using time-averaged
statistics.
Synthesizing sound textures from statistics is an interesting approach be-
cause it allows one to generate arbitrarily long textures from a restrained
number of parameters. This could be very useful for coding purposes. How-
ever introducing general meaningful modifications to sound textures from
a statistical description is not something we are close to being able to do.
The present work just sketches a first step towards understanding the statis-
tics. Our most important conclusion is that when random textures increase
in density their statistics, especially modulation power, tends towards that
of noise. However in the case of quasi-periodic textures, modulation power
could be used for some sort of pitch-shifting purposes. For further investi-
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gations we would need to refine our methodology and start by identifying
higher-level perceptual parameters that apply to all textures. But even if
we were to find such a set of parameters, the definition of each parameter
could vary from one texture type to another. The density of a wind sound is
probably something very different to the density of a rain sound, and could
yield completely different statistical behavior.
This work mainly provided a analysis of what McDermott’s model could do,
discussed its limitations and made the link with a the theoretical definition
of sound textures. We also presented a first attempt to describe how higher-
level parameters, here through the example of density, could be coded in a
statistical framework. This latter investigations would need to be refined in
further research work.

References

Athineos, M., and Ellis, P. (2003). Sound Texture Modeling with Lin-
ear Prediction in both Time and Frequency Domains. Proc. ICASSP-
03.

Dubnov, S., Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., and Werman,
M. (2002). Synthesis of audio sound textures by learning and resam-
pling of wavelet trees. IEEE Computer Graphics and Applications

Erdreich, J. (1986). A distribution based definition of impulsive noise.
J. Acoust. Soc. Am. Volume 79, Issue 4, pp. 990-998.

Hoskinson, H., and Pai, D. (2001). Manipulation and Resynthesis with
Natural Grains. Proceedings of the International Computer Music Con-
ference (ICMC), pages 338–341.

Lu, L., Wenyin, L., and Zhang (2004). Audio Textures: Theory and
Applications. IEEE Transactions on Speech and Audio Processing, Vol.
12, No. 2.

McDermott, J.H., and Simoncelli, E.P. (2011). Sound Texture Per-
ception via Statistics of the Auditory Periphery, Evidence from Sound
Synthesis. Neuron.

39



McDermott, J.H., Oxenham, A.J., and Simoncelli, E.P. (2009) Sound
Texture Synthesis via Filter Statistics. IEEE Workshop on Application
of Signal Processing to Audio and Acoustics.

McDermott, J.H., Schemitsch, M., and Simoncelli, E.P. (2013). Sum-
mary Statistics in Auditory Perception. Nature America.

Misra, A., Cook, P.R., and Wang, G. (2006). A New Paradigm for
Sound Design. Proc. of the 9th Int. Conference on Digital Audio
Effects (DAFx-06).

Mölhmann, D. (2011). A Parametric Sound Object Model for Sound
Texture Synthesis. Phd Thesis, University of Bremen.

Portilla, J., and Simoncelli, E.P. (1999). A Parametric Texture Model
Based on Joint Statistics of Complex Wavelet Coefficients. Interna-
tional Journal of Computer Vision.

Saint-Arnaud, N., and Popat, K. (1995). Analysis and synthesis of
sound textures. Readings in Computational Auditory Scene Analysis,
pp. 125–131.
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7 Appendix 1: Artificial Sound Textures

Analysing only recorded sound textures brings some limitations because from
one example to another we cannot control exactly how parameters are vary-
ing. For example two rain sounds are never produced in the exactly same
conditions and when we choose two samples of different densities there is
actually a number of other parameters that could change, like the type of
ground - grass, concrete, etc - or the point from where the sound is recorded,
the type of microphone used...
In order to gain more control over what we are studying we choose to syn-
thesize artificial textures.

7.1 Random noise bursts streams

These artificial texture are inspired by Saint-Arnaud’s two-level description
of sound textures. The individual events were generated by inverse Fourier
transform. Frequency regions - which bandwidth and center frequency were
randomized - were convolved with the Fourier transform of a Hanning window
- which time width was also randomized - thus yielding Hanning shaped time
events. Amplitude of each event could also be randomized.
The events were then put in a stream. The spacing between two events was
randomized, but constrained on one hand by the desired density (defined as
the number of events per second) and on the other hand by a ”periodicity”
parameter . A ”periodicity” of one meant a completely periodic texture,
density thus being frequency in that case.
The generated textures had a bandwidth between 200 Hz and 10000 Hz, a
time width between 20 ms and 50 ms and a periodicity of 0.5. All random
distributions were uniform.
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Figure 19: Example artificial texture. Density is around 10 events per second.

Periodic noise bursts streams

Periodic noise bursts streams were produce with the same method as pre-
sented previously. We removed all randomization in time and frequency and
made the events broadband. Density thus here corresponds to the rate of
the events.

7.2 Artificial helicopter

The synthesis of helicopter sound was inspired by a recorded sample of he-
licopter. The original helicopter sound is mainly composed of low frequency
noise bursts with static background noise. We synthesized artificial heli-
copter sounds by generating a spectrally matched noise based on the original
helicopter sound and then by adding low frequency noise bursts generated
with the previous method. The spectrally matched noisee is basically white
noise which is filtered so that it has the same time-average spectrum as the
original sound. Figure [20] presents original version and artificial.
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Figure 20: Example of re-synthesis of a helicopter sound. Top is original,
bottom is synthesized.
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