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Abstract 
 

How to reproduce a given sound using a synthesizer? This is the aim of this 

project and internship. Several synthesis techniques such as additive, subtractive of 

FM synthesis have been successfully used in replicating instrument-like sounds. 

Nonetheless, these techniques require some parameter setting, task that can be hard 

and time consuming because manual and not so intuitive. People who worked on that 

kind of problem have used a number of optimization techniques including genetic 

algorithm to automize the search of those parameters. Naturally, each synthesis comes 

from a different theoretical environment, each parameter search space has a different 

structure and require a specific technique. 

On this project, we worked with “Teenage Engineering”, a company from 

Sweden, which provided us one of their commercial synthesizers. This one possesses 

among others seven kind of audio engines, several effects and lfo and will be used to 

automatically generate believable instrument-like sound or any kind of sounds, using 

a genetic algorithm system. 
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1 Introduction 

A classic synthesizer is an electronic instrument capable of producing a wide 

range of sounds. Synthesizers may either imitate other instruments or generate new 

timbres. They can be controlled via a variety of different input devices (including 

keyboards, Midi instrument controllers). Synthesizers use a number of different 

technologies or programmed algorithms to generate signal, each with their own 

personality. We can name subtractive synthesis, additive synthesis, frequency 

modulation synthesis, physical modeling synthesis and sample-based synthesis.  

There are different approaches of using a synthesizer. First the performance aspect: by 

different ways (keyboard, pad, gestural performance…) the player has the choice of 

the note (frequency), note length and volume. Then, the perceptual and timbre aspect 

are controlled by a set of input parameters (audio engine, effects, low-frequency-

oscillator...). 

It can be hard for the user to find the sound he wants for several reasons: 

parameters are not usually instinctive for non technical-users, there may be a very 

large number of them, sometimes a small parameter change can cause a large change 

in the sound or user doesn't have time. 

For those reasons, the synthesizer use can appear unintuitive, especially for the 

beginners, and even for the experimented ones who prefer having immediate sound 

feedback rather than engross himself in a complicate analytical parameter-setting 

mode. That's why we could find the use of Genetic Algorithm more flexible and 

accessible for the composition than usually because it allows us to automate this 

parameter-setting step and gain some time and effort. 

 

More specifically, the Genetic Algorithm (GA) will be used to bread 

parameter settings that minimize a distance function to the target sound: the fitness 

function. On the one hand we will take a fitness function based on an Euclidian 

distance between the spectrogram frames of the target and the input sound and then 

we will try to enhance our model with others sound descriptors like the Mel-

Frequency-Cepstra-Coefficients (Mfcc) or Chroma. We will also try others distance 

than the Euclidian distance. 

We first implemented a static fitness function, and then we tried to work with 

dynamic fitness function coefficients: indeed our main purposes using several 

distances is to be more accurate with creativity problem [Dimitrios Tzimeas, 2009]. 

This article suggests that the values of the coefficients can be assigned dynamically in 

such a way that the system will be able to control the influence of the less-selective 

properties and their corresponding fitness function components. 

 

We’ll see in the following sections how did we decide to use these particular 

fitness functions, based on previous works, a description of our synthesizer, the way 

we implemented our system and finally our results and comments. 
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2 Related Works 

Horner et al. in their seminal journal article from 1993 were one of the first to work 

on the problem of parametric optimization for automatic tone matching sound. They 

used a genetic algorithm and FM synthesis architecture [HOR93]. They used GA to 

optimize the modulation indices and carrier and modulator frequencies for various 

numbers of carriers. The relative spectral error between the original and matched 

spectra served as fitness function in guiding the GAs search for the best FM 

parameters. Most matched instruments required three to five carriers for a good 

match. 

 

In 2001, Garcia [GAR02] used a tree based genetic programming model to grow 

topologies capable of rendering sounds. He worked with an analytical distance metric 

that uses the complex spectrum of the target and test signals. 

 

In 2005, Mitchell et al. [MIT05] extended Horner’s worked with frequency 

modulation sound matching with clustering evolutionary strategy. Indeed, the 

principle of FCES is to partition the search population into sub-population that locally 

recombine and progress. With an adequate number of clusters and population size, all 

of the locally optimal peaks can be identified and so, a global optimum is constantly 

found. 

 

Aucouturier [AUC05] described an effective way to model the textures found in a 

given music signal and their applications for music similarity. In a first example, he 

compares the timbre models of different songs to compute their timbral similarity. He 

used an Expectation-Maximization (EM) algorithm with Gaussian-mixture-model 

(Gmm) learning model. 

 

In 2006 Lai et al. [LAI06] revisited Horner’s FM tone matching once more. The 

originality of the study is that they combined a timbre feature, the spectral centroid, 

and the spectral norm as a fitness value in place of the power spectrum. 

 

Chinen and Osaka’s Genesynth [Chi07] from 2007 worked with a model flexible 

enough to represent noisy, inharmonic and harmonic audio. They evolved Noise Band 

sound model which contains three parameters: amplitude, frequency, and a bandwidth 

ratio. Their fitness function computes a score by comparing a windowed spectrum 

estimate of the chromosome with cached and compressed bins from the STFT of the 

input. 

 

King [YEE11] worked on comparisons of parametric optimization techniques for 

musical instrument tone matching, using as error metric an Euclidean distance in 

MFCC feature space. He found the best results with a genetic algorithm but also 

tested the strong performance of hill climber and data driven approach.  

Recently, Macret and Pasquier [MP12] compared two Fm methods to replicate an 

instrument sound. The first synthesis is a “classic Fm” and the second one, “Modified 

Fm synthesis” (a recently discovered distortion) is derived from the first one. Our 

evaluation shows that Mod FM synthesis coupledwith GA seem to overcome the 
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couple Classic FM synthesis - GA studied in a previous work. This comparative study 

also shows that GA gives generality and efficiency to parameter matching. 

3 Synthesizer Specifications 

In this section, we will explain the mechanism of the commercial synthesizer 

from Teenage Engineering (which we made a non disclosure agreement with), its 

characteristics, strength and weakness. In order to have a general vision of how the 

sound is created, let's have a look at the sound path: this is the way the sound moves 

from the moment the musician hits a key on the musical keyboard or press play tape 

on tape, until it reaches the speaker or line out. 

 

 

 
 

The initial sound is made from one of the seven audio engines: 
 

 Pulse: square wave engine 

 Fm: frequency modulation synthesis 

 Phase: phase distortion type engine 

 Dr Wave: rax 8-bit style engine 

 Cluster: up to 6 oscillators chained in a cluster 

 Digital: pure digital raw engine 

 String: physical modeling of a string instrument 

 

Then we add an envelope: 
 

The envelope controls the amplification of a sound and is triggered when a note is 

played. The attack, decay, sustain and release are controlled this way. This is called 

an ADSR envelope. 
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We can put some effects: 
 

 Delay: solid state delay 

 Grid: three dimensional feedback plate 

 Phone: hacked telephone system 

 Punch: hard hitting low pass filter 

 Spring: mathematic reverb 

 

and some Lfo: 
 

 Element: let the player use external elements like the built in microphone, 

line-in, G-force sensor of Fm Radio to modulate a sound. Select the element 

amount, destination (engine, envelope or effect) and the destination parameter. 

 

 Random: randomize all parameters in a module. Set the speed, amount, Lfo 

envelope and destination (engine, envelope or effect). 

 

 Tremolo: let the user create different types of vibrato effects to your sound by 

modulating the pitch and volume. Set the speed, pitch amount, volume amount 

and Lfo envelope curve. 

 

 Value: Classic Lfo type which allow the player to change one parameter only. 

Set amount, speed, destination and parameter. 
 

Each of these modules has 4 parameters the user can tweak. Then we can choose 

the key/note, the octave and the duration of the key press. Altogether the synthesizer 

allows us to make a sound with 22 parameters. 

 

The company, which made the instrument, gave us access to a part of the 

synthesizer, so we could use it as a C++ library to make a sound. We wrapped this 

library into Matlab which allowed us to built up any sounds from the Teenage 

Engineering synthesizer. 
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All these parameters have bounds (appendix at the end of the document), so if a 

wrong number is entered in the function which is outside the bounds of a parameter, 

the output sound will be empty. We took it into account and made sure that all 

numbers are in the right boundaries. 
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4 Genetic Algorithm 

 

For the parameter optimization of the synthesizer we used a Genetic Algorithm 

(GA). GA belongs to the evolutionary algorithms which generates solutions to 

optimization problems using methods inspired by natural evolution such as selection, 

crossover and mutation.  

The evolution starts with a first generation of randomly generated candidate, 

which will evolve toward better solutions. At each generation, the fitness of every 

individual in the population is evaluated, knowing that the fitness determines how 

close a candidate is from a target sound.  

Then multiple individuals are stochastically selected based on their fitness from 

the current population, and modified with genetic operators (cross-over, mutation, 

reproduction) to form a new population.  

The new population is finally used in the next iteration of the algorithm. Usually, 

the algorithm finish either when a maximum number of iteration has been reached or 

a satisfactory fitness level has been reached or if the weighted change in the fitness is 

less than 10
-10

 over 50 generations. 

The space of all feasible solutions is called search space. Each feasible 

solution can be evaluated by its fitness for the problem. The looking for a solution is 

then equal to a looking for a minimum in the search space. 

 

We explain in the following paragraphs all the mechanisms which happen 

during the algorithm.  

 

4.1 Candidates 
 

We have 22 parameters to optimize in our system. A parameter is called a 

"gene" and the 22 parameters together form an "individual" (also called a 

"chromosome"). All these individuals are in fact set of parameters (which allow us to 

make a sound), which are candidates to be as close as possible to the target sound. At 

the beginning of the process, all the candidates have the same length as the target 

sound and are randomly generated: a uniform distribution is used to calculate each 

parameter (respecting the boundaries) of an individual. 

 

4.2 Evaluation 
 

Each chromosome is evaluated depending on its distance with the target 

sound. Remember that the distance is calculated with the fitness function (next 

section). This evaluation is performed on the whole population of chromosomes. 

 

4.3 Selection 
 

Once every chromosome has been evaluated, the new generation is generated. 

The N
elite

 best chromosomes are kept and the rest of the population is generated with 

crossover or mutation. These chromosomes are selected using the binary tournament 

selection. In this type of selection, two chromosomes are selected randomly in the 
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population, their fitnesses are compared and the best is selected. The elite individuals 

are also part of the binary tournament.  

 

Let's make an example of what happens here:  

Let's say that we decide to get 8 mutations and 2 crossovers after each generation. 

We'll need to make 4 tournaments for the crossover and 8 tournaments for the 

mutation. 

 
We see in this step that the best individuals have more chance to take part to 

the next generation than the others. We can notice that some chromosome simply 

disapear because of their bad fitness (4, 6 and 7). Be careful here because the diversity 

can be questioning: indeed some audio engine can be over-represented at the 

beginning because they have some good parameters but at the end they will not fit 

with the target sound. We can avoid it with a big initial population, or a big mutation 

of audio engine at the beginning, which decrease after. 

 

4.4 Crossover 

 
The crossover step consists in mixing two chromosome parents to make a new 

chromosome: the child.  Our method consists in selecting two random integers m and 

n between 1 and number of parameters (22). The function selects: 

 

 Vector entries numbered less than or equal to m from the first parent 

 Vector entries numbered from m+1 to n, inclusive, from the second parent. 

 Vector entries numbered greater than n from the first parent 

 

The algorithm then concatenates these genes to form a single gene. For example, if p1 

and p2 are the parents  
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p1 = [a b c d e f g h] 

 

p2 = [1 2 3 4 5 6 7 8] 

 

and the crossover points are 3 and 6, the function returns the following child: 

 

child1 = [a b c 4 5 6 g h] 

 

The resulting chromosomes are used in the new generation. 
 

Each parameter range changes depending on the sound engine, or the Fx, or 

the Lfo chosen. A first difficulty is at this step, indeed we can't use traditional 

crossovers we want because of the different parameter bounds. If we consider for 

example a crossover between a FM and a Digital sound engine. Let's have a look at 

the parameter ranges of the two audio engines: 

 

 
We can see that the ranges are not the same and a crossover at the level of the 

second parameter could cause a sound impossible to synthesize. We solve this 

problem by picking up a new random parameter between the right ranges. Now if we 

look back at the example, if the second parameter from the Fm sound is outside the 

bound of the Digital sound, we generate a new parameter following a uniform 

distribution between the Digital bound 
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4.5 Mutation 
 
The mutation is described below: 

 
 

 
 

4.5.1 Gaussian Mutation 

 
A random number from a Gaussian distribution is added to each parameter of 

the chromosome. The Gaussian has a mean of 0 and the standard deviation is 

determined by the parameters "Scale" and Shrink" which are set at the beginning of 

the algorithm.  

"Scale" controls what fraction of the gene's range is searched. A value of 0 

will result in no change, a "Scale" of 1 will result in a distribution whose standard 

deviation is equal to the range of this gene. Intermediate values will produce ranges in 

between these extremes. In other words the "Scale" parameter determines the standard 

deviation at the first generation. 

The initial standard deviation of the parameter i of the individual chosen for 

the mutation is given by: 

Scale  (bound_end - bound_start) 

 

"Shrink" controls how fast the "Scale" is reduced as generations go by. A 

Shrink value of 0 will result in no shrinkage, yielding a constant search size. A value 

of 1 will result in "Scale" shrinking linearly to 0 as GA progresses to the number of 

generations specified by the options structure. Intermediate values of "Shrink" will 

produce shrinkage between these extremes.  
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The standard deviation at the k
th

 generation, , is given by the recursive formula: 

 

 
 

This dynamic standard deviation makes possible a broad exploration of the 

parameter space at the beginning of the evolution and a fine tune of the parameters at 

the end of the evolution. 

 

 
 

 

As the crossover step, there is the same difficulty of boundaries. If the new 

parameter generated by the Gaussian distribution become outside the bounds, we 

reiterate the process until the new parameter fit the right bounds. 
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4.5.2 Customized Mutation 
 

The worst individuals in term of fitness are mutated this way because we want 

to radically change something in their “DNA”. We randomly change either the audio 

engine or the Fx or the Lfo (each have an equal chance to be picked up). We keep the 

parameter that doesn’t have to be changed and we rescale the others. For example, if 

an individual is mutated according to this rule and the audio engine is chosen to be 

switched, then its four parameters will be rescaled and the others (Fx, Lfo, key, 

octave,...) remain unchanged. 
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4.6 Stopping criteria 

 
The optimization is stopping if: 

 

 The system reaches the maximum number of generations (a constant chosen to 

ensure that the system stops) 

 The weighted change (equation below) in the fitness is less than 10
-10 

over 50 

generations 

 

 
 

 

4.7 Summary 
 

There is a summary of how the genetic algorithm work: 
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5 Fitness Functions 

 

The fitness function is crucial because it represents the idea of a distance function on 

the sound space. It got to be as close as possible as the human perception of a sound. 

We have made some instrument comparisons using different fitness function, more or 

less classic. The results are several dissimilarity matrixes, one for each fitness 

function. For information, there are 12 instruments, some are similar and some not: 

we compared how much the fitness function matched with our perception of the 

instrument. 

Di erent techniques are introduced to describe the timbral parameters, in a first time, 

we decided to choose the Euclidian distance, because it is quite widespread and 

appears quite intuitive. Secondly, we picked up 2 common ways to characterize a 

sound: short spectral analysis and Mfcc. 

 

5.1 Short Spectral analysis: 
 

The Short-Term Fourier Transform (STFT) is a common spectral decomposition 

method for an audio signal, which many spectral analysis techniques are based on. It 

first breaks up the input signal into small time steps, which is called the frames. 

Generally, each frame is multiplied by a window function, which is nonzero for only 

a short period of time, and overlapped one after another. A signal in the each frame is 

then transformed into the frequency domain by means of the Discrete Fourier 

Transform. 

DFT of the signal is defined as:  
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with  and  

 

where X (k) is an amplitude of a sinusoidal component at the index number k, and N 

is the frame size (the number of sample points in the frame). STFT can thus provide a 

time-varying spectrum for the input signal. Yet, the downfall of STFT is that there is a 

mutual trade o  between frequency resolution and time resolution. DFT with long 

framesize have better resolution on the frequency axis but poor time resolution. 

Shorter frame size gives better time resolution but poor frequency resolution.  

 

Characteristics of the short spectral analysis: 

 

Analysis window size 10ms 

Overlapping 5 ms 

Zero padding factor 4 

Spectral resolution 20 Hz 

Signal portion 2s 

 

5.2 Mel Frequency Cepstrum: 
 

MFCCs are a short-time spectral decomposition of an audio signal that conveys the 

general frequency characteristics important to human hearing. The low order MFCCs 

account for the slowly changing spectral envelope, while the higher order ones 

describe the fast variations of the spectrum. Therefore, to obtain a timbre measure that 

is independent of pitch, we only use the first few coefficients. 
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Most of the Mfcc applications have been for the speech recognition but it is 

also a good choice for the purpose of timbral description [CAS08]. Moreover, Logan 

[LOG00] provides a well-cited and convincing justification for the use of the MFCC 

in musical modeling, supporting the use of the warped frequency scale and the 

Discrete Cosine Transform. In summary, the MFCC has been widely used and 

validated as a numerical measure of musical instrument timbre. 

 

Now we introduced our 2 ways to characterize a sound, our fitness function 

result is the Euclidian distance between either the spectrogram matrix or the Mfcc 

coefficient matrix.  

 

 
 

 

 

 

 

We conducted 3 experiments, one for each fitness function and there are the results, 

which can be also consulted at this URL: 

 

 

http://metacreation.net/ldroguet/index sound.html 

 

 

 

 

 

 

 

 

 

 

http://metacreation.net/ldroguet/index%20sound.html
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First dissimilarity matrix: 

 
 

This image shows the distance in term of spectrogram frame between the first second 

of the 12 instruments samples. The smaller the value, the greater the similarity.  

 

Same thing with the Mfcc method:  

 
 

The two different methods show different results but seems making sense with 

our perception of instrument timbres. The closeness of certain perceptual similar 

sounds seems to be more pregnant with the Mfcc. Indeed, take a look at the two guitar 

songs: they are clearly similar with the Mfcc (nearly red) but not that much with the 

spectrogram (yellow). Generally, plucked and striked string instruments seem to stand 

out: guitar, bass, harp and piano are rather close, in a way more or less strong but this 

is a generalized trend.  

Now, instead of the Euclidian distance, we are going to introduce another way 

to compare feature matrix (spectrogram/mfcc) of two sounds: “Clustering”. Very well 

known in Data Mining and Marketing, this method is often used to classify people 



 20 

according to their purchase behavior and their characteristics (sex, age,...). We know 

that sounds possess also a lot of characteristics so we'll do the same. Basically the 

principle is to set up a k-means model on the target sound in order to obtain a certain 

number of barycenters. After that, we'll be up to apply this model to the input sound 

and compare difference of distribution in each group. 

 

5.3 Clustering: 
 

There is the explicit methodology (the example uses the spectrogram matrix 

but it is the same with the Mfcc): the first step consists in translating our spectrogram 

matrix. That way, we'll make each sound clustered according to its frequency at each 

time frame. 

 
 

The second step begins with the "k-means clustering" which aims to partition 

the time frames observations into k clusters in which each observation belong to the 

cluster with the nearest mean/barycenter. Generally, we tend to look for population 

very different between each other. 

 

More precision on the "k-means clustering": 

 

This is one of the most famous unsupervised learning algorithms that solve the 

well-known clustering problem. The procedure tends to classify a given data set 

through a certain number of clusters (assume k clusters) fixed a priori. The main idea 

is to define k centroids, one for each cluster.  

The next step is to take each point belonging to a given data set and associate 

it to the nearest centroid. When no point is pending, the first step is completed and an 

early groupage is done. 

At this point we need to re-calculate k new centroids as barycenters of the 

clusters resulting from the previous step. After we have these k new centroids, a new 

binding has to be done between the same data set points and the nearest new centroid. 

A loop has been generated. As a result of this loop we may notice that the k centroids 
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change their location step by step until no more changes are done. In other words 

centroids do not move any more. 

Finally, this algorithm aims at minimizing an objective function, in this case a 

squared error function. The objective function: 

 

 

where   is the distance of the n data points from their respective cluster 

centres. 

 

 
 

We then obtain a cluster distribution, that is to say the percentage of time frames in 

each cluster. 
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The third step consists now in attributing a cluster to each time frame of the input 

sound (  sound which is compared to the target sound) according to the target sound 

model. 

 
When we obtain the final distribution of the input sound, we are up to compare the 

input and target distribution like in the graphic below: 
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In this example, the target and the input sound seem visibly quite close in view 

of the distributions. The fitness function will have a value ranging between 80 and 90 

percent of similarity.  

 

Now back to our instrument comparisons using this method. We implemented 

a K-means algorithm with 5 clusters. Five is a good number of cluster: enough 

information about our population and we avoid an over fitting. The resulting of fitness 

function is the mean of a hundred k-means based models (it means that we have 

repeated the experiment 100 times then we made the mean). 

 

There are some results: 

 
 

 

 

We can observe the same trend than the others: plucked and striked string 

instruments stand out. But generally, similarities between instruments are subtler and 

closer to our musical perception.  

6 Evaluation and Results 

6.1 Simulated Sounds 
 

 

I tried a first implementation with a simple physic plucked synthesizer. First 

idea is to set up a target sound made by the plucked synthesizer to prove the 

convergence of our system: this is called "reverse engineering". If it doesn't work, it 

means that the fitness function doesn’t work or then we have to change the GA set up 

(too much mutation, bad crossover, mistakes in the initial population…). 
 

We can see the results here with a plot of the best fitness value (in black) 

versus the mean fitness (in black), per generation. Our goal is to reach the lowest 
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fitness value we can. According to our precedents experiments with the Mfcc matrix 

of similarity, a sound start to be close to an another sound beginning from a fitness 

value of 300. 

 

 

 

 

 
 

 

The GA converges at the end of a few iterations very quickly toward the right 

parameters we used to create the sound. This synthesizer had "only" three parameters 

to optimize, we expect that it will be much longer with our twenty two parameters. 

 

Now we made some tests on simple synthesizers, the real first experiment on 

the commercial synthesizer was intended to prove the convergence of our system. As 

target sound, we used two sounds synthesized with the "FM" and the "Digital" audio 

engines. We were expecting our system to find the target set of parameters by reverse 

engineering. We first wanted to conduct 3 experiments per sound, each of these 

experiments using a different fitness function: "Spectrogram" - "Mfcc" - "Clustering 

with Mfcc". 

 

We finally used only the “Mfcc” fitness function, why? Those experiments 

should first have been done on a super-computer, which work way faster than a 

simple computer, plus the genetic algorithm can be parallelized. It didn’t work and we 

lost a lot of time trying to make it work. To give an idea, an experiment takes half an 

hour and it takes a day on a classic computer. 

 

 

Experiment 1: Retro Engineering on a Fm audio engine 

 

Here is a plot of the best fitness value (in black) versus the mean fitness (in 

black), per generation. Table 1 gives our algorithm set up. 
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Our system is converging quite quickly toward the exact same sound after 

about 50 generations. We had a population of 500 individuals and we stopped the 

algorithm at a fitness value of 50 because it is enough low and it means that we found 

a sound very close to our target sound. 

 

Besides, the spectrogram of the two sounds prove that we found a good set of 

parameters to mimic our target sound: 

 

 
 
 

The next two experiments can be heard at this URL: 

 
http://metacreation.net/ldroguet/Sounds/Retro_Engineering/html_soundSet/index.html 

http://metacreation.net/ldroguet/Sounds/Retro_Engineering/html_soundSet/index.html
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6.2 Recorded Sounds 
 

For our next experiments, we used two kinds of instrument sounds. The first 

ones are acoustic sounds recorded in anechoic chamber from the MIS database. Each 

sound is approximately 2 seconds long. The sound set included the following 

instruments: alto sax, bass, cello, flute, horn, trombone, trumpet, and viola. The 

second kinds are samples from different types of commercial synthesizers: TB303, 

Juno 106, Korg Ms20, Korg Ms10 and Native Instrument Massive). 

 

All the sounds can be heard at this URL:  

 

http://metacreation.net/ldroguet/index sound.html 

 

 

 

 
 

 

 

 

 

 

6.3 Discussion 
 

The fitness score, which is an euclidian distance between two sounds, is 
neither an absolute nor perceptual measure and varies between the different 
target sounds. For example, the best synthesized sound for a Trumpet seems as 
good as the one for Saxophone but their respective fitness score are very 
different (Trumpet best fitness: 520 and Sax best fitness: 341). See figure at the 
end. 
 

Generally, the results are average listening whereas the spectrograms are 
quite similar for some of them: it is partially due to the fact that we couldn’t use 
the super computer and we made progress very slowly. Or either the fitness 
function is not enough complex or come from the limitation of the synthesis 
architecture we are using. 

 
This picture shows us the importance of a lot of generations. Sometime 

the genetic algorithm can stagnate a long time and suddenly find a good 
parameter orienting the algorithm toward a better optimum.  
 

Population Between 100 and 1000 

Max Generation Ngen Between 100 and 5000 

Stopping Criteria SC Weighted change in the fitness 

< 10
-10 

over 50 generations 

Selection Operator S Binary tournament 

Elite Children Nelite 2% 

Mutation Operator M1 40% Gaussian 

Mutation Operator M2 10% customized 

Crossover Operator C Two points 

Crossover Proportion  50% 

Table 1. Parameters for the GA 

http://metacreation.net/ldroguet/index%20sound.html
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As you can see on all the experiments: 
 

http://metacreation.net/ldroguet/index sound.html 
 

there is no convergence because we needed much more generations and a bigger 
initial population. Still, we had some interesting and encouraging results at the 
end. Indeed, some sounds are perceptually close to the target sound it had to 
mimic as the two examples below (Saxophone and Trumpet): 
 

 
 

http://metacreation.net/ldroguet/index%20sound.html
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The spectrograms of the GA best result and the target sounds are generally quite 
similar in these two cases. 
 

7 Conclusion and future work 

We have refined a system to optimize the parameters in a commercial 
synthesizer to mimic a given target instrument tone. This system is based on a 
pre-analysis of the target sound, matching through a genetic algorithm. Studies 
were conducted with various instruments and our results were compared 
following the set up of the genetic algorithm.  
By a lack of time, we couldn’t run all the experiments until convergence and we 
couldn’t compare the three fitness functions. Especially I regret the fact that I 
couldn’t use the “clustering fitness” because it was showing good results with the 
similarity matrix. Next time it will be much more efficient if the algorithm could 
be parallelized on a super computer. Nevertheless, results with the Mfcc feature 
are encouraging and show that GA gives generality and efficiency to parameter 
matching.  
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