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This report sums up a Master of Science internship done between March and July 2013 at Télécom
Paris. The original purpose was to test the convex method for signal reconstruction from STFT mag-
nitude proposed by Sun and Smith in their paper of 2012 [Sun and Smith, 2012] and to compare it
to the state of the art, in particular the now standard Griffin-Lim algorithm [Griffin and Lim, 1984].
The Sun-Smith algorithm performs well on very small sizes of signal. From 128 samples it becomes
very slow because of the multiple diagonalizations that are very computational. It was then decided
to try to improve the Griffin-Lim algorithm. Exploiting the mathematical properties of the short-
term Fourier transform, in particular the variation of magnitude under temporal phase shifts, several
questions arose. Most of them, unanswered, are stated at the end of this report.

Key-words: short-term Fourier transfom, magnitude, signal reconstruction, phase, phase re-
trieval, convex optimization, semi-definite programming, relaxation, PhaseLift, Hilbert transform,
time-frequency representation.

Ce rapport résume ’ensemble des travaux de stage de M2 effectués par I'auteur entre mars et
juillet 2013 & Paris dans les locaux de Télécom. L’objectif originel de ce stage était de comparer
la récente méthode convexe proposée par Sun et Smith [Sun and Smith, 2012] dans leur article de
2012 pour reconstruire un signal temporel & partir du module de sa transformée de Fourier & court
terme, puis de la comparer & ’état de l’art, en particulier au classique algorithme de Griffin et Lim
[Griffin and Lim, 1984]. L’algorithme de Sun et Smith s’est avéré performant pour des signaux de
trés courte durée. Au-dela de 128 échantillons cependant, les diagonalisations successives le rendent
trés lent. Il a par la suite été décidé de chercher par diverses maniéres d’améliorer I’algorithme de
Griffin et Lim. Pour cela, les propriétés mathématiques de la transformée de Fourier & court-terme
ont été explorées, en particulier la variation de module causée par un déphasage temporel. Le re-
coupement des résultats théoriques avec des simulations numériques et avec les résultats que donne
I’algorithme de Griffin et Lim ont été la source de nombreuses questions dont la plupart sont pour
I'instant restées sans réponse.

Mots-clés : transformée de Fourier & court terme, module, reconstruction de signal, phase, recon-
struction de phase, optimisation convexe, programmation semi-définie, relaxation, PhaseLift, trans-
formée de Hilbert, représentation temps-fréquence.
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Notations

This page sums up the notations used in the report. These notations do not hold in a section where
another use is made of the symbols.

Indices, vectors, matrices

e k, n, m refer to the index of a discrete signal.

e 0: N —1 refers to the set {0,--- ,N — 1}. It is generally used in order to define the support
vector of a discrete function. Example: sin(27(0 : N — 1)) = {sin(27n),n € {0,--- ,N — 1}.
This is actually a Matlab-like notation.

e t, 7 refer to a continuous time variable.
e w refers to a continuous frequency variable.

e 1, y, s generally refer to temporal signals. If it is not precised if they are discrete or continuous,
the index may help.

e When there is no ambiguity on a temporal signal, F' refers to its Fourier transform.
e When there is no ambiguity on a temporal signal, S refers to its short-term Fourier transform.

e When there may be an ambiguity, if z; (resp. z2) is a temporal signal, X; (resp. X») refers to
its short-term Fourier transform.

Conjugation, scalar products, norms

e i and j refer to the same unitary imaginary number defined by i = j2 = —1.

Let z be a complex number.
o R (resp. ) refer to its real (resp. imaginary) part, so that z can be written as z = R(z) +i3(z)
with (R(2), S(z)) € R2.

e z* refers to the complex conjugate of z.

e |z| = V/zz* refers to the magnitude of z. The magnitude is a 2-norm on complex numbers.

Complex-valued functions

Let f be a complex-valued function, discrete or continuous. Note that a discrete function with
finite support can be represented as a vector in a finite dimension vector space. Example:
f(0: L —1) € C* means that f has for support 0: L — 1.

f* refers to the complex conjugate of f, i.e. to the complex function f = R(f) —iS(f).

If f and g are two complex-valued functions defined on a same set D C R, the scalar product
of f and g is defined as



<fag>:/Df(tla;tN)g*(tla;tN)dtldtN

The L?-norm of f is noted || f||2 and defined by

1FI2 = (. ) = /D Fltr, o tx) Pty . dby.

Complex matrices

Let A be a M x N matrix.

a0,0 cen ag,N—1

apM-10 -+ AM—-1,N-1
A* refers to its N x M conjugate transpose. Note that a vector is a matrix with only one line
or column.

* *
ag.o ajr-10

Ao N—1 -+ ON_1M-1
If Ais squared, i.e. M = N, its trace is defined by tr(A) = Zi]\;_ol @i

If A and B have the same size, the usual scalar product is

(A, B) = tr(AB*).

It defines the Frébenius norm | - || such that || A[|? = tr(AA*).

Transforms

In this report, short-term Fourier transform, Gabor transform and spectrogram refer to the
same concept of mapping a signal depending only on time towards a signal depending both on
time and on frequency.

F refers to the Fourier transform operator. If = is discrete (resp. continuous), F' = F(x) is its
discrete- (resp. continuous-) time Fourier transform.

S refers to the short-term Fourier transform operator. In the discrete case, it maps a vector x
to a matrix S = S(x) being its short-term Fourier transform. In the continuous case, it maps
a one-temporal-variable function x(t) to a two-variable function S(7,w), one variable being
temporal (7) and the other one being a frequency variable (w).

U refers to the Gabor transform. The difference between ¥* and S is conceptual.
‘H refers to the Hilbert transform.

The identity operator or matrix is noted I or Id.



Télécom ParisTech - Département TSI

The TSI department is one of the four departments in charge of teaching and research within Télé-
com ParisTech. The acronym TSI stands for “Traitement du Signal et des Images” meaning Signal
and Image Processing. For its research activities, the department belongs to UMR CNRS 5141 LTCI.

The missions of TSI are teaching and research in the domain of signal processing and image
processing. Its objectives are:

e studies on images under all its forms, digital, optical... for various applications : medical,
satellite, artistic. ..,

e studies on speech, sound and music,
e studies on multimedia documents, video.
The main research topics are:

e development of algorithms and statistical processing techniques, in particular for model learn-
ing,
e multimedia indexation, sensor networks, biometrics,

e coding and transmission for multimedia communications.

Information taken from the website http://www.tsi.telecom-paristech.fr/


http://www.tsi.telecom-paristech.fr/

Introduction: The phase recovery
problem

The challenges of phase recovery

This section presents the main challenges of phase recovery and the different fields of application,
from 1-D signal to 2-D image signal processing or, of course, STF'T magnitude.

Finding a signal from Fourier data with missing phase information has been a challenge for at
least half a century. Some measurements in physics are made in the Fourier domain and only the
magnitude can be actually measured. In order to get the associated temporal signal, one has to find
the phase from the magnitude data.

In his 1978 PhD thesis on time-scale modification of speech based on short-time Fourier analysis
[Portnoft, 1978|, Michael R. Portnoff finding an "improved estimate of the fm component of the
phase of the short-time Fourier transform, perhaps, by a better estimator than [a] simple difference
scheme" as further research. Here is another reason why we should do phase retrieval, and which
is more closely related to music or speech. Some modifications of a sound signal are made on their
short-term Fourier transform and only operate on its magnitude, while the phase carries audible
information. That is why we shall focus, in this study, on the reconstruction of an audio signal from
the magnitude of its short-term Fourier transform.

The general phase recovery problem

The phase recovery problem can be formulated in a general way as suggested by [Waldspurger et al., 2012].
Let = € CP denote the signal we want to retrieve, but assume we only know the amplitude b = |Az| €

R™ of n linear measurements. A denotes a linear operator, i.e. a matrix of C"*P which can be

a STFT operator in sound processing, or a 2-D Fourier operator in image processing. The phase
retrieval problem can be formulated as

find =«
such that |Az| =0 (1)

where the operator |- | on C is such that |[y| =b< |y;| =b;, i =1,...,n.

The main existing algorithms

The main algorithms of the literature are presented, essentially |[Gerchberg and Saxton, 1971] and
[Griffin and Lim, 1984]. They are all alterned projections algorithms.

The Gerchberg-Saxton algorithm

The Gerchberg-Saxton "puts forward a rapid computational method for determining the complete
wave function (amplitudes and phases) from intensity recordings in the image and diffraction planes"
[Gerchberg and Saxton, 1971]. Published in the journal Optik in 1971, it was to be applied to 2-D
signals of image recordings. It uses mathematical properties of the 2-D Fourier transform: "the



method depends on there being a Fourier Transform relation between the waves in these two planes
and hence constrains the degree of temporal and/or spatial coherency of the wave."

Actually this is an alterning projection algorithm. It computes iterates y', y2, --- of a spectral
signal y whose only magnitude is known. The first projection step is the application AAt. The second
step is the projection onto the set of complex matrices with same magnitude. Waldspurger et al.
sum up the Gerchberg-Saxton algorithm in [Waldspurger et al., 2012]. They call

F={yeC" |yl =0}

Data: An initial y' € F

Result: yV ¢ F

fork=1,...,N—-1do

(AATYM);

k+1 _ bz
[(AATYF),|

Y; ,i1=1,...,n
end
Algorithm 1: The Gerchberg-Saxton algorithm as explained by Waldspurger

The Griffin-Lim algorithm

The Griffin-Lim algorithm has been the most widely used phase-retrieval algorithm for audio signals
for the last 30 years.

It is a reformulation of the Gerchberg-Saxton algorithm to the case where instead of the operator A
is a short-time Fourier transform operator ¥, such that ¥z (7,w) is the short-time Fourier transform
of x. The Griffin-Lim algorithm can be summed up as follows. L is the length of the temporal
signal s. M and N are respectively the number of rows and the number of lines of the STFT
matrix. Those parameters will be explained in the chapter on time-frequency analysis. S* denotes
the STFT calculated by the algorithm at k*" iteration of the algorithm. The last iterate called I,q4
generally depends on the convergence of the distance measure between estimate and objective on
STFT magnitude.

Data: An initial STFT magnitude W € RJEN

Result: s € RF

while k < [,,,4, do

VUTSk (T w)

S ) = Wrw) rcr o

end
5 = WGlmas
Algorithm 2: The Griffin-Lim algorithm

The Griffin-Lim algorithm has become a classic method for short-time Fourier phase retrieval.
It has been shown since its creation that it is not convex. Sturmel and Daudet clearly explain in
[Sturmel and Daudet, 2011] what problems the Griffin-Lim algorithm may encounter. In particular,
stagnation is caused by an indetermination of the phase difference from one windowed section to
another. It may lead to sudden sign inversions in the reconstructed signal, as shown in figure[I] Such
a signal is a stable local minimum for the distance used as convergence criterion. The development
of convex optimization and the applications to signal processing, in particular in image processing
and X-ray cristallography, led to the attempt of find a convex method for short-time Fourier phase
retrieval.
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Figure 1: Example of stagnation taken from [Sturmel and Daudet, 2011

Convex methods

Recently, in 2012, Dennis Sun, who is currently doing his PhD at Stanford, adapted techniques of
convex optimization developed by Candeés [Candes et al., 2011 to the case of the STFT. He thus
presents a method called STIfT [Sun and Smith, 2012] that converges to a unique solution, claiming
that it is a more efficient method than the previous non convex ones.

Convex optimization is quite a recent theory in programming, it is a generalization of linear
programming. Once again it is an alterned projection method.

One has to define a cost function that must be convex and constraints that must be convex too.
Those constraints are to reduce the set of definition to a smaller subset where the solution is likely
to be found. If both the cost function and the constraint are convex, different theorems allow to
build a converging sequence of elements towards the minimum argument of the cost function. That
minimum is unique thanks to convexity.

In order to retrieve the phase of the STFT using convex optimization, we are going to use a
projected gradient method. A condition for applying such a method is that the gradient of the cost
function is Lipschitzian. The cost function does not have to be differentiable all over the set of
definition. The projected gradient method makes use of the proximal operator associated to the cost
function.

Objectives

This report sums up the work done during a 4.5 month internship. Several problematics were raised
concerning the phase retrieval of the short-time Fourier transform. The most important, although
very simple, question that may sum up those problematics can be formulated as :

How does the redundancy of information in short-term Fourier transform make possible that part of
the phase information is contained in the magnitude data?

This report does not bring the definitive answer to that question, as the objective of science
is more to understand the questions than to find the answers. Theroetical considerations both on
continuous signals - for convenience of the calculus - and on discrete signals - for the implementation
purposes that are inherent to any knid of research on discrete signal processing - try to find out where
the phase information that is lost a priori can be extracted.

The most important elements of answer are given by the algorithms that build a phase from the
magnitude. However, although the convergence of the algorithms is mathematically proven, a better
understanding of their framework could help to improve them.

10



Organization of the report

The first chapter of this report brings a short mathematical overview of what is nowadays called the
phase, especially in the signal processing field. The notion of phase of a discrete real signal is not
very well defined, although the use of the Hilbert transform could help figuring out what it could be.

The second chapter starts where the first ended, that is on the time-frequency analysis. This
discipline is not a hundred years old yet, but has been, under a different name, the theoretical back-
ground of the major scientifical and philospohical breakthrough of the twentieth century : quantum
mechanics. The present report does not extend on the links between signal processing and quantum
mechanics, although a long and extremely interesting discussion could be possible. It focuses on the
different interpretations of the time-frequency representations that are associated to different streams
of research of the 20th and 21st centurt, mainly:

e Gabor pioneering, a communication theory approach,
e the renewal in the 1970’s due to the phase vocoder,

e the latest algebraic approach led by wavelet theory.

The third and fourth chapters present the algorithms that were studied and implemented during
the internship. The Griffin-Lim algrorithm, that is older, is presented first, with the difficulties
of reconstruction that arise from its implementation. Then, an amelioration of the algorithm is
discussed, made on assumption that are justified both by calculus and numerical simulations.

The convex optimization method is presented in the fourth chapter. It sums up the recent
article by Dennis Sun and Julius Smith that proposes another algorithm. The main difficulty of
this algorithm is that it needs diagonalize a very large matrix.

In the fifth chapter, the Griffin-Lim algorithm and Sun-Smith (STIiFT) algorithms are compared
on two types of signals :

e white noise random signals,
e pure sine signals,

taking into account both the precision of the reconstruction and the time of calculation.

11



Chapter 1
Time-Frequency Analysis

This chapter presents the main results in time-frequency analysis.

1.1 Gabor pioneering

The physicist Dennis Gabor (1900-1979), Nobel Prize in 1971, makes a description of the goals of
time-frequency analysis in his Theory of Communication [Gabor, 1946]. Essentially focused on the
"transmission of data", he presents "points on which physical feeling and the usual Fourier methods
are not in perfect agreement". As an example, working on complex signals is the only way to have
only positive frequency components.

Gabor was interested in different ways to represent signals. He defines an "elementary signal" as

P(t) = exp (—a®(t — to)* + j(2m fot + ¢))

that is a pure complex monochromatic signal windowed in time by a gaussian. This signal has
gaussian envelopes both in time and frequency with respective temporal and spectral width

w1
At =,]/——
2«

Af 1
= —0
2

that ensures that the Heisenberg inequality is here an equality:

1
AIAf = .

A signal like 1 ensures that each rectangle of size At x Af in the time-frequency plane has the
minimal size allowed by the Heisenberg inequality. For Gabor, an interpretation on data transmission
is that such a rectangle carries the minimal amount of information. He calls the information a logon.
For a given signal, the corresponding logon are complex values that can be stocked into a time-
frequency matrix C' = (¢nk), each coordinate of the matrix corresponding to its coordinate in the
time-frequency plane, discretised such that

t, = nAt
fe =kAf

An example of such a matrix, that can be infinite for unbounded signals, is presented on figure
L1l

Gabor wanted to represent any kind of signal as a weighted sum of signals, given that one can
switch from the matrix representation (c,x) to a temporal representation (t) by summing over all
time frames n and frequency frames k.
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Figure 1.1: A representation of signal by a matrix of complex amplitudes proposed by Gabor
[Gabor, 1946]

One can see in this formula the expression of the discrete inverse short-time Fourier transform
with a Gaussian window. This is probably one of the first attempts to build a time-frequency
representation. It took place in 1946. It was then established that there are more accurate ways
to represent a signal in the time-frequency plane, using different windows of analysis like Hann,
Hamming or Blackman. The main reason to use a different analysis and/or synthesis window in
Fourier analysis is its spectral properties, like the bandwidth of the main lobe and the decreasing
rate of the sidelobes. This properties are very important when working on discrete signals because
spectral leakage due to the use of a discrete transform is unavoidable.

1.2 A unified approach in the 1970s

The use of the short-term Fourier transform became common in the 1970s, when computers became
powerful enough to compute Fourier transform in reasonnable amounts of time — and when Cooley
and Tukey successfully introduced their algorithm of fast Fourier transform [Cooley and Tukey, 1965].
The work of Flanagan [Flanagan and Golden, 1966] and Portnoff [Portnoff, 1976] on the phase vocoder
made a use of the short-term Fourier transform. Different interpretations and techniques were for-
mulated concerning the STFT and its inversion. This multiplicity led the researchers Jont B. Allen
and Lawrence R. Rabiner to publish A Unified Approach to Short-Time Fourier Analysis and Syn-
thesis in 1977 [Allen and Rabiner, 1977]. They sum up the main definitions and results useful for
time-frequency analysis. Of course, this list has been widely extended since the wavelet approach,
but it remains a useful toolbox for understanding the framework of STFT.

1.2.1 Definition of the short-time Fourier transform for discrete signals

They give the following definition of the STFT of a discrete real signal x(m), m € Z using an analysis
window w(m):
o0
X, (ed9r) = Z w(n —m)x(m)e 4™ n k€ 7.
m=—0o0

Note that X,,(e/“*) can be seen as the (n, k)*" element of a matrix, just like the (c,z) coefficients
we were previously talking about. n stands for a discrete time frame and wy, € [0, n] for a discrete
frequency variable, up to multiplication by 2w. Note that due to Hermitian symmetry we do not need
to consider the STFT on negative frequencies.

One of the main difficulties in time-frequency analysis is the multiplicity of the interpretations of
the transforms.

Interpretation as a convolution product

Allen and Rabiner give a first interpretation of the STFT as a convolution product:

13



X, (7)) = [z(n)e 7] % w(n).

Here X,,(e“*) is viewed as a function of n for fixed wy,.

Interpretation as a simple Fourier transform

The second interpretation consists of seeing X, (e/“*) as a function of wy, for fixed n. Let y,(m) be
the signal z(m) windowed by the reversed analysis window w(—m) shifted of n samples:

yn(m) = z(m)w(n —m).
Then the STFT of x(m) on frame s is the regular Fourier transform of y,,:

X, (7Y = Flyn }(e?“*),n, k € Z. (1.1)

1.2.2 Inversion of the short-time Fourier transform

As there were two ways to interpret the short-time Fourier transform, two methods exist to built the
temporal signal x(m) given the comples coefficients X,,(e/“*) of its STFT. As Gabor explained in
[Gabor, 1946, the reconstruction is made by summing over all the temporal and frequency coefficients.
Here again, we present the article of Allen and Rabiner [Allen and Rabiner, 1977].

Filter-Bank Summation (FBS)

This method uses the assumption that the Fourier transform in [1.1]is performed on equally spaced
points of the complex unit circle, i.e.

21k L
— k=0,1,...,=.
L) ) ) 72

L is here the order of the Fourier transform. The reconstructed signal

y(n) = 30 Xa( )
k

WE =

is a scaled replica of z(n) according to the relation

y(n) = Lw(0)xz(n).

The so-called Filter-Bank Summation allows perfect reconstruction from STFT coefficients if the
order L of the Fourier transform used in[L.1]is larger than the length N of w(n). A necessary condition
for the reconstruction to be exact even if L < N is that

w(rL) = 0,Vr.

OverLap Addition (OLA)

The main assumption in OLA method is to admit that the analysis window is sampled at a sufficiently
dense rate so that holds the relation

Z w(m —n) = W(el?), vn.

m

The OLA method builds the signal

ORI ACA

m k

that allows the following scaled reconstruction:

y(n) = La(n)W (29).

14



The methods presented above allow time-frequency analysis using short-time Fourier transform,
and perfect reconstruction of the temporal signal is made possible with few assumptions on the
analysis window. The next paragraph will present more recent time-frequency analysis methods
using more algebra. They offer a different interpretation of the STFT coefficients who are considered
as scalar products.

1.2.3 Hop size of analysis window

It is possible to define the short-time Fourier transform of a signal x(n) such that the analysis window,
of length NV, is shifted of H samples. It is necessary that H < N, that means that two consecutive
windows must overlap each other of at least one sample.

X, (ed9r) = Z w(n — Hm)z(m)e I“em,

m=—00

Note that the previous case corresponds to H = 1. Two consecutive analysis windows overlap
each other of R = N — H samples. This new definition leads to a different sampling rate for the
temporal variable of STFT coefficients (X,,(e/**)).

1.3 Theory of Gabor frames

The time-frequency analysis initiated by Gabor has been even more developped later in the 20th
century with algebraic tools that allowed different interpretations of what a time-frequency represen-
tation can be and gave supplementary results in perhaps a more elegant way.

As [Mallat, 2008] and [Kaiblinger, 2005] state, the STFT coeflicients (c¢,x) can be seen as a scalar
product instead of a convolution.

Cnk =< T, Gnk >
where g, (m) = w(n —m)el“s". The scalar product < -,- > is defined as

<zy>=ayl =) z(n)y(n)’

n

for discrete complex x(n) and y(n), the asterisk meaning complex conjugate.
In order to extend such an interpretation of time-frequency analysis, the theory of Gabor frames
makes use of a Gabor system, that is defined as a family of functions

G(g,a,b) = {gri : k,l € Z}
with gri(n) = g(n — ka)e/2 i

A Gabor system is a frame if there exist constants A, B > 0 such that for any signal
Allz|* < > [ < @90 > [ < Blla|*.
k,leZ

One essential condition on a and b for the Gabor family to be a frame is ab < 1. Note that in the
unified approach of STFT described in latest paragraph, we had a = H < N —1and b = 1/L, so

that ab < N- 1. If N <L, the STFT is a frame.
Finally, the dual Gabor frame of a Gabor frame gy, is the frame gi; such that

z(n) = Z <@, gk > Gri(n) = Z <@, Grt > gr(n).

k,l k,l

The dual Gabor frame generalises the inversion of short-term Fourier transform to any type of
Gabor frame anaysis. A powerful Matlab toolbox for Gabor analysis called 1tfat is available online.
It has been used for the time-frequency operations in all the numerical simulations presented in this
report.
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Chapter 2

The phase

2.1 Different phases

The phase is a parameter that allows one to extend the set of real numbers to the set of complex
numbers. The phase is related to rotations in the complex plane, thus it links complex numbers or
signals to trigonometry and Fourier analysis.

2.1.1 Definition of the phase of a complex number
There are two ways to define the complex numbers which both lie on the unit imaginary number ¢
defined such that

i? = —1.

A complex number z can be written as the sum of its real and imaginary part:

z=a+1b, (a,b) e R X R,

where a = Rz is the real part of z and b = Sz is its imaginary part. C = {a+1ib, (a,b) € R xR} is
a 2-D real vector space spanned by 1 and . The real axis R and the imaginary axis iR = {ib,b € R}
are vector subspaces of C.

A complex number can also be written as the product of its magnitude and of a phase term.

z=pe? (p,0) € [0, +00[x[0, 2]

where p = |z| is the magnitude of z and 6 = arg z is the argument, or phase, of z. The following
mapping allows one to switch from the real and imaginary part to the magnitude and phase.

P = /a2 + b2
b (2.1)
0 = arctan —
a
The second equality in system [2.1] shows that if z is real we have b =0 and 0 € {0, 7}.

2.1.2 Phase of a complex signal

Let s be a signal in a set {X¥ — C} where X can be Z for discrete signals or R for continuous ones.
The phase of s is the signal 6 € {X — [0, 27[} such that

Vo € X,0(x) = arg[s(z)]

Note that if we consider the set of real signals {X — R} all signals will have a zero phase. This
is the case for signals such as audio signals that represent a variation of a localized pression field or
a variation of voltage. The definition of phase given above becomes interesting when we consider
signals with non-zero imaginary part. Complex signals appear when we apply complex operators on
real signals, such as the Fourier transform.
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Figure 2.1: Visualization of the spectral components of a sound on the magnitude of STFT

2.1.3 Phase of the Fourier transform of a signal

Continuous signals The Fourier transform of a real signal s € L?(R) is the complex signal Fs €
L?(R) where F is the Fourier operator such that

F{s}w) = /Rs(t)e_%”“tduw eR.

It may be separated in its real and imaginary part

Fishw) = |

A s(t) cos(2mwt)dt — z/ s(t) sin(27wt)dt.

R
So, the phase of the Fourier transform of s is the signal

6(w) = — arctan Jg s(t) sin(2mwt)dt (2.2)
Jg s(t) cos(2mwt)dt ’
with the convention arctan(+oo) = :I:g
Discrete signals For a discrete signal s € RV, its Fourier transform is
N-1 .
F{s}(k) = Z s(n)e ™ N ke0: N -1
n=0
so that the phase of F{s} is
N-1 .
2nk
0(k) = — arctan 2o 8(n) sin(2rnk) . (2.3)

Zg;ol s(n) cos(2mnk)

Relations and show that the phase 6 of the Fourier transform of a real signal s carries
information on s, both if this signal is continuous or discrete.

The generalization of the phase to a higher dimension signal set is as straightforward as the
generalization of the Fourier transform itself. Most achieved techniques of phase retrieval work on
2-D diffraction patterns.

2.1.4 Phase of the short-term Fourier transform

The short-term Fourier transform, or Gabor transform, can be viewed as a 2-D transform of a 1-D
temporal signal which aims to describe its behavior according both to time and frequency. That is
why one calls such a signal a time-frequency representation.
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For a temporal signal s(t) we will call U*{s}(w, 7) its short-time Fourier transform. ¥* denotes the
short-time Fourier transform operator, whose conjugate operator is ¥ the inverse short-time Fourier
transform operator such that ¥{¥U*{s}} = s. Their expression for continuous signals are given in
appendix.

By displaying the magnitude of |¥*{s}(7,w)| with a colour code, one can see the variations of
the spectral composition of a signal. An example is given on figure 2.1} The analyzed signal is
s = sin (QWFf(O : 50)), where f = 440 Hz is a constant frequency and F, = 4410 Hz is the sampling

€
frequency. The time-frequency representation on the right shows the magnitude of |¥*(7,w)| and was
obtained using the Matlab command specgram. We can see the time-constant frequency component

2
at the normalized frequency o ~ 0.2.
e

The time-frequency representation is a representation of the magnitude of the short-time Fourier
transform. It is a convenient way to represent musical signals because it allows one to have both the
frequency components of the sound and their variation across time, up to the Heisenberg inequality.
As it does not display any phase information, not all the information about the signal is easily
accessible. In particular, the notion of analytical phase of a real signal that will be defined in the
next paragraph will allow one to build signals with exactly the same magintude of short-time Fourier
transform.

2.1.5 Phase of real signals

In this section we consider a continuous real signal s. It is possible to define a signal that could hold
for the phase of s by building an imaginary part from the real signal. One operation that allows to
switch from a real signal to a complex signal is the Hilbert transform.

The assumption that we make concerning the real signal s is that it is the real part of a complex
signal f(z) € C,z € C that is analytic on the upper plane {z > 0} and that we take along the
real axis. The assumption that f is analytic leads, through the Cauchy-Riemann equations, to a
strong relation between the real and imaginary parts of f: the imaginary part of f is the Hilbert
transform of the real part. Call H the real linear operator that couples a real part of such a function

1
to its imaginary part. It is defined as the Cauchy principal value of the convolution with the (t)
™

distribution.

™ Rt—tl

H{s}(E) = po. (7;) v (1) :p.v.l/ ) 4y

The following relation between s and f restricted to the real axis holds.

f=s+iH{s} = (Id+iH){s}

The complex signal f is called the analytic signal associated to s.
Once this operation defined, it becomes possible to define the phase 6 of a real signal by taking
the phase of its associated analytic signal.

H{s}

0 = arg(s + iH{s}) = arctan ——
s

The most important example of analytical signal is also very often used in domains such that
electronics, electromagnetics and acoustics. One can show that the Hilbert transform of the cosine
function is the sine function, so that the real function

s(t) = cos(t),t € R
has for associated analytical signal the function
f(z)=¢€*2€C

which is analytical on the whole complex plane.
For the given real signal
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s(t) = cos(2r ft + ¢),t € R
where f € R is a constant frequency and ¢ € [0, 27| is also a constant, the phase 6 is given by
H{sHO) _ otan SRCTSEH9)

s(t) cos(2m ft + @)

It allows one to properly define the phase at the origin as

6(t) = arctan

=2nft+¢

0(0) = ¢

It is straightforward to build the analytic signal associated to any periodic signal using a Fourier
series decomposition.

2.2 Relation between the phases

It may be interesting to show off some relations linking the previous definitions of the phases to
figure out that phase and amplitude are correlated through the different representations of a signal:
temporal, Fourier, or time-frequency.

Theorem 2.2.1. Let s € L?(R) be a complex analytical signal
s(t) = z(t) + id(t) = p(t)e’®.

Let the Fourier transform of x be ‘
F(w) = R(w)e™™«),

The following relations between the phases 0(t) and a(w) hold.

Jg p(t) sin(6(t) — 2mwt)dt
Jrpt)c (o(t) — 2mrwt)dt

a(w) = arctan

dw
dw

+ 27wt
0(t) = arctan Jp () sin(a wi ™

Jz R(w) cos(a(w) + 2mwt

Let the short-term Fourier transform of s be

)
)

where w is the window function. The following relations between the phases 0(t) and ¢(7,w) hold.

Jz p(w(t — 7) sin(0(t) — 2mwt)dt
fR p(Hw(t — 7) cos(0(t) — 2mwt)dt

¢(T,w) = arctan

fR f]R w(t — 1) sin(¢(7,w) + 27wt )dwdT
Je e W w(t — 1) cos(P(T,w) + 2mwt)dwdr

6(t) = arctan

Therefore, we can give similar relations for discrete signals. We then have the relations between
the phase of a real signal - of its associated analytic signal - and the phase of its Fourier transform
and of its short-term Fourier transform.

2.3 Phase-shifted signals

Definition 2.3.1 (Phase-shifted signal). Let = € L?(R) be a real signal that admits a Hilbert
transform & and ¢ € R. We define the phase-shifted signal z4 as

Ty = R[(x +i7)e™?]
The following properties immediately hold.
1. x4(t) = x(t) cos ¢ — &(t) sin @
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2. Z4(t) = 2(t) cos ¢ + x(t) sin @

3. :i'd, = x¢,%
A description of the Hilbert transform and of its properties is given in appendix [C] Most re-
sults hold for continuous signals. The discrete case remains a problem discussed among others in

|Gold et al., 1969| and [Zhechev, 2005].
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Chapter 3

The Griffin-Lim algorithm

3.1 Framework of Griffin-Lim algorithm

Suppose we have a magnitude spectrogram W(r,w) = |Y(7,w)| but we do not know the phase
arg Y (7,w). The objective of a phase retrieval algorithm is of course to retrieve a temporal signal
whose STFT is as close as possible to Y (7,w) according to a distance measure. Over the iterations,
the distance measure has to become non-increasing. The Griffin-Lim algorithm is a phase-retrieval
algorithm presented in [Griffin and Lim, 1984]. The framework of the algorithm is presented on
figure The input of the algorithm is a time-frequency representation initialized at So = W. The
algorithm then consists in two projections in the time-frequency domain.

1. The first projection consists of an inverse STFT followed by a STFT.
S, = U*Us,

It is a projector because of the relation

Uv* = Jd

that holds if the short-time Fourier transform and its inverse are correctly implemented, essen-
tially if the analysis and synthesis windows allow proper reconstruction.

2. The second projection consists in keeping the phase of the spectrogram obtained by the first
projection and replace its magnitude by W.

. ’
Skr1 = We'?8 S

So, an iteration of the Griffin-Lim algorithm framework can be summed up in the following
formula:

Sk+1 _ Wei arg U WSy,

It is shown that the L2-distance between |S;| and W is non-increasing:

1Sk = WIZ < ISk = W3,

so that the algorithm converges to a solution. Note that this distance measure is defined on
magnitude data only. It does not take into account the accuracy of phase reconstruction, because we
assume that the original phase is unknown.
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Figure 3.1: Framework of the Griffin-Lim phase retrieval scheme
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Fig. 1. Block diagram of the error-reduction (Gerchberg-Saxton)
algorithm.

Figure 3.2: Framework of Gerchberg-Saxton algorithm by Fienup [Fienup, 1982|
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Fig. 2. Iterative algorithm to recover 4(n) from its magnitude,

Figure 3.3: Minimum phase iterative algorithm to recover a signal from its magnitude
[Quatieri and Oppenheim, 1981]

3.2 Other phase retrieval techniques

3.2.1 The Gerchberg-Saxton algorithm

The Griffin-Lim algorithm is similar to other phase retrieval techniques developped in the 70s
and the 80s. The Gerchberg and Saxton’s 1971 fundamental article on phase retrieval presents
"A practical algorithm for the determination of phase from image and diffraction plane pictures"
[Gerchberg and Saxton, 1971]. The framework of the algorithme is breifly summed up in figure
It allows a reconstruction if one has intensity measurements in both the spatial and Fourier domain
[Fienup, 1982]. That is why this algorithm was designed to work on image measurements like diffrac-
tion patterns for cristallography. The first phase retrieval techniques were thus applied on intensity
measurements of 2-D signals.

3.2.2 The Quatieri-Oppenheim minimum phase algorithm

Before Griffin and Lim, Thomas Quatieri and Alan Oppenheim proposed in 1980 iterative techniques
for minimum phase signal reconstruction form phase or magnitude. The unicity of the reconstruction
is due to a minimum phase condition performed by imposing causality on the temporal reconstructed
signal. The framework of the algorithm they proposed in [Quatieri and Oppenheim, 1981] is described
on figure 3.3

The three methods presented above — Griffin-Lim, Gerchberg-Saxton and Quatieri-Oppenheim
— are based on alterning projections, which has been the mainstream method for phase retrieval
since early 70s. In [Bouvrie and Ezzat, 2006], the MIT researchers Jake Bouvrie and Tony Ezzatt
proposed an incremental algorithm for signal reconstruction from signal reconstruction from short-
term Fourier transform magnitude based on numerical root-finding combined with explicit smoothness
assumptions.

3.3 Non convexity of Griffin-Lim algorithm

3.3.1 Example on a monochromatic signal

Despite the fact that the Griffin-Lim cost function is decreasing and thus ensuring that the algorithm
always converges towards a solution, this solution is not unique because the cost function is not
convex. For a given STFT magnitude, the algorithm retrieves a phase of STFT among different
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phases that it could have retrieved under different initial conditions. To better understand this
assumption, consider a discrete sinusoidal signal x(n) with an arbitrary phase at the origin ¢, :

x(n) = exp (Qjﬂf% —|—j¢>x> ,nef0,---, —1}

In the simulations we shall work on a frequency of f = 1000 Hz. Define the phase at the origin
of z(n) as

¢, = arg(x(0)).

Assume we only know the STFT magnitude of x(n) and that we retrieve a temporal signal y(n)
from it using the Griffin-Lim algorithm. The phase at the origin of y(n) is

¢y = arg(y(0)).

The non-convexity of Griffin-Lim leads to different phases at the origin for the original and the
reconstructed signals: ¢, # ¢,. We are going to calculate several signal-to-noise ratios in order to
measure the error of reconstruction. They can be calculated both on temporal or spectral signals.
The error of reconstruction stands for the noise. The signal-to-noise ratio between original and
reconstructed temporal signals is also small:

2
Ry =10log <||x||2 ) < 00
Iz —yl3

A value of ¢, too different than ¢, may lead to a negative value of Ry, although both signals
have the same STFT magnitude. A Matlab simulation with a randomly picked ¢, = 0.4586 can give
a retrieved phase at the origin ¢, = —0.9006. The signal-to-noise ratio is thus R; = —1.8907 dB.

We expect that the reconstructed signal is a complex exponential with a phase at the origin ¢,
instead of ¢,. Under this assumption, the signal

z(n) = exp (jda — joy) y(n)
should be closer to xz(n) than y(n), so that

_ w3
Rs = 10log 5 | > Ri.
|z — 2|3
On figure [3.4] are plotted the real parts of x, y and z for ¢, = 0.458. The signal z is much closer
to = than y and the corresponding signal-to-noise ratio is

Ry =28.6635 dB > R; = —1.8907 dB

Therefore, we find ¢, = ¢,.

This example on a complex exponential allows one to understand an inconvenient of the Griffin-
Lim algorithm. The complex exponentials are built up to a phase shift that we do not know when
we lose the phase information of the STFT, because the phase of a complex temporal signal and the
phase of its STFT magnitude (or of its Fourier magnitude) are of course related to each other. This
example applies for a signal with a single frequency component but could be extended to any kind
of signal, assuming that we find the accurate transformation to properly shift the phase and enhance
the reconstruction. The code used to do the simulation is non_convexity_of_griffin_and_lim.m,
given in the appendix of this chapter.

3.3.2 Sensitivity to initial conditions
For a complex monochromatic signal

In this section we compute the code non_convexity_of _griffin_and_lim_2.m to make a loop on
50 values of the origin phase ¢, linearly varying between 0 and 27. We get the corresponding value
of the retrieved phase at the origin and we want to see how a change of phase at the origin of the
original signal affects the retrieved signal. It is possible to plot both ¢, and ¢, varying across the
iterations of the loop, as shown on figure or to plot ¢, as a function of ¢, as shown on figure
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Error in the phase at origin for Griffin—Lim retrieval of a sine
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Figure 3.4: Reconstruction y of a complex exponential x by Griffin-Lim algorithm and corrected
signal z. Real parts are plotted.
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Figure 3.5: Phase at the origin ¢, of a complex  Figure 3.6: Griffin-Lim retrieved phase at the
exponential signal and retrieved phase ¢, using  origin ¢, varying across original phase ¢, for a
Griffin-Lim algorithm complex exponential monochromatic signal
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Figure 3.7: Phase at the origin ¢, of a real  Figure 3.8: Griffin-Lim retrieved phase at the
monochromatic signal and retrieved phase ¢, us- origin ¢, varying across original phase ¢, for a
ing Griffin-Lim algorithm real monochromatic signal

The two figures show that ¢, does not linearly depend on ¢, : the values of ¢, are bounded
in a slower interval, approximately [-2, 0.5] while the original phase ¢, fluctuates from —m to 7. It
seems obvious that different values of the same phase at the origin can give the same retrieved phase
at the origin, which leads in the case of a pure sine to the same signal.

For a real monochromatic signal

If we do the simulations only on the real part of the previous signal, because the final issue is to
retrieve real audio signals, it is possible to compute the phase at the origin as

¢ = arccos(z(0))
¢, = arccos(y(0)).

The results of the simulations are presented on figures [3.7 and The results are different from
the complex case. One can think that the complex case allows less calculation errors as the inverse
STFT is not truncated to its real values. However, in both simulations it seems that there is no
correlation between the retrieved phase at the origin and the original one.

This simulation was done on a monochromatic signal where the phase is an easy concept to define
using basic trigonometry. On an actual sound signal the notion of phase is harder to define. One can
use the Hilbert transform but its implementation on discrete, finite signals is not very accurate and
involves boundary problems that are the cause of a poor precision.
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Chapter 4

Convex optimization for phase
retrieval

4.1 Convex optimization

4.1.1 Quick overview of convex optimization history

The convex optimization methods arose from fundamental papers written in the 1960s and in the
1970s. Amongst them, the French mathematician Jean-Jacques Moreau studied the notions of dis-
tance in a Hilbert space[Moreau, 1965]. He introduced in 1963 the proximal operator [Capricelli, 2008,
p.12].

In the 1970s the American mathematician R. Tyrell Rockafellar brought major contribution to
convex optimization methods. Almost at the same time, the French mathematician Jean-Baptiste
Hiriart-Urruty published papers on optimality conditions in nondifferentiable programming [Hiriart-Urruty, 1978].

The convex optimization theory was summed up by Boyd and Vandenberghe who gave courses at
Stanford university and published in 2004 a book available online for free [Boyd and Vandenberghe, 2004].

Convex optimization ensures that the algorithm will converge towards a unique value if the con-
straint functions and the considered vector set for convergence are convex. Note that the constraint
functions do not need to be differentiable. One method consists in alterning the following steps:

e projecting the vector onto the convex set using a proximal operator,

e projecting the vector onto the constraint set using the constraint function.

This leads to a variety of techniques that is summed up in [Combettes and Pesquet, 2010]. Acco-
dring to this description, every convex optimization algorithm can be seen as an alterning projection
algorithm.

4.1.2 The proximal operator

The proximal operator is was introduced by Jean-Jacques Moreau in 1965 in [Moreau, 1965].

Let H be a real Hilbert space and C a non-empty convex subset of H. Let f : H —] — 0o, +00]
be a convex and lower semicontinuous and not equal to 400 everywhere. The proximal operator of
f is defined as

prox;(z) = arg min (;u —z? + f(u))

4.1.3 Projected gradient descent method

The projected gradient method is presented in [Recht, 2012]. Its goal is to find the minimum of a
function h : H —] — 0o, +00] that can be written

h@) = f(2) + P(x)

28



where f is differentiable, V f is L-Lipschitz EI and P is convex. The gradient descent ensures that
for all v € R,

o = prox, p(z. — vV f(z.))

if and only z, is an argmin of f(x) + P(x). The sequence

Zgp+1 = prox, p(zr — vV f(zy))

is an algorithm converging to an argmin of h(x).

4.1.4 Semi-definite programming

Semi-definite programming is a way to relax a combinatorial problem [Mitchell, 2000], i.e. to enlarge
the set of solution to reduce the complexity of the algorithms solving the problem. Semi-definite
programming solves [Waldspurger et al., 2012] :

mininmize tr(UM)
subject to  diag(U) =1
U*>0
in the variable U € H,,, where H,, indicates the cone of Hermitian matrices of dimension n. There
may be supplementary constraints on U. Semi-definite programs are solved by projected gradient
descent methods.

4.2 Convex phase retrieval algorithms

4.2.1 PhaseLift, PhaseCut

PhaseCut [Waldspurger et al., 2012] and PhaseLift [Candés et al., 2011] are two different formula-
tions of convex optimization methods for phase retrieval, i.e. retrieve x € C™ such that |Az| = b,
beR™.

PhaseCut is formulated as

mininmize tr(BU)

subject to  tr(MU) =0
diag(U) =1
U>0

where B = diag(b)(A")* ATdiag(b) and M = diag(b)(AAT — I)diag(b).
PhaseLift is formulated as

mininmize tr(X)
subject to  tr(AXA*) = diag(b)?
X >0

Voroninski showed in [Voroninski, 2012] that PhaseLift and PhaseCut are simultaneously exact
in the m > n regime and that PhaseCut fails at sparse recovery when m < n.
PhaseCut is the convex relaxation of the NP-hard MaxCut problem

mininmize tr(BU)

subject to  tr(MU) =0
diag(U) =1
U>x0
rank(U) =1,

the constraint rank(U) = 1 being non-convex.

LA function g is L-Lipschitz if for all  and y in the set of definition of g, ||g(z) — g(v)|| < L||z — y]|-
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4.2.2 STIUIFT

In [Sun and Smith, 2012], Sun and Smith adapted PhaseLift to the case where A is a time-frequency
operator such as short-time Fourier transform. The problem is still to find a signal x whose STFT
has the same magnitude as a given STFT magnitude |Y|2.

find x
subject to  |U*{x}(mR,wi)|? = |Y (mR,ws)|?

but this time the problem is formulated as depending on the variable U = xz2”. They called their
algorithm STIiFT.

mininmize tr(U)
subject to  tr(Sk,mU) = |Y (mR,wy)|?
0<k<N,0<m< M
U*>0
They adapt the matrix formulation of PhaseLift to time-frequency notations. This change is

actually nothing more than a change of index. S, is a L x L matrix, where L is the length of x. It
is defined as

Sk,nL = (WgRSk)(WgRSk‘)*
where sj is a Fourier vector, such that
sk(n) = eI2mE/IN <k < N -1

and WT . is a N x L matrix containing diag(w) on columns (m — 1)R+ 1 to (m — 1)R + N.

0 ... 0wl 0 ... .. .0
Wnr=\¢o . .. 0 wmn)0 ... 0
(m-1)R N

The result of such an implementation is that

tr(Sg.mrr’) = | X (mR,wy)|?.

This formulation shows that the norm linearly depends on xzz”. More over, the trace is a convex
operator. The distance measure defined by Griffin and Lim as

D(z) = 3" (IX(mR,wp)|? — |Y (mR,wp) )’

m,k
is expressed as follows by Sun and Smith:

D(zz™) = Z (tr(Sk,mzz”) — |Y (mR, wk)|2)2

m,k

Projected gradient descent method The minimization of the distance measure is computed
using a projected gradient descent method. Sun and Smith define the Lagrangian associated to the
distance measure:

L(U) = D(U) + Mr(U)

where A is a parameter that is supposed to decrease to zero. It is called a Lagrange multiplier. It
"controls the tradeoff between minimizing the distance between the spectrograms and the low-rank
constraint" on U [Sun and Smith, 2012]. The use of Lagrange multipliers fastens the convergence
but does not change the limit. In order to take into account the constraint on U to be semi-definite
positive, it is possible to write the function that we are to minimize as
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hU) = L(U) + ind(U)

where ind is the indicator function of the cone of semi-definitive positive matrices, defined as

ind(U) 0if U is SDP
in =
+o00 if U is not SDP.

L(U) is convex, differentiable and assume its gradient is C-Lipschitzian. The proximal operator
of the indicator function of a subset is the projection onto this subset. So the iterative scheme for
convergence is

1
Ugy1 =P (Uk - CVE(Uk))

where P is the projector onto the set of semi-definite positive matrices.

Initial value Uy The program being convex, it can start from any initial value Uy. For instance,
it can be Uy = 0 or Uy = zozl with zo = U{|Y|}.

Gradient of the Lagrangian The gradient of the Lagragian is

VLWU) =2 (tr(Sk.mU — [V (mR,wi)[?) Sk.m + AL
k.,m

Lipschitz constant of the gradient The Lipschitz constant of the gradient is computed using a
power iteration method.
Let Zy be a real random matrix of size L x L. Then the iteration scheme

VL(Zy)
12l
makes the sequence || Z|| converge to the greatest eigenvalue of the matrix operator VL that is

a majorant the Lipschitz constant of VL. As we are likely to solve the problem for the Frobenius
norm, we use this one in the computation of C.

L1 =

Projection P onto the set of positive semi-definitive matrices This is the delicate part of
the algorithm, because it needs find the eigenvalues of a L x L matrix, and keep only the positive

values. If U can be written
U = Mdiag(\1,...,A\p)M ™!

then P(U) is
P(U) = Mdiag(max(0, \y), ..., max(0, A\r)) M L.

This operation makes the convex optimization method very slow and currently not usable on
actual size audio signals.

Lagrange multipliers As explained above, the Lagrange multipliers are to decrease to zero so
that the relaxation is efficient. For the numerical simulations, we have made them decrease on a
logarithmic scale. Here is an extract of the Matlab code used for the simulations explaining how we
made use of the Lagrange mutlipliers :

ss = real (ISTFFT(abs(X),w,R));
for lambda = logspace(0,-4,20);
t = 1/1lip_const_grad(P,w,H,lambda) ;
ss = stlift(P,w,H,lambda,t,ss,eps);
ss = ss*norm(x)/norm(ss);
end
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lip_const_grad computes the Lipschitz constant of the gradient, st1ift performs the projected
gradient descent method with Lagrange multiplier 1ambda E]

2The author wishes to thank Dennis Sun for his help throughout the ocean. For the simulations, the author used
the code that Dennis Sun sent him because it was much faster than the one he painfully wrote himself.
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Chapter 5

Comparison of Griffin-Lim and
Sun-Smith algorithms

5.1 Criteria for comparison

In this chapter we make several Matlab simulations to compare the two considered algorithms of
phase retrieval from STFT magnitude: the alterning projections algorithm of Griffin-Lim and the
newer convex optimization method of Sun-Smith. We expect Griffin-Lim to be non convex, so not
very precise, and Sun-Smith to need much computation time. For this last reason, we are going to
work on short signals of L = 16 and L = 32 samples. We are testing two types of windows : Hann
and Gauss, different lengths of windows N and different overlaps from 0.1N to 0.9N.

We denote by z the original temporal signal that we take real, X its STFT, y the temporal
reconstructed signal and Y its STFT. We are interested in several parameters that we will compute
both for Griffin-Lim and Sun-Smith.

1. The temporal signal-to-noise ratio between the original and reconstructed signals

T 2

2. We want to compare the signal-to-noise ratio R; to the following modified temporal signal-to-
noise ratio:

2
Ry = 101log ( ]l ) .

Imin(le —yl, |z + y))|3

A reconstruction with a good R; will have a good Ry. A reconstruction with a poor R; but
with a good R; means that at least part of the reconstructed signal is the opposite of the
corresponding part of the original signal.

Ry >Ry =3Ine{0,---,L—1},y(n) = —x(n)
Of course, a reconstruction with both poor R; and Rs is just a bad reconstruction.

3. The spectral signal-to-noise ratio

X113

Note that if the reconstruction is tight, it preserves the norm, so we should have R; = Rj3.
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Figure 5.1: Example of temporal SNR for reconstruction of a random signal of L = 16 samples with
a window of length N = 8 for different overlaps R.

4. The spectral signal-to-noise ratio of magnitudes Ry
1113
Ry =10log < .
X1 =1Y13

Note that as the distance measure is built with the magnitudes of STFT and is actually de-
creasnig, we expect a very good convergence of | X| to |Y], so very high values for R4 in both
Griffin-Lim and sun-Smith cases.

5. The Itakura-Saito divergence

1 X (n,w)| o [ X(n,w)|
Dis = 27TZ (|Y(n,w)| log Y (n,w)| 1>

n,w

6. The speed of convergence v defined as the ratio between the number L of samples of the temporal
signal and the Matlab calculation time ¢ given by tic-toc :

v=—.
t
All the results of the simulations are presented in appendix [A] In the section below we present
a particular case that allows one to understand what are the main differences between the two
algorithms and then how to read the other data.

5.2 Comparison of the algorithm on a random example

On figure the temporal SNR R; and R, are shown for different overlaps at fixed length of analysis.
For the same signal, the spectral SNR R3 and Ry are given on figure [5.2] Griffin-Lim performs a
better reconstruction of the signal up to sign errors Ro but Sun-Smith is more precise for the actual
mean-square distance Rj.

For spectral SNR this difference is even more empahsized, because the SNR, of STFT magnitudes
R, is around 300 for Griffin-Lim. This is the same order of error that we get when calculating the
SNR between x and ¥W*x, where WWU* ~ Id up to numerical noise. Note that for R = 0, Griffin-Lim
gave R4 = oo. That is why such a value does not appear on the graph.

34



| | | Ry G-L.
T %% || R,G-L.
300 - 1| —— R3 S.-S.
—— R4 S—S
[ae]
Z 200| |
3
s
& 100 [ |
0l M i
| | | |
0 2 4 6
R

Figure 5.2: Example of spectral SNR for reconstruction of the same random signal of L = 16 samples
with a window of length N = 8 for different overlaps R.

Sun-Smith algorithm does not reconstruct the magnitudes as well as Griffin-Lim, but its value of
R3 that takes the phase into account is slightly higher than the Griffin-Lim value.

5.3 Further remarks concerning the comparison tables

About the Itakura-Saito divergence The use is made of the Itakura-Saito distance that is a
percpetual difference between spectra. It only takes into account the magnitudes of the original and
reconstructed spectra. We note that it is often zero with Griffin-Lim reconstruction because the
convergence in magnitude is better than what we observed for Sun-Smith.

About the size of the overlap The tables of comparison show that for Griffin-Lim, the recon-
struction gets better as the overlap increases. Indeed, as explained in [Sturmel and Daudet, 2011],
a big overlap avoids stagnation. The size of overlap has not such an influence of the convex recon-
struction.

About the speed of calculation The speed of calculation was defined below as the ratio between
the length of the signal and the elapsed time given by Matlab between the beginning and the end
of the computation of each method. It is surprizing that the Griffin-Lim algorithm does not seem
much faster than Sun-Smith, according to those results. For some results it was even slower. Remind
that the simulations were made on very small signals (L = 16 and 32 samples only) and it took
a long time to perform them: around one hour and a half for every four tables. It seems to the
author that Sun-Smith calculations took most of this time, but such a result does not clearly appear
in the numerical results, maybe due to a bad estimation of the speed of calculation. Moreover, the
Sun-Smith algorithm used comutational optimization to be faster, while the Sun-Smith algorithm
did not. The personal conclusion of the author is that the Sun-Smith algorithm is much slower than
Griffin-Lim, although the results of the simulation do not show it radically.
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Chapter 6

Study of the phase retrieval in the
Grffin-Lim algorithm

In this chapter we study how the Griffin-Lim algorithm builds a monochromatic signal from its short-
time Fourier transform in order to understand how it retrieves the phase. We being by theoretical
calculations on the differences between the STFT squared magnitude of a cosine signal and the STFT
squared magnitude of the same signal shifted in phase. This difference is non-zero. We already have
seen that the Griffin-Lim algorithm seems to retrieve a cosine signal up to a phase term. Actually,
it cannot be a perfect cosine signal due to the very little error between the STFT magnitudes. So,
Griffin-Lim algorithm fails in the phase retrieval of a sine.

6.1 Comparison of STFT magnitudes of a sine and of a cosine

In order to understand how the phase retrieval from STFT magnitude of a sine works, we are going
to calculate the difference of magnitude between the STFT of a sine and the STFT of a cosine.

Define the discrete signals

s1(n) =cos(2rfn),ne (0: L —1)
s2(n) =sin(2rfn),ne (0: L —1)

and their short-term Fourier transforms

N-1
Si(n, k) = Z cos(2m fm)w(m — Hn)eQi”mTk
m=0
N-1 k
Sa(n, k) = sin(27 fm)w(m — Hn)e2™ % .
m=0

Separate real and imaginary parts in order to calulate the magnitudes.

=

N-1

N-1
Si(n, k) = mz:ocos(%rfm)w(m — Hn) cos (27777]?) +1 mzz:ocos(wam)w(m — Hn)sin (277??) ,

SO
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N-1 2 N-1
1Sy (n, k)| = (Z cos(2m fm)w(m — Hn) cos (2777\?)) + (Z cos(2m fm)w(m — Hn) sin <27Tk
m=0 m=0
N-1
= Z cos(27 f1) cos(2m fm)w(l — Hn)w(m — Hn)
l,m=0

x (cos (2nlk/N) cos (2mrmk/N) + sin (2nlk/N) sin (2rmk /N))

N—1
= Z cos(27 f1) cos(2m fm)w(l — Hn)w(m — Hn) cos (27%1 Nm) .

l,m=0
Similarly,
l—m

N—1
|So(n, k)|> = Z sin(27 f1) sin(27 fm)w(l — Hn)w(m — Hn) cos <27rk ~ > .

l,m=0

So, the difference between the magnitudes can be written

N-1
|Sa(n, k)|> — |S1(n, k)|* = Z cos(2m f(I + m))w(l — Hn)w(m — Hn) cos (27rkl Nm) . (6.1)

l,m=0
This difference between magnitudes is generally different from zero. It is bounded:

N—-1

[1S2(n, k) [* = [S1(n, B)?| < (Z w(m — Hn)) < Jlwll3. (6.2)

m=0

The first inequality becomes an equality when we have simultaneously

{f €z,

k

~ € Z.

Those constraints are on frequency variables, f being the constant frequency of the signal, k£ being
the number of the frequency channel.

6.2 Extension to a any phase shift on a monochromatic signal

It is now straightforward to calculate the difference of magnitude between the STFT of a monochro-
matic signal and the STFT of the same signal shifted of a phase term ¢. This difference can be
expressed as a function of S, Sy and ¢.

Let sg4 be

se(n) = cos(2mfn+ ¢)
= s1(n)cos(¢) — sa2(n)sin(e).

The STFT begin a linear transform, the STFT of sy is

Se(n, k) = S1(n, k) cos(¢) — Sa2(n, k) sin(¢)

and its magnitude can be written

Sel* = [81]* cos®(¢) — |Sa]* sin®(¢) — 2R(S1.93) cos(9) sin(¢)
= |51 + (IS2f* — 81]*) sin*(¢) — 2R(51.93) cos(¢) sin(¢)
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with |S3|? — |S1]? as calculated in equation and

N1
R(S1(n, k)Sa(n, k)*) = Z cos(2m fm) sin(27 fl)w(m — Hn)w(l — Hn) cos (Qka];f‘_ Z) :

l,m=0

This quantity is also bounded:

N-1 2
[R(S1(n, k)Sa2(n, k)*)| < (Z w(m — Hn)) < Jlwli3
m=0
so that the difference between |S,|? and |S;|? is bounded depending on ¢:
N-1 2
[196[% = [91]| < [sin®(¢) — sin(20)] (Z w(m — Hn)) < [sin®(9) = sin(29)| [[w]]3.
m=0

In the next paragraph, we will see that it possible to calculate the difference of magnitude between
the STFT of any signal that admits a Hilbert transform and the same signal shifted of a phase term
¢ that acts on the phase of the associated analytical signal.

6.3 Characterization of the error caused by a shift phase on
the STFT magnitude of a pure sine

6.3.1 Motivation
In this section we give an answer to the question:
What is the consequence of a temporal phase shift on the magnitude of STFT?

The element of answer that we bring may lead in the chpater on Griffin-Lim algorithm to what
may appear as a contradiction. The Griffin-Lim algorithm builds temporal signals from their STFT
magnitude. Observations show that from the STFT magnitude of a sine, it builds something looking
like a sine but with a different phase at the origin. The original and reconstructed temporal signals
are very different in a least-square sense, but their STFT magnitudes are very close one from each
other. The reconstructed temporal signal with the phase at the origin of the original is much closer
to the original. We thus wonder if such a corrective phase shift would have an influence on the STFT
magnitude. The answer is yes. We will demonstrate it.

6.3.2 Invariance of the Fourier magnitude of an analytic signal under a
phase shift

We consider a complex temporal function s(¢) with magnitude p(t) and phase 6(¢) :
s(t) = p(t)e®®.
Let F(w) = F(s)(w) be the Fourier transform of s(t) with magnitude R(w) and phase a(w):
F(w) — R(w)eia(w) _ / p(t)eie(t)fm’ﬂwtdt.
R
It is clear that a phase shift of the form

b 5/(1) = plt)e O+

does not affect the magnitude of the Fourier transform of s'(t) that we call F'(w). The constant
phase term e’?° just drops out of the integral of the Fourier transform.
Be ¢ € R. It is obvious that

F(s)(w) = /]R p(t)e!?DTHTTIO Gt — 10 F(s) (w).
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6.3.3 Invariance of Fourier magnitude of the real part
Under the assumption that s is an analytic function, we get
S(s) = H(R(s))
where H denotes the Hilbert transform. The following well-known property holds:

F(S(s))(w) = —isgn(w) F(R(s)).
So we get

Fls)w) = FR(s)(w) +iF(3(s))(w)
= (14 sgn(w))FR(s))(w).

Applying this result to F(s') we get

F(s") (@) = 2xu>0F (R(s)) (w) = € F(s)(w).

So we have the following relation

Xw0F(R(s) (W) = ' xwsoF (R(s))(w)

that holds for the Fourier transform of a real signal. Using the property of hermitian symmetry
of the Fourier transform of a real signal, we get

F(R(s')) = e F(R(s)). (6.3)

So, a phase shift on the phase of a complex signal does not affect the magnitude of its Fourier
transform, and does not affect either the magnitude of the Fourier tranform of its real part, i.e. the
signals

{%(s(t)) = p(t) cos(6(t)),
R(s' (1)) = p(t) cos(8(t) + ¢).

both have the same Fourier magnitude.

6.3.4 Study of the consequences of a phase shift on the short-term Fourier
transform

We are now considering the STFT operator S:

S(s)(r,w) = /Rw(t _ T)p(t)eie(t)—zimtdt

We want to know if equation [6.9] still holds when we apply a STFT.

We will see that it is not true, but we will calculate the difference between the STFT squared
magnitudes.

We want to know if there exists a relation between S(R(s') and S(R(s)), or, at least, between
their magnitudes. Remind that R(s") = R(s) cos ¢ — I(s) sin ¢, so

S' = Scos ¢ — Sy sin . (6.4)
with
5 3(5}3(8'))
S(R(s)),
S?-L =S(S(s)) = S(H(R(s)))-

So, to understand how a phase shift affects the STFT, we have to understand how it affects the
STFT of the Hilbert transform.
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2*cos(¢)sin(¢)(IAIP-IBI?) + 4*real(AB)sin(¢)?, ¢ = 4.9776

frequency time

1000

Figure 6.1: STFT squared magnitude error between a pure sine of length L = 4096 at Fis = 14100

and the sine shifted of ¢ for STFT using a Hann window of length N = 512.

We can note A the difference between the squared magnitudes:
A=|S]*— |92
So A can also be written as a function of ¢, S and Sy:
A = (|S)? — |Sx|?) sin? ¢ + 2R(S3 S*) cos ¢ sin ¢
It is clear that the magnitudes are equal for ¢ € {0,7} modulo 2. ¢ = 0 corresponds to the

identity and ¢ = 7 corresponds to taking the opposite signal: s’ = —s. Other interesting values are:
m

° ¢:§: |SI|2=|SH|2,

_r, g2 = L9 52_232

co="T S = 315w — 51 =2 B

™ 2

co--T, 12 = 1S + SI2 = 2| A%

We have calculated the error between the STFT magnitude |S|? of a real analytic signal and the
STFT magnitude |S’| of the same signal shifted in phase. This error is

A = (|S)? = |Sx|?) sin? ¢ + 2R(S# S*) cos ¢ sin ¢

It includes two terms: one is proportional to the cross-term cos ¢ sin ¢, the other to the quadratic
term sin® ¢. Both terms depend on S and Sy that are that are time-frequency distributions. An
example of how the error looks like is presented on figure[6.1} as one can see, the error is small almost
everywhere except on the boundaries. On a torus this corresponds to a single point located at both
zero time and frequency.
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6.4 Open question: temporal phase shift, spectral phase shift

This section sums up several unanswered questions that the author has been asking to himself in
order to understand how the short-time Fourier transform affects the phase.
The author first made the wrong assumption that a temporal phase shift of the form

24(t) = R((x + (OiH{} (1) = () cos(d) — H{z}(t) sin(6)

led to a spectral phase shift in the time-frequency domain

S{zsHr,w) = Xy(T,w) (6.5)

where we define ‘
Xo(T,w) = S{z} (7, w)e_”g“(”)qﬁ.

It was nothing more than an analogy with the property of the Fourier transform:

Flag}(r,w) = e =@ F ot (w, 7).

It was then demonstrated that equation [6.5]is false because the difference |S{z,}* —|S{x}|? was
proven to be non-zero.
However, perhaps an interesting result, but still badly understood, is

Xy — X3 _ |lwg — =I5
X113 5113
for all ¢ € R. So, the temporal phase shift z — z, has the same SNR than the spectral phase

shift X — X, where = (resp. X) stands for the signal and = — x4 (resp. X — Xy) stands for the
noise. The open questions that immediately follow are:

(6.6)

e What is the link between x and Xy ?
e How can one explain the equality ?

e Does this equality may help in optimizing the already existing phase retrieval techniques such
as Griffin-Lim 7

We now give the demonstration of equation [6.6

6.4.1 Distance between X and X,

We are going to calculate the distance between X and X using the L? norm, such that

15|12 = / / X (7, ) P
RJR

With the assumption that X, (7,w) = X (7, w)e"8"(“)? we calculate the distance | X — X]|.

\|X_X¢||§://|1_e—isgn<w>¢|2\X(T,w)|2drdw
RJR

|1 — e~ en(«)?)2 actually does not depend on the sign of w because |1 — e |2 = |1 — ¢?|? =
2(1 — cos ¢), so we get

IX = X1 =201~ coso) [ [ 1X(rw)Pdrds = 21— cos)| X

We can thus express the following spectral signal to noise ratio, where |1 — €?| holds for a noise
due to the phase difference between the two STFT.

S 2
SNRgpee = 10log; |X”—|)?¢||2 = —101log;, 2(1 — cos ¢)
2
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Figure 6.2: Variation of SNR across the phase shift parameter ¢

6.4.2 Distance between z and z,

We can also consider the following L? distance between the two temporal signals
o — 13 = / (2(t) — a(t) cos & + H{w}(t) sin ¢)%t
R

= [l2l3(1 — cos ) + || H{z} |3 sin® o+ < 2, H{z} > (1 — cos dsin )
where < -,- > denotes the usual scalar product on real functions < z,y >= [, (t)y(t)dt. We
now use the following classical properties of the Hilbert transform.
1. [H{z}||2 = ||z|l2 (H is an isometry);
2. <H{z},z >=0 (H is orthogonal).

We thus find the following expression for the temporal distance

lz — g3 = 2(1 — cos ¢) |3
that allows us to define a temporal signal-to-noise ratio

2
SN Riemp = 10log; % = —10log;, 2(1 — cos ¢).
[z — gll3

We may notice that SNRspee = SNRyemp. Theoretically, this signal-to-noise ratio does not

depend on the STFT nor on the temporal expression of the signal. It can be seen as a function of

the parameter ¢, as plotted on figure It is of course maximal when ¢ = 0, that is when the two

STFT are equal, and minimal for ¢ = 7w, meaning a complete sign opposition of the two spectrograms
and of the corresponding temporal signals.
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Conclusion

This report was to study and compare the performances of two phase retrieval algorithms applied to
short-time Fourier transform. One is the mainstream Griffin-Lim algorithm that is widely used by
signal processing fellowship since its creation in the mid-eighties. The other is a very recent algorithm
presented in 2012 in an AES conference by Dennis Sun and Julius Smith. It uses convex optimization
techniques to retrieve the phase information from the magnitudes of Gabor frames.

What the phase retrieval algorithms have in common

Those two algorithms use projectors. Griffin-Lim is an alterned projections algorithm. It alternatively
projects on:

e the set of time-frequency representations with a given fixed magnitude,

e the set of feasible STFTs, i.e. the result of projector U*W.

Sun-Smith is a projected gradient descent method. That means that at each iteration of the
gradient descent, it projects the result on the set of semi-definite positive matrices. Note that this
projection needs find the eigenvalues of the matrix zz”. This operation repeated several times makes
the Sun-Smith algorithm very slow.

Differences between the algorithms

The main difference between Griffin-Lim and Sun-Smith is that Sun-Smith is convex while Griffin-
Lim is not. The Griffin-Lim algorithm uses the short-time Fourier transform as it was defined and
conceptualized in the seventies and eighties: a Fourier transform with a window sliding across time,
making a convolution product. The short-term Fourier transform is seen as a time-frequency repre-
sentation. Indeed, Griffin and Lim wanted to be able to retrieve the phase of a modified STFT for
applications such as voice modification. An essential property of the STFT operator is here made
use of: the fact that WW* is projector different from the identity that enable alterning projections.

Sun-Smith sees the short-time Fourier tranform with the more recent approach of a set of scalar
products that define time-frequency coefficients. The concept of Hermitian scalar product is here
essential because the convex optimization method consists of a different point of view of what can be
such a scalar product: instead of a bilinear form on the temporal signal, a linear form on the tensorial
product of the temporal signal with itself. The "time-frequency" conception of the STFT is less used,
because this is just a slight adaptation of a method that also works on multi-dimensional Fourier
transform, and the mathematical properties of the N-D Fourier transform are radically different than
the ones of the STFT. The Sun-Smith algorithm is very slow because it considers the problem of
phase retrieval from a point of view that is too abstract and does not take sufficient account of the
spectral properties of the signal.

Improvement of Griffin-Lim algorithm

A deep study of the Griffin-Lim has been started in this report and the author hopes that it has been
clearly explained enough for at least a partial understanding of the objectives. The main problem
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in the phase retrieval is that for signals with a strong harmonic content, the phase is not random
and a bad retrieval of it may lead to suppression of frequencies resulting in a hearing far from what
it was aimed to be. It is possible to consider a musical or speech signal as a weighted sum of sines
with additive noise, locally stationary, but varying across time. That is why a study on the phase
retrieval of a single sine was made. It was observed that Griffin-Lim fails in the retrieval of the phase
at the origin. For a single sine on a mono channel, this has no perceptual effects, but it remains both
a mathematical and signal processing challenge for the two following reasons:

e although Griffin-Lim algorithm retrieves a signal with STFT magnitude very close to the orig-
inal, there should be a non-zero difference term due to the phase shift,

o if Griffin-Lim fails in the retrieval of a single sine, it may lead to perceptual alterations in the
localisation of sound for stereo channels (or more complex systems) or in the perception of some
harmonics.

For those reasons, it could be very interesting to continue those research on improving the phase
retrieval of sound from STFT magnitude. The main suggestions for further research proposed by the
author are:

e try to find in which way Griffin-Lim retrieves a shifted sine without the difference in STFT
magnitude that should be observed,

e optimize the reconstruction of a single sine using that difference of magnitude,

e study the case for superpositions of sines at different frequencies.

The study of the phase shifts on real signals makes use of the Hilbert transform: such a transform
is properly defined for continuous signals but its implementation on discrete is not well done yet.

Improvement of Sun-Smith algorithm

As previously said, the Sun-Smith algorithm is very slow because of the several diagonalizations that
occur at each iteration. It is actually almost impossible to think of using it on actual audio signals.
It is thus necessary to improve the diagonalization, or to find an alternative way of retrieving the
signal using convex optimization.

A better understanding of the phases

The phase remains a badly understood concept in signal processing, in particular for a real signal.
It could be interesting to use the associated complex analytical signal whose imaginary part is the
Hilbert transform of the real part, and this gives interesting theoretical results, but the Hilbert
operator is not properly defined yet for discrete signals. There exist connections between the phase
of a real signal and the phase of its Fourier transform, or of its short-term Fourier transform. That
makes the phase retrieval a delicate problem, that will not be solved until the concept of phases is
not more accurately understood by the community.

44



Appendix A

Tables of comparison between
Griffin-Lim and Sun-Smith algorithms

A.1 Random signals with Hann window

The simulations were made on random signals x =

different values of N, but of course a new signal was generated when changing the size L.

2xrand(L,1)-1. It was the same signal for the

L =16
N=38 R=7 R=6 R =4 R=2 R=0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -6.01e+00 -6.00e+00 -4.45e+00 -6.01e+00 -3.12e+00 9.85e-+00 -3.53e+00 7.16e+00 -3.78e+00 3.36e+00
Ra 1.91e+01 1.79e+01 4.46e-01 1.89e+01 9.22e-01 9.89e+00 9.01e-01 8.00e+-00 1.45e+-00 3.36e+00
R3 -5.91e+00 -5.99e+4-00 -5.19e+00 -6.07e+00 -6.01e-01 1.09e+-01 -4.07e+00 5.80e+00 -3.70e+00 3.40e+00
Ry 3.23e+02 3.72e+01 3.32e+02 3.56e-+01 3.22e+02 1.49e+01 3.41e+02 1.19e+01 Inf 4.80e+00
Dys 0.00e-+00 1.42e-02 0.00e+00 1.64e-03 0.00e+00 2.04e+00 0.00e+00 1.10e+00 0.00e+00 2.38e+05
% 2.69e-02 5.49e-04 6.56e-04 1.12e-03 1.53e-03 2.33e-04 2.23e-01 2.47e-04 5.82e-05 3.66e-04
N =4 R=3 R=3 R =2 R=1 R=0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -4.07e+00 1.58e+01 -4.07e+00 -5.99e+-00 -3.90e+-00 -5.99e-+00 -4.72e+00 -5.67e+00 -4.79e+00 -5.86e-+00
Ro 3.00e-+00 1.58e+-01 3.00e+00 1.58e+01 3.38e+00 1.50e+01 2.17e+00 5.12e+-00 2.37e+00 8.31e+00
R3 -3.91e+00 3.45e+01 -3.91e+00 -6.06e+00 -3.62e+4-00 -6.07e+00 -3.30e+00 -5.26e+-00 -3.35e+00 -6.19e+00
Ry 3.25e+02 3.49e+01 3.25e+02 3.49e+01 3.31e+02 2.70e+01 Inf 1.17e+01 Inf 2.46e-+01
Dys 0.00e-+00 1.31e-03 0.00e+00 1.31e-03 0.00e+00 7.59e-02 0.00e+00 3.27e- 01 0.00e +00 5.85e-04
% 4.16e-04 3.90e-04 4.08e-04 4.05e-04 1.13e-03 3.87e-04 8.19e-05 4.25e-04 1.07e-04 5.43e-04
L =32
N =16 R =14 R =12 R=28 R=14 R=1
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -1.26e+4-00 5.63e+00 -1.46e+-00 -5.97e+00 -2.33e+00 -4.20e+-00 -3.28e+-00 -5.03e+-00 -3.98e+-00 -2.17e+4-00
Ro 1.03e-+00 1.45e+01 -8.33e-01 1.35e+01 2.71e-01 1.49e+-00 -1.17e+4-00 2.88e-+00 1.40e+-00 1.15e+-00
R3 -1.90e+-00 2.55e+01 -1.27e+00 -6.05e+00 -2.62e-+00 -4.40e+-00 -3.70e+-00 -4.96e+00 -4.18e+00 6.87e-01
Ry 3.25e+4-02 2.64e+01 3.25e-+02 3.24e+01 3.24e+02 1.40e+01 3.25e+02 1.21e+01 Inf 1.86e+00
Drs 0.00e+00 5.70e-02 0.00e+00 1.04e-02 0.00e+00 8.49e+00 0.00e+00 5.94e-01 0.00e+00 1.42e+-01
% 3.74e-03 3.54e-04 3.65e-02 4.03e-04 1.15e+00 1.27e-04 4.29e-03 1.39e-04 2.83e-05 3.08e-04
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N=38 R=7 R=6 R=14 R=2 R=0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -1.19¢+-00 2.30e+-01 -2.77e+00 1.71e+01 -3.10e-01 -5.13e+4-00 -1.04e+4-00 2.82e-01 -1.10e+-00 1.67e+00
Ry 7.81e+4-00 2.30e+01 7.06e4-00 1.71e+401 4.48e-01 6.57e+00 2.29e+-00 3.95e+4-00 4.26e+00 3.76e+-00
R3 -1.18e+00 3.72e+4-01 -2.43e+00 2.55e+01 -5.70e-02 -5.27e+4-00 -2.88e+-00 -1.47e+-00 -4.24e+-00 -1.02e+-00
Ry 3.25e+4-02 3.76e+4-01 3.32e4-02 2.58e+4-01 3.26e4-02 1.19e+01 Inf 8.86e-+00 Inf 9.84e+00
Dis 0.00e+4-00 2.71e-03 0.00e4-00 1.86e-02 0.00e4-00 5.97e+00 0.00e+-00 6.09e-01 0.00e4-00 4.53e-02
% 1.11e-03 4.30e-04 1.00e-03 5.70e-04 3.43e-03 2.32e-04 1.09e-02 3.58e-04 5.48e-05 4.03e-04
A.2 Sine signals with Hann window
The simulations were made on signals x = sum(sin(2*pi*f’*(1:L)/Fe),1) with £ = [6000 7000]
and Fe = 44100.
L =16
N=38 R=7 R=6 R=14 R=2 R=0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -5.91e+4-00 5.61e4-00 -1.80e+-00 1.43e+4-01 -8.13e-01 -1.73e+00 -1.88e+-00 -5.02e+-00 3.85e-01 -1.83e+-00
Ra 9.94e+4-00 1.91e+01 1.53e+00 1.43e+01 1.11e+00 1.57e+00 1.28e+00 3.42e+00 5.78e-01 7.28e-01
R3 -6.02e+4-00 2.82e+01 -4.96e+00 2.08e+01 -3.66e+00 -1.56e+00 -2.84e+00 -5.64e+-00 -2.18e+00 -2.70e+00
Ry 3.22e+4-02 2.82e4-01 Inf 2.49e+-01 3.57e+02 1.69e+01 3.59e4-02 1.92e+01 Inf 1.05e +01
Dys 0.00e+-00 2.42e-01 0.00e+00 6.66e-01 0.00e+00 3.39%e-01 0.00e+00 1.79e-01 0.00e+00 3.13e-01
% 9.36e-03 4.19e-04 9.53e-04 5.11e-04 1.30e-03 7.17e-04 1.00e-01 4.93e-04 5.46e-05 4.03e-04
N=4 R=3 R=3 R=2 R=1 R=0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -3.41e+00 -5.84e+-00 -3.41e+-00 7.89e+00 -4.54e+-00 -4.68e-+00 -3.82e+4-00 -3.12e+4-00 -1.77e+4-00 4.89e-+00
Ra 5.91e+4-00 7.89e+00 5.91e4-00 7.89e+4-00 7.96e-01 2.17e+00 2.32e4-00 6.52e+-00 2.53e+-00 4.89e+00
R3 -5.19¢+-00 -6.40e+-00 -5.19e+-00 2.09e+-01 -4.47e+4-00 -5.15e+00 -3.37e+00 -4.44e4-00 -3.20e+-00 1.43e+01
Ry 3.30e+4-02 2.11e+4-01 3.30e4-02 2.09¢e+4-01 Inf 1.37e+01 Inf 1.87e+401 Inf 1.43e+01
Dys 0.00e+-00 1.12e-02 0.00e4-00 1.23e-02 0.00e+-00 1.72e-01 0.00e-+00 7.61e-03 0.00e+00 9.57e-03
% 6.45e-04 3.91e-04 6.15e-04 3.91e-04 6.14e-04 3.87e-04 7.96e-05 4.08e-04 1.09e-04 5.54e-04
L =32
N =16 R =14 R =12 R=28 R=14 R=1
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry 1.05e+01 8.01e4-00 1.01e+01 3.07e+4-00 6.60e+4-00 -4.76e+4-00 3.02e4-00 -1.54e+00 -3.15e-01 -4.66e+00
Ro 1.05e+01 8.01e4-00 1.01le+01 4.94e+00 6.72e4-00 2.25e4-00 4.73e+00 1.46e+00 -2.16e-01 1.99¢+-00
R3 7.35e+4-01 2.48e+01 4.19e+01 5.76e+00 1.31e+01 -5.01e+4-00 5.16e4-00 -1.80e+-00 -1.78e+00 -5.47e+-00
Ry 3.25e+4-02 2.53e+4-01 3.28e4-02 1.64e+01 3.44e4-02 1.94e+01 3.21e4-02 1.72e+01 Inf 1.82e+01
Digs 0.00e4-00 3.49e+01 0.00e4-00 3.41e+00 0.00e4-00 2.05e4-00 0.00e4-00 1.36e+00 0.00e+00 9.99e-01
% 5.19e-01 4.61e-04 7.96e-02 2.52e-04 2.72e-01 1.26e-04 1.49e-01 3.27e-04 2.81e-05 4.38e-04
N -8 R -7 R -6 R -4 R -2 R =0
G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S. G.-L. S.-S.
Ry -5.91e+4-00 -5.39e+-00 -1.80e+-00 7.81e+4-00 -8.13e-01 -4.00e+00 -1.88e+-00 2.79e-01 3.85e-01 -1.79e+00
Rs 9.94e+-00 1.84e+01 1.53e+00 1.17e+01 1.11e+00 1.57e+00 1.28e+00 2.97e+00 5.78e-01 6.09e-01
R3 -6.02e4-00 -5.94e+4-00 -4.96e+00 1.96e+01 -3.66e+4-00 -4.87e+00 -2.84e+00 1.08e-+00 -2.18e+-00 -3.16e+4-00
Ry 3.22e+4-02 3.44e4-01 Inf 2.35e+4-01 3.57e+4-02 1.69e+01 3.59e4-02 1.68e+01 Inf 1.34e +01
Drg 0.00e+-00 4.79e-01 0.00e+-00 9.71e-01 0.00e+-00 3.39e-01 0.00e+-00 4.32e-01 0.00e+-00 7.91e-02
% 8.62e-03 5.35e-04 8.89e-04 1.10e-03 1.28e-03 5.64e-04 9.89e-02 3.97e-04 5.82e-05 3.98e-04
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Appendix B

Matlab codes

B.1 Short-term Fourier transform

function X = STFFT(x,w,R)

% Short-term Fourier transform

% x: input signal

% w: analysis window (assume that the order of fft is the length of w)
% R: overlap (in samples)

% w = hann(N, ’periodic’); % analysis window

N = length(w);
if (iscolumn(x)==0), x=x’; end
J = length(x);

H=N - R;
M = floor((J-N)/H) + 1;
K = N;
X = zeros(K,M);
form = 1:M
deb = (m-1)*H + 1;
fin = deb + N - 1;
tx = w.*x(deb:fin);
X(:ym) = £ft(tx,K)/sqrt(K);
end

B.2 Inverse short-time Fourier transform

function x = ISTFFT(S,w,R)

% Inverse short-term Fourier transform
% S: input spctrogram

% w: synthesis window

% R: overlap (in samples)

[N,M] = size(S);
H=DN - R; % hop size
J = (M-1)%H + N;
x = zeros(J ,1);
for m=1:M
ty = S(:,m);
ys = ifft(ty,N)*sqrt(N);

deb
fin

(m-1)*H + 1;
deb + N - 1;
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x(deb:fin) = x(deb:fin) + ys .* w; % OLA
end
x = x./(ola(w.~2,H,M)+eps) ;

B.3 Griffin-Lim algorithm

function [s,S,conv] = griffin_and_lim(P,w,R,eps)

% [s,S,conv] = griffin_and_lim(P,w,R,eps)

% Computes signal reconstruction from power spectrogram P
% using Griffin-Lim algorithm.

% Input

% P = |S|~2 where S is the STFT of the researched signal
% w: analysis window

% R: size in samples of overlap

% eps: precision for convergence criterion

% Output

% s: reconstructed signal

% S: reconstructed spectrogram
% conv: spectral convergence.

S0 = sqrt(P);
S = 80;
ii=1;
if (nargin<4) ,eps=1le-6;end
0bj=1000;
conv = zeros(1,1);
while(obj>eps)
s = ISTFFT(S,w,R);
Sr = STFFT(s,w,R);
S=abs(S0) .* exp(li*angle(Sr));
%% Convergence criteria
SpectralConv_ii = norm(sqrt(P) - abs(Sr))/norm(sqrt(P));
conv = [conv SpectralConv_ii];
ii=ii+l;
obj = abs((conv(ii)-conv(ii-1))/conv(ii-1));
end
s = ISTFFT(S,w,R);
end
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B.4 Non-convexity of Griffin-Lim algorithm (used in [3.3))

% non_convexity_of _griffin_and_lim.m

clear all
close all

clc

% parameters:

L =2712;

n = 0:(L-1);

f = 1000;

Fe = 44100;

N = 2-nextpow2(Fe*20e-3);
R = floor(0.75%N) ;

w = hann(N, ’periodic’);

% construction of signals:

x = exp(2*1li*pixf*n’/Fe + 2x1lixpi*rand(1,1));

% boundary conditiomns:

% x(1:N/2) = x(1:N/2) .*w(1:N/2);

% x(end-N/2+1:end) = x(end-N/2+1:end) .*w(end-N/2+1:end);
x(1:N/2) = zeros(size(x(1:N/2)));

x(end-N/2+1:end) = zeros(size(x(end-N/2+1:end)));

X1 = abs(STFFT(x,w,R))."2;

% retrieval of temporal signal from X using Griffin-Lim algorithm:
y = griffin_and_lim(X1,w,R,107-6);

x(1:1length(y));

vec = N+1:L-N;

x = x(vec);

y = y(vec);

y/max (abs(y));

phil = angle(x(1));

phi2 = angle(y(1));

deltaphi = -(phi2 - phil);

z = exp(lixdeltaphi)x*y;

z = z/max(abs(z));

phi3 = angle(z(1));

% computation of signal-to-noise ratios

R1 = SNR(x,x-y);

R2 = SNR(x,x-z);

% plots

figure, plot(real(x(1:500)))

hold on, plot(real(y(1:500)),’r’), plot(real(z(1:500)),%g’)
legend([’x, \phi_x = ’ num2str(phil)],...

[’y, \phi_y = ’ num2str(phi2)],[’z, \phi_z = ’ num2str(phi3)])
title(PError in the phase at origin for Griffin-Lim retrieval of a sine’)
ylim([-1.5 1.5]), xlabel(’time (samples)’)

"
I

<
1]
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% non_convexity_of_griffin and_lim_2.m
clear all
close all

clc

% parameters:
L = 2712;

n = 0:(L-1);
f = 1000;

Fe = 44100;

N = 2~nextpow2(Fe*20e-3);
floor(0.75%N) ;

hann (N, ’periodic?);

% construction of signals:

s X
o

Ntours = 50;

phi_x = zeros(Ntours,1);
phi_y = zeros(Ntours,1);
alpha = linspace(0,1,Ntours);

for ii = 1:Ntours

x = real(exp(2*1i*pi*f*n’/Fe + 2*li*pi*alpha(ii)));

% boundary conditions:

% x(1:N/2) = x(1:N/2) .*w(1:N/2);

% x(end-N/2+1:end) = x(end-N/2+1:end) .*w(end-N/2+1:end);
x(1:N/2) = zeros(size(x(1:N/2)));

x(end-N/2+1:end) = zeros(size(x(end-N/2+1:end)));

X1 = abs(STFFT(x,w,R))."2;

% retrieval of temporal signal from X using Griffin-Lim algorithm:
y = real(griffin_and_lim(X1,w,R,107°-6));

x = x(1:1length(y));

vec = N+1:L-N;

x = x(vec);

y = y(vec);

y = y/max(abs(y));

phil = acos(x(1));

phi2 = acos(y(1));

% computation of signal-to-noise ratios

R1 = SNR(x,x-y);

% plots

figure(1), plot(real(x(1:500)))

hold on, plot(real(y(1:500)),°r’)

legend([’x, \phi_x = ’ num2str(phil)],...

[’y, \phi_y = ’ num2str(phi2)])

title(PError in the phase at origin for Griffin-Lim retrieval of a sine’)
ylim([-1.5 1.5]), xlabel(’time (samples)’)

set(gcf, ’papersize’, [15 10]);set(gcf, ’paperposition’, [0 0 15 10]);
print -dpdf non_convexity.pdf

phi_x(ii) = phil;

phi_y(ii) = phi2;

end

figure(2),plot(phi_x,phi_y)
figure(2), xlabel(’\phi_x’), ylabel(’phi_y’)

figure(3), plot(phi_x), hold on, plot(phi_y,’r’)

xlabel(’No. of iteration’),ylabel(’Phase at origin’)
legend(’original signal x’,’retrieved signal y’)
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Appendix C

The Hilbert transform of continuous
signals

C.1 Definitions

Definition C.1.1 (Integral definition). Let x € L*(R). The Hilbert transform of z is noted # and

defined by
z(t) = lp.v./ ﬂdT
U RT—T

where p.v. denotes the Cauchy principal value.
It may be convenient to see the Hilbert transform of x as the convolution with the Cauchy principal

1
value of — distribution.
Tt

Proposition C.1.1 (Convolution definition). Let z € L?(R). The Hilbert transform of = is given by
the convolution product
S c)
T=z*pov. | —
Tt

Proposition C.1.2. Let f be a complex function analytic in the plane {Rz > 0}. Then f can be
written
f=z+iz

where x = Rf and T = S f.

Definition C.1.2 (Analytic signal). Let 2 € L*(R) be a real-valued signal. The analytic signal
associated to z is defined as f =z 4 iZ.

C.2 The Hilbert operator

Definition C.2.1 (Hilbert operator). The Hilbert operator is defined as

H:|L2R) — L2(R)

r +— T

Proposition C.2.1 (Properties of the Hilbert operator). The Hilbert operator has the following
properties:

1. H? = —Id;
2. H> = —H;
3. H* = 1Id.
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where Id is the identity operator and the power means the composition. It follows that H is invertible
and H™' = —H.

Proposition C.2.2 (Hilbert transform of usual functions and distributions [Weisstein, |). We give
below the Hilbert transforms of some usual functions. w is a real constant.

a(t) (t)

cos(wt) sin(wt)
sin(wt) — cos(wt)
eit —ie“
e—it ie—it
et et fot e dr

This property leads to the eigenvalue characterization of the Hilbert operator.

Theorem C.2.1. The Hilbert operator H has two eigenvalues that are i and —i. The associated
eigenvectors are respectively {t — e~} and {t — e'}.

Proposition C.2.3 (Hilbert transform of periodic functions [Pandey, 1993]). If = is a T-periodic
function, its Hilbert transform is defined by

(t) = % p.v. /T x(t — 1) cot (%) dr

-T

C.3 Links with Fourier transforms

Theorem C.3.1 (Spectral properties of the Hilbert transform). F, H and S respectively denote the
Fourier, Hilbert and STFT operators.

1. Let x € L*(R) be a real-valued function that admits a Hilbert transform.

F{H{z}}(w) = —i - sgn(w) F{z}(w)
where sgn(w) is the sign of w.
2. If we call f = x + iHx the analytical signal associated to x, we have
0:if w<0,

F{f}w) = (1 +sgn(w))f(w) = ¢ f(0) if w=0,
2f(w) if w>0

Proposition C.3.1. Let x € L*(R) be a real-valued function that admits a Hilbert transform &. The
following equalities hold.

1. zxx+2+2 =0 or equivalently

2. F{z}? + F{3}?>=0;

3. F{z?} + F{(2)?} = 0 or equivalently
4. F{z} « F{z} + F{2} =« F{2} = 0.
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