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Abstract

Through this project, a development of a methodology to guide the creation of intu-
itive and pertinent mappings between one-hand gesture and environmental sound tex-
ture (rain, wind, wave) descriptors is shown. The proposed methodology is composed
of two complementary key stages. First, a perceptual investigation on sound descriptors
controlling a corpus-based concatenative synthesis process is carried out to figure out
the relevant ones. Afterwards an experiment where participants perform gestures while
listening to sound texture morphologies is achieved to create a sound and gesture-related
descriptor dataset. Then by applying a canonical correlation analysis on those sound and
gesture-related data, one is able to determine pertinent gesture features and their cor-
respondences with the retrieved relevant sound features. Thus pertinent clues to create
gesture-to-sound mappings are provided by this method.
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Chapter 1

Introduction

To create a realistic synthesis of environmental sound texture (rain, wave, wind, ...) is an
important issue for domains such as cinema, games, multimedia creations, installations.
Existing methods achieve a certain level of realism in performing this task, but they are
not really interactive whereas controlling interactively the synthesis can improve realism
due to the inherently multimodal nature of perception.
The present work is part of the ANR project, Topophonie, that deals with virtual nav-
igable sound spaces, composed of sounding or audio-graphic objects, [sit11]. It focuses
on the development of a methodology for providing a pertinent mapping between gesture
and environmental sound texture. Through the following method, one is able to guide
the creation of a mapping for controlling interactively an environmental sound texture
synthesizer by one hand gesture.
For this purpose, a real-time corpus-based concatenative synthesis system, CataRT [SCB08],
is used. Its data-driven approach allows to control the sound synthesis by drawing tar-
get audio descriptor trajectories in order to build a sound unit sequence out of a grain
corpus.
Several investigations, [MMS+10, SMW+04], have already been done to find the most
perceptually relevant audio descriptors in environmental sounds (especially industrial
sounds). Based on those previous contributions, a perceptual similarity experiment is
carried out to retrieve a pertinent set of audio descriptors to drive the corpus-based con-
catenative synthesis.
A system using inertial sensors (wii mote) and a webcam furnishing a rgb image flow with
its associated depth (kinect) capture the movement of the performer’s hand to obtain its
positions, rotations, velocities and accelerations.
In order to explore the relationship between gesture and sound, a method deeply inspired
by [CBS10] is used. First, subjects perform hand movements while listening to sound
examples. The latter are created with CataRT by following trajectories of audio de-
scriptors identified as being most meaningful in the above perceptual experiment. Then,
based on canonical correlation analysis, the relationship between gesture and audio de-
scriptors is quantified by linear multivariate regression. This method reveals a part of the
complex relationship between gesture and sound. This gives pertinent clues to construct
a gesture-sound mapping for the efficient gestural control of sound texture synthesis by
perceptually meaningful audio descriptors.
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Chapter 2

Background

2.1 Sound texture synthesis

2.1.1 Definition of sound texture

To find a pertinent way of defining the term sound texture, one can refer to works done
by Saint-Arnaud in [SA95, SaP95]: "A sound texture is like wallpaper: it can have local
structure and randomness, but the characteristics of the structure and randomness must
remain constant on the large scale". Through this definition an interesting characteristic
of sound textures regarding to its potential information content over time is highlighted.
This particularity can be used as a way of segregating sound textures from other sounds,
figure 2.1.

Figure 2.1: Potential information content of a sound texture vs time, [SaP95]

Because of the constant long term characteristics of their fine structure, sound tex-
tures can be described by a two-level representation, [SaP95]. The low level is constitued
of simple atomic elements distributed in time where this distribution in time of those
atoms is described by the high level. Different ways of distributing atoms have been
identified among sound texture: periodic (as engine sound), stochastic (as rain),or both
(as wave).
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Texture Not a Texture

rain running water one voice
voices whisper telephone ring
fan jungle music
traffic crickets radio station
waves ice skating single laugh
wind city ambiance single hand clap
hum bar, cocktail sine wave
refrigerator amplifier hum
engine 60 Hz
radio static coffee grinder
laugh track (in TV show) bubbles
applause fire
electric crackle whispers
babble snare drum roll
murmur heart beat

Table 2.1: Brainstorm - examples of sound textures, [SA95].

Sometimes the term sound texture means non-tonal, non-percussive sound material,
or non-harmonic, non-rhythmic musical material, [Sch11].
And, it is important to make the distinction between sound texture and soundscape. A
soundscape is a sum of sounds that compose a scene where each sound component could
be a sound texture.

In order to clarify the concept of sound texture, one could refer to examples of sound
textures that have been listed by Saint-Arnaud [SA95] through brainstorm session, table
2.1.

2.1.2 Sound texture synthesis

Following the different characteristics of sound textures exposed in the previous part,
different synthesis approaches have been developped for sound texture generation.
Schwarz, in [Sch11], proposes a complete state of the art about existing sound texture
synthesis approaches. The following part is a short listing of different synthesis methods
highlighted in this paper.

Substractive synthesis - Noise filtering Using this method, different analysis-
synthesis models for texture synthesis have been developped: 6-band Quadrature Mir-
ror filtered noise in [SaP95], cascaded time and frequency domain linear prediction in
[AE03, ZW04] and a neurophysically motivated statistical analysis of the kurtosis of en-
ergy in subbands in [MDOS09]. Those different synthesis techniques seem to be especially
suitable for unpitched sound texture like rain, fire, water.
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Additive sinusoidal+noise synthesis Through this approach, filtered noise is com-
plemented by oscillators to add sinusoidal partials. It allows to synthesize more complex
and well-informed sound texture models such, as traffic noise [Gui08] and large classes of
environmental sounds (liquids, solids, aerodynamic sounds) [Ver10], achieving a certain
degree of details.

Physical modeling By applying physically-informed models, sound texture synthesis
can be carried out, [OSG02, MLS+08, LGDM08, Coo07, Ver10, PTF09]. Even though
those synthesis techniques attains realistic performances, this approach presents a prin-
cipal drawback that for each class of texture sounds (i.e friction, rolling, machine noise,
impact,...) a specific model should be developed.

Non-standard synthesis Other synthesis methods are used for sound texture synthe-
sis, such as fractal synthesis or chaotic maps, in order to provide expressiveness through
the synthesis process, [Sci99, FAC06].

Wavelets From a multiscale decomposition of a signal, a wavelet coefficient tree can be
built for sound texture synthesis to model temporal and hierarchic dependencies thanks
to its multi-level approaches, [DBJEY+02, BJDEY+99, KP10]. With this method the
overall sound of the synthesized textures is recognisable but their fine temporal structure
gets lost.

Granular synthesis This method recomposes short segments of original recording,
called grains or snippets, with possible transpositions following a statistical model in
order to obtain texture sounds, [DBJEY+02, BJDEY+99, PB04, HP01, Hos02, FH09,
LLZ04, Str07].

Corpus-based concatenative synthesis Based on granular synthesis, corpus-based
concatenative synthesis proposes a content-based approach for sound texture synthesis,
[Car04, Sch06, SBVB06, SCB08, SS10, PTF09, Fin09].
Through his work [Sch06, SBVB06], Schwarz et al. propose a real-time corpus-based
concatenative synthesis system, CataRT. This system allows to drive in real-time the se-
lection and concatenation of sound grains by drawing target audio descriptor trajectories
in a predefined audio descriptor space. Those sound units coming from a grain corpus
are selected regarding to the proximity between their global1 audio descriptors and the
target ones. This corpus is created by segmenting sounds from a database of pre-recorded
audio into units and analysing this units by computing their global audio descriptors.
Thanks to its corpus-based approach, this synthesis technique can perform realistic sounds
by feeding the used corpus with a real sound database. Moreover it allows to control the
creation of novel timbral evolutions through while keeping the fine details of the original
corpus sounds. Then two levels of control are then enabled through this synthesis process:
a low level and a high level. The low level of control deals with the local sound structure
of the corpus units. Expressed while choosing the sounds to feed the corpus, this control
defines the fine sound details of the resulting synthesis. Then an attentive care should be

1over the entire unit signal
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taken while creating the sound data base in order to match the fine sound characteristics
of the wanted synthesis. The other level of synthesis control, the high level, is performed
by targetting positions (or path) in a predefined audio descriptor space for selecting the
sound unit to be played regarding its global audio descriptors.

2.2 Gestural control of sound synthesis

Through recent researches in the domain of neurosciences [KKA+02, MG03] and percep-
tion [VTR91, Alv05, Ber97], the inherently multimodal nature of perception has been
highlighted by showing the predominant role of action in perception. Then, by provid-
ing an interactive control of a sound synthesis process through gesture, one can create
a system which improves the realism of the sound synthesis thanks to its multimodal
approach. To achieve this goal, the gesture-sound relationship has to be determined in
order to find a pertinent way of linking gesture-control data and the sound process, i.e.
a gesture-to-sound mapping, allowing musical expression of the produced sound through
gestural control.

2.2.1 Mapping strategies

In the literature, several mapping strategies have been developed such as one-to-one, one-
to-many, many-to-one and many-to-many, [BMS05]. This latter category of mappings
despite its complexity can show more satisfying results, after a learning phase, than
one-to-one mappings, [Wan02].

2.2.2 Gesture control of granular synthesis

An original and intuitive way of controlling granular synthesis with granular tactile inter-
faces (PebbleBox and CrumbleBag, see figure 2.3) is presented by O’Modhrain and Essl
in [OE04]. This fully-granular interaction paradigm is based on the analysis of sounds re-

Figure 2.2: Left: the CrumbleBag with cereal, coral and styrofoam fillings. Right: the
PeddleBox. [OE04].

sulting from the manipulation of physical grains of an arbitrary material. This enables an
intuitive control of granular synthesis process while maintaining the individual mapping

6



of fine-structure temporal behavior (10-100 ms) of granular event to haptic interactions.
This analysis extracts parameters as grain rate, grain amplitude and grain density which
are then used to control the granulation of sound samples in real-time. This process is
illustrated in figure 2.3.

Figure 2.3: Recorded signal of the PebbleBox (top) and granulated response using a
Hammer grain (bottom) of the complete granulation process, [OE04].

With this approach, a certain variety of environmental sounds like dropping or shuf-
fling of objects can be performed.

2.2.3 Methodologies for gesture-to-sound mapping design

In a context of artistic performance, Bencina et al. in [BWL08] present a technique for
developing new gesture-sound mappings, the Vocal Prototyping. With this technique, a
movement sound vocabulary are extracted by three exercises:

1. first person vocalise, other find movement that corresponds,

2. first person gesture, other find vocalisations that correspond,

3. each make their own movement/sound pairings.

Thus, from the outcomes of the Vocal Prototyping, Bencina et al. "strove to maintain a
balance in the relationship between movement and resultant sound that was easy to per-
ceive for audience and performance alike" to create their gesture-sound mappings. This
results in a intentionally simple mapping inviting a dramaturgical mode of composition.

Caramiaux et al., in [CBS10], introduce an pertinent and original method for the
quantitative multimodal analysis of movement and sound. Using sound and gesture-
related data sets from an experiment where subjects performed free hand movement while
listening to short sound examples, Caramiaux et al. employed a canonical correlation
analysis (CCA) to investigate and highlight mutual shared variance between a set of
gesture parameters, like position, velocity, normal acceleration, and audio descriptors, as
loudness, sharpness by a linear multivariate regression. Even though this method cannot
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exhibit non-linear relations between gesture and sound, it can be used as a selection tool
to create relevant gesture-sound mappings.
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Chapter 3

A perceptually-motivated synthesis

control of environmental sound

textures

3.1 First steps

3.1.1 Environmental sound perception

Being interested in environmental sound texture synthesis, one can get interested in
perceptual characteristics of those environmental sounds.
Misdariis et al., in [MMS+10], present a perceptual description using audio descriptors of
environmental sounds (especially industrial sounds: interior car sounds, air-conditioning
units, car horns and closing car doors). In this work, loudness and brightness1 have
been revealed as the most relevant audio descriptors in the perception of environmental
sounds. Afterwards others predominant descriptors have been perceptually retrieved but
they are related to specific environmental sound categories: instrument-like, motor-like,
impact. Nevertheless all of them are in relation with the content and the shape of the
signal spectrum.
Based on a study about the characterisation of air-conditioning noise, Susini et al. in
[SMW+04] confirm the previous results by showing that the three most relevant audio
descriptors for environmental sounds are the ratio of the noisy part of the spectrum to
the harmonic part, the spectral center of gravity and the loudness.

3.1.2 Environmental sound texture synthesis

From those previous researches, one can be attracted to develop a synthesis process of
environmental sound texture controlled by those perceptually relevant audio descriptors.
Thanks to its content-based and corpus-based approach, corpus-based concatenative syn-
thesis method is particularly suitable to perform this attempt in a realistic manner. In-
deed regarding the similarities between the two different levels of representation of sound
textures (section 2.1.1) and the two levels of control of this synthesis process (section

1a linear combination between the perceptual spectral centroid values of noisy and harmonic parts of
the signal and the perceptual spectral spread value of the whole signal, described in [MMS+10]
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2.1.2), corpus-based concatenative synthesis systems seem quiet suitable to synthesize
global evolutions, also called morphologies, of a specific sound textures.
Thus the CataRT system is synthesis technique is the one used as real-time audio engine for
our project. The handled version is cataRT-1.2.12 using the library FTM 2.5-beta173

on Max 5.1.84.

However to efficiently synthesize environmental sound textures with CataRT, a study
on finding out the most appropriate set of audio descriptors to drive this synthesis should
be carried out.

3.2 Perceptual experiment on synthesis of environ-

mental sound texture morphology

Through this part, a perceptual similarity experiment is presented. Its goal is to evaluate
the similarity between original sound texture morphologies and their respective resynthe-
sis driven by different sets of audio descriptors. From the experiment results, the best
combinaison of descriptors to control the resynthesis for each proposed sound textures
can be revealed. Moreover the overall resynthesis process can be as well validated.

3.2.1 Environmental sound texture morphology resynthesis

To achieve this perceptual similarity experiment, a set of original and resynthesized en-
vironmental sound texture morphologies has to be created. Through this part, the pro-
cedure to create this sound set is described.

Corpus creation

As seen in section 2.1.1, sound textures have two levels of representation: a low level com-
posed of simple atomic elements and a high level describing the time distribution of those
atoms. In section 2.1.2 the two levels of control of the chosen synthesis method (corpus-
based concatenative synthesis) have been highlighted. A low level of control achieved
by constituting the corpus defines the possible fine sound details for the synthesis and a
high one enabling to comtrol the creation of novel timbral evolutions playing sequences
of corpus units by drawing trajectories through a predefined audio descriptors space.
Thus to fit the different levels of sound texture representation with the different levels of
synthesis control, the used corpus for a specific sound texture should be properly created.
First in order to have a realistic illustration of sound textures, recordings of true sound
textures (SoundIdeas database) have been used to feed the different corpora. In addition,
for this synthesis process each sound texture has its associated corpus. For example, the
corpus for synthesizing a rain texture is composed of sound units coming from true rain
recordings only. Thus the fine atomic details of the sound texture synthesis is realistically
illustrated. Then to create an associated corpus for each of those sound textures (rain,

2http://imtr.ircam.fr/imtr/CataRT
3http://ftm.ircam.fr
4http://cycling74.com
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wave and wind), recordings of rain5 (19 sound files, 29.5 min), wind6 (16 sound files, 24.1
min) and wave7 (14 sound files, 25.8 min) from the SoundIdeas database are respectively
feeding the rain, wind and wave corpora.

Moreover the length of the corpus units has to be discussed. About this aspect no
literature has been found. For synthesizing rain sound textures with their prototype tex-
ture synthesizer ([SS10]), Schwarz and Schnell uses a corpus of rain recording units of
length 666 ms. In our case, in order to provide a reactive gestural control of the synthesis
the tendancy is to reduce the unit lengt to allow more abrupt timbral changes. But to
provide pertinent timbral evolutions of sound textures, each corpus unit should represent
a certain time distribution of sound texture atomic elements. Then a unit length of 250
ms seems to be a good compromise between a reactive control and the high level of sound
texture representation.

Experiment’s audio descriptor sets

According to its data-driven approach, the CataRT-1.2.1 system proposes 25 different
audio features. Those features are related to either units’segment descriptors, unit’s cat-
egory descriptors, symbolic and score descriptors, signal descriptors, perceptual descrip-
tors or spectral descriptors. Regarding to previous contributions presented in section
3.1.1 ([MMS+10, SMW+04]), only signal descriptors, perceptual descriptors and spectral
descriptors are pertinent in environmental sounds. Thus to achieve a perceptually rele-
vant synthesis control, this is the sound descriptors provided by CataRT that have been
selected: loudness, spectral centroid, spectral flatness, mid- and high-frequency energies.
Those descriptors are detailed in appendix A.
From this descriptor selection, five sets of audio descriptors have been built to control
global evolutions of environmental sound textures according to their perceptual weight:

1. loudness ;

2. loudness, spectral centroid ;

3. loudness, spectral centroid, spectral flatness ;

4. loudness, spectral centroid, mid- and high-frequency energies ;

5. loudness, spectral centroid, spectral flatness, mid- and high-frequency energies.

Morphology resynthesis

In order to have realistic environmental sound texture morphology resynthesis, true mor-
phologies are extracted from real environmental sound texture recordings. From the
analysis of those original recording pieces, the trajectories of the selected audio descrip-
tors (section 3.2.1) are utilized as targets to perform their resynthesis. Thus for each

5light, medium and heavy rain
6aspen wind, storm wind, canyon wind, storm wind, hangar wind
7light, medium and heavy waves from ocean and lack
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Parameters Values

trigger mode bow (allows units’ overlap)
unit length 250 ms
unit overlap 125 ms

fade-in, fade-out 125 ms through linear ramp
selection radius 0.1

number of closest 10
neightbour units

Table 3.1: Parameters’ value for environmental sound texture morphology resynthesis

original sound texture morphology a set of five associated resynthesis is created.

In pratice, several resynthesis problems have been encountered. First while concate-
nating sound units, sound artefacts are appearing at each unit junction. To solve this
problem, one can overlap adjacent units. This reduces in a consequent manner sound
artefacts but abrupt timbral changes are noticed at the start of each new units. Then a
fade-in and a fade-out can be applied on played sound units. This results in a smoother
morphology resynthesis.
Through this synthesis process another problem has been revealed in the unit selection.
When the evolution of successive target positions in the descriptor space are quasi un-
changed, the same unit can be repeated successively which introduces another sound
artefact. This problem can be partly solved by defining a selection radius and a number
of closest neightbour units to be considered for the unit selection. The selection radius
allows to randomly select an unit in a certain interval around the specified target descrip-
tor position. The number of closest neighbour units defines the number of units which
are enable to be selected according to their proximity to a target position in the current
descriptor space. Those adjustements allows to choose in between several units while
staying close enough to a target descriptor position.
Table 3.1 shows the different parameter values for the CataRT system allowing to make
those adjustements.

3.2.2 Design of the experiment

Participants

Through this perceptual experiment, fifteen test subjects have been asked to evaluate
the similarity between original environmental sound morphologies and their associated
resynthesis. Those participants were volunteer and have not been selected regarding to
any personal characteristics. Details about them can be found in appendix B.1.

Materials

As previously mentioned, we choose to work with three sound textures: rain, wind, wave.
For each sound texture, five sets of short audio files (≈ 5-9 s) have been created. Each set
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Figure 3.1: Interface of the perceptual experiment for environmental sound texture resyn-
thesis.

is composed of six audio files: one original and five different resynthesis. Those resynthe-
sis are built by selecting units within a texture-related corpus according to trajectories
of different target descriptor sets from their associated original morphology.

To perform this perceptual experiment without background noise annoyance, partic-
ipants are seated in a double-walled IAC sound booth. The different sounds are played
with a couple of loudspeakers8. In order to have a proper sound level through this ex-
periment, a sound level calibration is achieved. This calibration is done by adjusting the
sound level of a pure tone (1 kHz) to 84.5 dB SPL. This measure is made through a sound
level meter9 at a potential head position, i.e. at a distance of 50 cm from both speakers
and 1.01 m from the floor.

For the purpose of this perceptual experiment, an interface has been implemented in
Max/MSP10, see figure 3.1. In this interface a continuous slider for each resynthesis is
provided to evaluate the different morphology resynthesis regarding to their associated
original morphology. On those scales five different graduations have been added to give
categorial marks to test subjects:

very different, significantly different, quite different,
slightly different, identical

This type of scoring furnishes a categorial and continuous score for each audio descriptor
set used to resynthesize morphologies. Then the mean and the standard deviation for

8YAMAHA MSP5 powered monitor speakers
9Brüel & Kjaer 2238 mediator

10http://cycling74.com
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each of the resynthesis can be calculated over all participants. From those results, one
is able to validate or not the overall resynthesis process thanks to the categorial aspect
of these results and to choose the best combination of audio descriptors to control the
resynthesis of environmental sound textures thanks to the continuous aspect of those
results.

Procedure

Before that participants start this experiment, a short training session has been provided
for each of them. Through this training session, the interface is first presented. After-
wards participants are asked to work their own strategy out for evaluating morphology
similarities through an single training set of morphologies (one original morphology and
five associated resynthesis).

In order to keep test subjects highly concentrated and to avoid confusion through
the experiment, the number of listening for the resynthesis sounds is limited to three
times. On the other hand, the original morphologies can be listened as many times as
test subjects want.

To reduce the risk of unwanted effects, the presentation order of the different sound
texture resynthesis is randomly chosen: first the presentation order of the different sound
textures is randomized, then for each sound texture the presentation order of the differ-
ent morphologies is also randomized, and finally for each morphology sliders are as well
randomly affected to the different resynthesis.

3.2.3 Results of the experiment

Being interested in finding a pertinent set of audio descriptors to drive the synthesis
for each environmental sound texture, the mean and the standard deviation over all
participant evaluations are calculated separately for each environmental sound texture.

15 17 18 19 20 15 18 19 20 15 17 18 15 18 15
Rain 144.6 126.4 138.7 104.6 25.3

±40.8 ±43.0 ±41.1 ±56.8 ±24.7
Wave 108.8 106.2 105.2 100.2 75.2

±48.1 ±45.1 ±48.4 ±47.4 ±38.6
Wind 94.8 94.9 86.1 76.1 36.9

±39.8 ±47.3 ±38.8 ±37.1 ±30.4

Table 3.2: Table of the results of the perceptual experiment for each considered sound
texture (rain, wave, wind).

Table 3.2 shows the obtained mean and standard deviation over all participants for
the rain, wave and wind sound textures on a notation scale going from 0 (very different)
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to 200 (identical). In this table, the different sets of audio descriptors are indicated by
their descriptor index in CataRT:

15 → loudness ; 17 → spectral flatness ; 18 → spectral centroid
19 → high-frequency energy ; 20 → mid-frequency energy

From table 3.2, one can notice that there is a group constituted by three sets of audio
descriptors which seems to be the most perceptually relevant through all considered
textures:

• 15 17 18 19 20 → loudness, spectral centroid, spectral flatness, mid- and high-
frequency energies ;

• 15 18 19 20 → loudness, spectral centroid, mid- and high-frequency energies ;

• 15 17 18 → loudness, spectral centroid and spectral flatness ;

It seems that the considered textures have the same relevant audio descriptor sets
to drive their synthesis. Then a global view of their evaluation over all textures can be
interesting, see table 3.3.

15 17 18 19 20 15 18 19 20 15 17 18 15 18 15
All textures 116.1 109.2 110.0 93.6 45.8

±47.9 ±47.0 ±48.2 ±49.4 ±38.2

Table 3.3: Table of the results of the perceptual experiment over all considered sound
textures (rain, wave, wind).

From table 3.3 the three audio descriptor sets seems to have been evaluated in an
equivalent manner. In order to affirm this hypothesis, one can performed a student’s t-
test (see appendix C) to know if their means can be considered as equal. In table 3.4, the
results of the performed student’s t-test of the null hypothesis that data are independent
samples from normal distributions with equal means and equal but unknown variances,
are presented.
With this method, one is able to know if the null hypothesis is rejeted or not at a certain
significance level, 5 % in our case. This test is achieved for each possible couple of
descriptor sets by using the data over all textures.

From those results (table 3.4), one can see that for the couple where only the three
best sets of descriptors are involved in the null hypothesis is accepted. This shows that
their means and variances can be considered as equal at the 5 % significant level. Thus
one can consider that those three audio descriptor sets are equivalent for the resynthesis
process of environmental sound textures. Regarding to the efficienty of the three best de-
scriptor sets, the set 15 17 18 is the best of those three because it uses the fewest number
of audio descriptors compared to the two others. Then to take the set 15 17 18 (loudness,
spectral flatness, spectral centroid) for synthesizing environmental sound textures seems
to be a pertinent choice.
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couples of null

descriptors set hypothesis

15 17 18 19 20 15 18 19 20 accepted

15 17 18 19 20 15 17 18 accepted

15 17 18 19 20 15 18 rejected
15 17 18 19 20 15 rejected

15 18 19 20 15 17 18 accepted

15 18 19 20 15 18 rejected
15 18 19 20 15 rejected

15 17 18 15 18 rejected
15 17 18 15 rejected

15 18 15 rejected

Table 3.4: Table of the T-test results on the perceptual experiment data.

Moreover the mean of the chosen descriptor set over all textures is 110.0 out of 200.
This value is above the mean of the notation scale and is situated between the mark-
ers quite different and slightly different. Thus one may conclude that the performed
resynthesis process driven by the chosen descriptor set is satisfying.

3.3 Conclusion

After that each participant performed the present experiment, a discussion was under-
taken to get comments about this experiment.
The main drawback highlighted is that the different sounds are too long which involves
an increase in the difficulty of the experiment. Then shorter sound files (less than five
seconds) should be provided. Another interesting comment has formulated by two of
the participants: a small and regular sound intensity modulation were perceived along all
resynthesis. This problem seems to come from the frequency at which units are launched.
Indeed using a linear ramp to achieve the fade-in and the fade-out of each unit can induce
this modulation. To avoid this phenomenon a square-root ramp should be used.

An attempt to validate the resynthesis method has been performed regarding to the
original morphologies but nothing has been proposed to evaluate the realism of the resyn-
thesis methods. Nevertheless through the ’after-experiment’ discussion, participants said
that the presented resynthesis are quite realistic in spite of certain sound artefacts intro-
duced by the synthesis process.

Another important improvement should be carried out on the proposed audio de-
scriptors through this presented selection process. In our case we choose to use audio
descriptors provided by cataRT-1.2.1 which seem to be the closest to the ones proposed
by perceptual studies ([MMS+10, SMW+04]). However this audio descriptor adaptation
is not really pertinent. One should have avoid to adapt the proposed audio descrip-
tors and use them through this selection process. The concerned audio descriptors are:
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loudness, brightness, perceptual spectral centroid, perceptual spectral spread, harmonic-to-
noise ratio, roughness and cleaness. For details about those descriptors, please refer to
the Misdariis et al.’s article, [MMS+10].
To achieve this perceptual study in a more conventional way, multidimensional scaling
(MDS) techniques should have been used to analyze data from the experiment. Those
techniques are commonly used in perceptual investigations of complex sound stimuli,
[MMS+10, SMW+04, Gre77, MWD+95]. They allow to determine the multidimensional
perceptual space and its corresponding physical space (i.e. audio descriptor space) of the
considered sound set. Thus perceptually pertinent combinaisons of sound descriptors can
be obtained using MDS. Details on MDS techniques can be found in the articles cited
above.
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Chapter 4

Towards a gestural control of

environmental sound texture

Now that a set of audio features has been found as perceptually relevant to control
environmental sound texture synthesis (rain, wave, wind), we want to find out a gesture-
to-sound mapping in order to control the evolution of those audio descriptors through
gestures. For this purpose, the relationships between those audio descriptors and gestural
parameters should be revealed.
In this chapter, an experiment, inspired by [CBS10], for bringing out the linear parts of
those relationships is presented. Then the results obtained with it are shown and dis-
cussed.

4.1 Introduction

4.1.1 Gesture

In our case, gesture is considered as the motion of one hand to control environmental
sound texture synthesis. This one hand gesture is represented through a set of parame-
ters. In their gesture-sound relationship study, Carmiaux et al. [CBS10] are considering
the following gestural observations: position, velocity, normal acceleration, tangential
acceleration, curvature, radius, torsion. But only the following gesture parameters are
found as pertinent:

position, velocity, normal acceleration

Being interested in revealing either the positional (position), kinetic (velocity) or dynamic
(acceleration) aspects of gestures for controlling audio descriptor morphologies, the above
pertinent gestural observations seem to be a good starting point for our attempt.

In order to capture those different aspects of gesture, two commercial devices are used:
the Wii Remote Plus1 and the Kinect2. The wii remote embeds intertial sensors and di-

1http://www.nintendo.com/wii/console/controllers
2http://www.xbox.com/en-US/Xbox360/Accessories/Kinect/Home
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rectly streams reconstructed accelerations and orientations in a relative three-dimension
space via bluetooth. This bluetooth communication is then translated into an OSC proto-
col3 by the Osculator system4. This makes possible to use the provided data flow through
the software Max. In our purpose, this device is used to retrieve the dynamic aspect of
the hand motion and the positional and kinetic aspects of the hand rotation. The kinect
is a webcam which furnishes a rgb image flow with its associated depth maps at a frame
rate of 30 Hz via a USB connector. To grab those images from the software Max, one
can utilize the external object jit.freenect.grab5 which makes use of the OpenKinect
project’s libfreenect library6. From the provided depth maps one is able to track the hand
positions in the video frames under certain conditions. In our case participants are asked
to face the kinect and to keep their hand in front of their body. Moreover their hand
should roughly stay in a plane perpendicular to the central axis of the webcam. Under
those conditions, the hand position can be tracked by detecting and tracking the closest
blob7 through depth maps provided by the kinect. This tracking process is implemented
in Max software using the computer vision for jitter library, cv.jit-1.7.2 8. This allows
to obtain the position and then the velocity of the user’s hand in a two-dimensional space.
Then this device is used to obtain the positional and kinetic aspect of the user’s hand
movement.

The following list sums up the different gestural features which can be calculated with
the above setup:

• wii mote

horizontal, vertical, depth- and absolute9 hand’s acceleration
horizontal, vertical, depth- and absolute10 hand’s angle

horizontal, vertical, depth- and absolute11 hand’s anglular velocity

• kinect

horizontal, vertical and absolute12 hand’s position
horizontal, vertical and absolute13 hand’s velocity

An illustration of this setup is shown in figure 4.1.

3http://archive.cnmat.berkeley.edu/OpenSoundControl
4http://www.osculator.net
5version ’Release Candidate 3’, provided by Jean-Marc Pelletier - http://jmpelletier.com/freenect
6https://github.com/OpenKinect/libfreenect
7region in images that have different characteristics compared to its surrounding
8http://jmpelletier.com/cvjit
9accabs =

�
acc2

hor + acc2
ver + acc2

dep

10angabs =
�

ang2
hor + ang2

ver + ang2
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11aveabs =
�
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Figure 4.1: Illustration of the setup for capturing the motion of a performer’s hand in
a plane through an embeded inertial sensor (wii mote) and a webcam providing depth
maps (kinect).

No clear value of the data flow sampling rate for the wii mote has been found, it seems
to be between 50 and 100 Hz. Thus in order to have the same number of samples with
both devices, the one uses in our setup is the frame rate of the kinect, 30 Hz.

In practice this setup shows a problem with the tracking of the hand: for a short
moment the hand position is lost then the tracking system returns the hand’s planar
coordinates (0,0). To reduce this random punctual problem, a second order lowpass
butterworth filter with its cutoff frequency at 5 Hz is applied to those data. Moreover to
avoid the phase changes induced by filtering, a zero-phase filter is used. This is done by
using the function butter() and filtfilt() in MatLab software14.

4.1.2 Canonical correlation analysis

In this project, one attempts to find a way of controlling environmental sound texture
synthesis by one hand gesture. To provide an intuitive gestural control of this synthesis,
the relationship between gesture and sound features should be revealed.
As seen in section 2.2, Caramiaux et al. ([CBS10]) shows an interesting methodology
to quantify the linear part of the gesture-sound relationships by investigating the mu-
tual shared variance between the gestural and the audio sets of features using canonical
correlation analysis (CCA). Proposed by Hotelling in [Hot36], this analysis technique
maximises the correlations between two sets of variables by projecting them on a proper
basis vectors, eq. 4.1.

maxA,B [ corr(XA, YB) ] (4.1)

14http://www.mathworks.com
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where A and B are the two projection matrices maximising the correlations between the
projected variables. X and Y are the two matrices representing the two sets of variables
with their variables (resp. observations) along the columns (resp. rows). These two
matrices must have the same number of observations but they can have different numbers
of variables. The projected variables, XA and YB, are called canonical variates and the
strength between two canonical variates is given by the canonical correlation. From the
canonical correlation, one can examine the importance of the relationship between two
canonical variates. Then in order to determine the involvement of each original variable
in the different associated canonical variates, their canonical loading can be expressed.
Canonical loadings measure the correlation between variables of the original set and their
corresponding projections, eq. 4.2.

LX = corr(X, XA) (4.2)

Thus from those values, canonical correlations and canonical loadings, one can ob-
tained a measure of the linear relationship between gesture and sound features. Even
though this techniques shows limitations, it can be used as a selection tool for guiding
the creation of a pertinent gesture-sound mapping.

More details about this analysis technique can be found in [HSST04].

4.2 Experiment

Being interested in controlling the synthesis of environmental sound textures by gesture,
an experiment allowing to study gesture-sound relationships through CCA is built. This
experiment is highly inspired to the one presented in [CBS10].

4.2.1 Experiment protocol

For this experiment eight subjects are invited to perform one-hand movements while lis-
tening to nine different sound extracts. Those sound extracts are environmental sound
texture morphology resynthesis driven by the chosen set of audio descriptors (loudness,
spectral flatness, spectral centroid) coming from the perceptual similarity of environmen-
tal sound texture resynthesis. For each studied category of environmental sound textures
(rain, wave, wind), three sound morphologies have been arbitrary chosen. Their duration
is between 5 and 9 seconds. For each presented sound extract participants are asked
to imagine an one-hand gesture which could control its sound synthesis process. After
an arbitrary number of rehearsals, participants perform three times their imagined ges-
ture listening to the corresponding sound extract. Those final three performances are
recorded. This results in a data set of gestural control imitation for each environmental
sound texture synthesis.

In order to play the different sound extracts and record the gesture data, a Max
patch is implemented. An audio-visual signal is provided to performers for helping them
to synchronize their gesture with the different sounds. Once the user is ready to perform
his/her gesture, he/she launches a metronome (1 Hz) which beeps twice with a red flash
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before the sound starts. Then, following the same rhythm, a green light (without sound
beep) is switched on when the sound is played until its playback is finished.

From this experiment, gesture data sets related to sound are obtained. As seen in
table 3.1, a new sound unit of 250 ms is played every 125 ms through the synthesis
process. Then the different sounds are analysed through non-overlapping windows of 125
ms to get the global evolutions of its perceptually relevant audio descriptors. Thus the
sampling rate of those sound data sets is 8 Hz. For achieving a CCA, the sampling rate
of both data sets (sound and gesture-related data sets) should be the same. Then the
sound data sets are resampled at the gesture data’s sampling rate: 30 Hz.

4.2.2 Experiment results

4.2.3 Choice of gesture descriptors

In CCA, the choice of the input variables can change significantly the obtained results.
The more numerous the input variables, the higher the resulting correlation between the
two sets of variates. Nevertheless by adding variables, one can easily loose the pertinence
of this correlation measure. Then in order to minimise the dimensionality of the gestural
data keeping a global representation of performed gestures, one can take only the five
absolute parameters of gesture. By taking only absolute parameters, the gesture is as-
sumed to be independent from direction. Since gravity and the distance to the floor can
be considered as strong references for performers, we decide to use the horizontal and
vertical position in our analysis instead of the absolute position.
Then the chosen set of one-hand gesture features is constituted by horizontal position,
vertical position, absolute velocity, absolute angle, absolute angular velocity and absolute
acceleration.

4.2.4 Sound-gesture relationships

Now that sets of audio descriptors (sec.3.2.3) and gesture features (sec.4.2.3) have been
chosen, an analysis of the sound-gesture relationships can be achieved.

For this purpose, only performances showing at least one of their canonical correla-
tion coefficients superior to 0.7 through CCA are kept as relevant results. Over the 216
experimental results (72 for each sound texture) only 94 (43.5 %) of them are considered
as relevant. Through those 94 relevant performances, 9 (12.5 %) have been performed
on the rain sound texture, 42 (58.3 %) on the wave one and 43 (59.7 %) on the wind
one. For rain sound texture, the 9 gesture performances expressing a strong correlation
were all achieved on the same sound extract. Through wave sound texture, 21 relevant
gesture performances were achieved on one of the sound extract and the other 21 ones
on another sound extract. For wind sound texture, relevant performances has been done
on each sound extracts, 18 on one of them, 16 on another one and 9 on the remaining one.

From this result selection, one can see that results about sound-gesture relationships
for rain texture are quite poor, i.e. only few strong correlations between sound and ges-
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Figure 4.2: Representation of the canonical correlation strength and the canonical load-
ings for all relevant performances over all sound textures and participants (94 sound
extracts). Lo: loudness, SF: spectral flatness, SC: spectral centroid. HP: horizontal posi-
tion, VP: vertical position, Ve: absolute velocity, Ac: absolute acceleration, An: absolute
angle, AV: absolute angular velocity.

ture have been revealed. Nevertheless for the two other sound textures, wave and wind,
the obtained results are a way better. More than half of them are found as relevant.

As seen previously in section 4.1.2, gesture and sound loadings should be studied
to investigate relationships between the different audio and gesture features according to
their associated canonical correlation strength. Those values for all relevant performances
over all sound textures and participants are shown in figure 4.2.

From figure 4.2, it can be seen that no clear relationship between sound and gesture
parameters are highlighted: despite a strong first canonical correlation coefficient and a
strong sound loading for loudness, all corresponding gestural loadings achieves low cor-
relation and none of them can be distinguished regarding the others. This means that
participants are not using the same control strategy through their gesture and/or for dif-
ferent sound textures the strategy of sound control are not similar. Nevertheless one can
notice loudness is the perceptual audio descriptor that participants are following firstly.
Then it can be interesting to specify our study to reveal sound-gesture relationships for
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Figure 4.3: Representation of the canonical correlation strength and the canonical load-
ings for all relevant performances over all wind textures and participants (43 perfor-
mances). Lo: loudness, SF: spectral flatness, SC: spectral centroid. HP: horizontal posi-
tion, VP: vertical position, Ve: absolute velocity, Ac: absolute acceleration, An: absolute
angle, AV: absolute angular velocity.

a particular sound texture.

Figure 4.3 shows the obtained gesture-sound relationships over all participants but
just for wind sound texture which is the most successfull among the proposed sound
textures with 43 relevant performances. Again, no clear sound-gesture relationship are
brought out. The only assumption which can be proposed by watching figure 4.3 is that
loudness is not related to vertical position. This confirms that participants do not perform
the same control strategy while listening to a specific sound texture and/or performers
change their strategy from one sound extracts to another one.

To continue on this way, figure 4.4 illustrates the obtained gesture-sound relation-
ships over all participants for a single sound extract of wave texture which is one of the
most successfull one regarding to all proposed sound extracts (21 relevant performances).
From figure 4.4 a tendancy in sound-gesture relationships is shown: loudness seems to be
rawly related to kinectic and dynamic aspects of the hand’s movement (absolute veloc-
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Figure 4.4: Representation of the canonical correlation strength and the canonical load-
ings for all relevant performances of a single wave sound texture extract over all partic-
ipants (21 performances). Lo: loudness, SF: spectral flatness, SC: spectral centroid. HP:
horizontal position, VP: vertical position, Ve: absolute velocity, Ac: absolute acceleration,
An: absolute angle, AV: absolute angular velocity.

ity, absolute acceleration and absolute angular velocity). Nevertheless figure D.1, placed
in appendix D, shows that a positional aspect of gesture (horizontal position) could be
involved in the control strategy of loudness. Then the above tendancy for wave sound
texture is not really generalised to others sound textures for all participants.

Another attempt to find a way of showing tendancies in sound-gesture relationships
is done by analysing performances of a participant through the different sound extracts
of the same sound texture. Figures D.2 and D.3 placed in appendix D, illustrate the
revealed gesture-sound relationships over the different proposed sound extracts for the
wind sound texture through relevant performances of two participants. From them, it
can be seen that the control strategy is changing with the participant. But each partic-
ipant keeps more or less the same strategy for each sound texture. For the participant
2, the strategy control of loudness is essentially done through positional aspect with the
horizontal position gestural feature. On the other side, the participant 6 chooses mainly
the kinetic aspect of gesture for his control strategy of loudness: absolute velocity of the
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hand movement.

4.3 Discussion and conclusion

Being interested in controlling environmental sound texture synthesis, an experiment to
obtained sound and gesture-related is built. Based on a preliminary study on the rele-
vant perceptive audio features, this experiment consists in inviting participants to per-
form one-hand’s movements while listening to environmental sound texture morphologies
(rain, wave, wind). Afterwards CCA technique is used to retrieve the linear part of the
complex gesture-sound relationship in two steps: first based on the canonical correlations
a selection of pertinent gesture features is achieved, then the analysis of the correlation
between the selected gesture features and the audio descriptors is performed.

Through this analysis process, no generalization about sound-gesture relationships
over all participants has been achieved. The resulting sound-gesture correlations are spe-
cific to each participant and to each sound texture.

Through discussions with participants, imitation of control of rain sound texture has
been found as a really hard task. They find this texture too monotonic in a high level of
representation with a lot of details in a low one. This were confusing the participants.
Thus one of the participant told us that the inertial capture system is too contraining
and restrain the expressiveness of the participant because she wanted to use her finger for
controlling fine details of the sound texture, especially for rain and wind. Then another
capture system letting the hand and its fingers free should be provided for this kind of
experiments

By observing the different participants performing this task, numerous problem have
highlighted. First participants have been in trouble to synchronize their gesture on the
played sound extract. This is due to the length of the different sound extracts, they are
too long with too many sound changes in it. Several times participants were surprized
by sound events and then tried to hold back or accelerate their gesture to match with
the playback sound. Thus performers were more into a gestural illustration strategy of
the sound than into a control strategy. To reduce this problem, a second step in the
experiment is needed. A proposition for this task is that participants should try the
proposed CCA-mapping (from the previous experiment) to reproduce a specific sound
texture morphology or just freely and then tune this gesture-sound mapping to fit with
what they feel intuitive.

Anyway, the presented method can be used to guide a performer through his/her
creation of a personal gesture-to-sound mapping.
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Chapter 5

Texture descriptor development

As seen in the previous chapter, rain texture is quite problematic for performers though
the gesture-related-to-sound experiment. After discussions with the experiment’s partic-
ipants, one could conclude that rain texture morphologies are monotonic on a high-level
of representation. While performing gesture on rain texture almost all participants were
shaking their hand. They were more interested in controlling the fine texture details
composed of water drop impacts. For this purpose, audio descriptors should be created
to describe impact characteristics such as impact rate, impact rate variance, impact am-
plitude, impact amplitude variance in order to be able to discriminate different types of
rain, for example light rain, medium rain and heavy rain. Then those descriptors should
be perceptually relevant.

Through this chapter an investigation on an impact rate descriptor is carried out.

5.1 Impact rate descriptor

An impact is characterized by an abrupt increase in the energy profile of the sound signal.
Based on this definition, a method for computing an impact rate descriptor is proposed.
This method is partly inspired from [OE04].

5.1.1 Method description

In this part the succesive steps to achieve the calculation of our impact rate descriptor
are presented.

Instantaneous energy The total instantaneous energy is derived by taking the square
of the waveform signal:

Einst[n] = (s[n])2 (5.1)

where n the index of the temporal sample.

Envelop The signal envelop can be obtained by low-pass filtering the instantaneous
energy. To do so, one can convoluate this latter by a Hamming window of 5 ms duration.
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This process describes a low-pass filter with a cut-off frequency at 132 Hz.

Env[n] = (Einst ∗ Hamming)[n] (5.2)

Framification Afterwards the obtained signal is cut into frames of 250 ms duration
with a overlap of 50 % according to the parameter of our synthesis process (see table
3.1).

Impact detection In order to detect impacts in the different frames, peaks are localized
through the signal envelop.

PicLoc[k, i] = {(Env[k, i] − Env[k, i − 1]) > 0}&{(Env[k, i + 1] − Env[k, i]) < 0} (5.3)

where k the frame index, i the sample index of the associated frame with 2 ≤ i ≤ N and
N the sample number of a frame.
Once peaks are localized a threshold is applied to keep only consistent ones. This thresh-
old is equal to twice the mean of the associated frame. In order to make this selection
more robust to noise another condition should be fullfilled. If a consistent peak is found,
at least another peak should be present in the following 0.5 ms. Then to avoid multiple
impact detections a retriggering delay, 10 ms, is observed before allowing any new impact
detection, [OE04].

Impact rate Thanks to theprevious impact detection, one is able to count the number
of impacts per frame and thus to derive a measure of the impact rate.

ImpactRate[k] = Nimpacts[k] · Fs

Nsamples[k] (5.4)

where Nimpacts[k] the number of retrieved impacts in the k
th frame, Nsamples[k] the number

of samples in the k
th frame and Fs the sampling frequency of the signal.

5.1.2 Evaluation of impact rate

Creation of evaluation audio files

To evaluate the present method, a set of evaluation audio files is created. First four
different single rain drops are extracted from real rain sound extracts (from SoundIdeas
database). Then from those single rain drops, a matlab program has implemented to
create audio files in which those drops are repeated at a certain frequency. This is the
different used frequency values: 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110 Hz. An additional audio file is created with a frequency repetition varying from 3 Hz
to 80 Hz. Moreover in order to see the noise sensibility of the method, a gaussian noise
is added to the obtained audio files. Its amplitude is set to have, for each obtained audio
files, different signal-to-noise ratio: −10, −5, 0, 5 and 10 dB. In total, a set of 380 audio
files is created.
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1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
7 100 100 100 100 100
10 100 100 100 100 100
15 99 100 100 100 100
20 91 100 100 100 100
30 34 100 100 100 100
40 4 99 100 100 100
50 0 85 100 100 100
60 0 53 100 100 100
70 0 17 99 100 100
80 0 3 91 95 95
90 0 1 86 100 100
100 0 0 52 76 75
110 0 0 26 63 67

3 − 80 61 100 100 100 100

Table 5.1: F-measure of the presented impact rate measure, in [%], for each combination
of frequency repetition and signal-to-noise ratio.

Evaluation

To evaluate the present method, one can derive the F-measure:

Fmeasure = 2 · precision · recall

precision + recall
(5.5)

where precicion is equal to |{trueImpact} ∩ {retrievedImpact}|/|retrievedImpact| and
recall is equal to |{trueImpact} ∩ {retrievedImpact}|/|trueImpact|. An interval error
of ±2.5 ms is allowed while achieving the intersection between the true impacts and the
retrieved ones. Table 5.1 shows the obtained results with this evalutaion technique.

Through the presented tables, one can see that the measure does not induce errors
for the frequency rates from 1 Hz to 10 Hz. Afterwards from 15 to 90 Hz proper results
are achieved for a signal-to-noise ratio is superior to 0 dB. Then for superior repetition
frequencies the results get poor, this is due to the retriggering delay which is equal to 10
ms implying then a limit about 100 Hz regarding the possible detectable impact repetition
frequency.

31



5.2 Conclusion

The presented impact rate descriptor gives satisfying results according to the performed
F-measure. Despite the simplicity of this implementation, numerous parameters are in-
volved in it and some of them induces limitations (for example the retriggering delay).
Those parameters have been rawly adjusted by a heuristic approach. Then for continuing
this audio descriptor investigation, one should find a way to reduce the number of pa-
rameters for computing this descriptor and to pertinently adjust the different parameters.
Moreover the method to get this descriptor can be seen as an onset detection technique.
This similarity between our descriptor and onset descriptor techniques shows that our
descriptor expresses more a physical measure than a perceptual one. Then perceptual
experiment should be carried out in order to evaluate this impact rate descriptor.

This descriptor can be interesting for characterizing other impact sound textures such
as fire, electric crackle, coffee grinder...
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Chapter 6

Conclusion

Through this project, a methodology to guide the construction of a mapping for control-
ling environmental sound textures (rain, wave, wind) through one-hand gesture has been
developed.
Based on previous contributions, a perceptual experiment is carried out in order to find
an efficient and perceptually relevant set of audio descriptors for controlling corpus-based
concatenative synthesis process of environmental sound textures. From this experiment,
the audio descriptor set composed of loudness, spectral flatness and spectral centroid are
revealed as the most efficient and pertinent set of audio descriptors to use for controlling
the environmental sound texture synthesis. Moreover through this perceptual experi-
ment our overall synthesis process for environmental sound textures has been considered
as satisfying regarding to the obtained results.
Afterwards an explorative experiment where participants are asked to perform one-hand
gestures pretending that their motions would create the sounds they hear. Through this
experiment a set of sound and gesture-related features are obtained. Then by applying
CCA to those obtained data, the linear part of gesture-sound relationships can be re-
vealed. From this analysis, first, we noticed that this gesture-sound experiment is not
adapted to rain textures. For the two others studied sound textures, wave and wind,
significant correlations are expressed. Those two studies show that there is one of the
audio descriptors, loudness, which is mainly followed by the participants through their
gesture. Nevertheless no common gesture-sound relationship over all participants and
sound textures is highlighted. Then we decide to focuse this analysis technique on par-
ticular participant over sound extracts coming from a single sound texture. From this
attempt correlations between gesture and sound are figure out. But those correlations are
specific to participants. Thus no generalization about gesture-to-sound mappings over
all participants and all sound textures can be done. However the presented methodology
can be used for guiding the construction of personal gesture-to-sound mappings.

In future works, sets of perceptually relevant descriptors specific to the different cat-
egories of sound textures (periodic, stochastic or both) should be retrieved. This should
allow more apropriated control of environmental sound texture synthesis. Moreover an
extended and less-constraining gesture capture system should be provided to performers.
A full 3D hand tracking system allowing to capture the motion of the user’s two hands
and also his/her finger’s motion in order to propose several independent levels of control
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through gestures should be developed. In addition through our gesture-sound experi-
ment, we noticed that participants were mainly and almost only following the loudness
contour of the sound extracts. Thus for futur experiments, participants with a strong
musical background should be chosen in order to make more than one sound descriptor
to be followed by participants.
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Appendix A

Perceptually relevant audio

descriptors for environmental sound

Loudness

L[m] = 10 · log10(
�N

n=1 x[m, n]2
N

) (A.1)

where x the waveform of the signal, m the frame index, n the relative sample index and
N the number of samples in the current frame.

Spectral centroïd

SC[n] =
k2�

k=k1

fk · |X[k, n]|
�k2

k=k1 |X[k, n]|
(A.2)

where n the current frame index, k the frequency bin index, X[k, n] the complex sig-
nal magnitude of the frequency bin k for the current frame and fk the frequency value
of the k

th frequency bin. In CataRT, the default values for k1 and k2 are respectively
corresponding to the frequency values 44 and 3014 Hz.

Mid- and High-frequency energy

E[n, k1 → k2] =
�k2

k=k1 X[k, n]2
Nfft

(A.3)

where n the current frame index, k the frequency bin index, X[k, n] the complex signal
magnitude of the frequency bin k for the current frame and Nfft the number of frequency
bins. In CataRT, the default values for k1 and k2 are respectively corresponding to the
frequency values:

• 44 and 1033 Hz for the mid-frequency energy,

• 4996 and 10034 Hz for the high-frequency energy.
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Spectral flatness

SF [n] =
(�k2

k=k1 |X[n, k]|)1/(k2−k1+1)

1
k2−k1+1

�k2
k=k1 |X[n, k]|

(A.4)

where n the frame index, k the frequency bin index, X[k, n] the complex signal magnitude
of the frequency bin k for the n

th frame and fk the frequency value of the k
th frequency

bin. In CataRT, the default values for k1 and k2 are respectively corresponding to the
frequency values 1507 and 8613 Hz.
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Appendix B

Details on participants

B.1 For the similarity perceptual study on environ-

mental texture morpholigy resynthesis

test person
gender age

expert in
musician

experiment

index sound domain duration

0 m 22 yes yes 41 min
1 m 25 yes yes 16 min
2 m 26 yes yes 23 min
3 f 30 no no 44 min
4 m 27 yes no 39 min
5 f 25 yes no 35 min
6 m 22 yes yes 32 min
7 m 25 yes yes 44 min
8 m 25 yes yes 20 min
9 m 22 yes yes 36 min
10 m - yes yes 29 min
11 m 22 yes yes 35 min
12 m 31 yes no 33 min
13 f 27 yes no 18 min
14 m 27 no no 31 min

Table B.1: Details on the test persons which participates in the similarity perceptual
study on environmental texture morpholigy resynthesis.
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B.2 For the gesture-sound relationship study

test person
gender age

expert in
musician dancer

index sound domain

0 m 22 yes yes no
1 m 22 yes yes no
2 f 27 yes no yes
3 m 27 yes no no
4 m 25 yes yes no
5 f 25 yes no no
6 m 25 yes yes no
7 m - yes yes no

Table B.2: Details on the test persons which participates in the gesture-sound relationship
study.
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Appendix C

Two sample t-test

Null hypothesis

In our case the null hypothesis is that data in two independent vectors, x and y, of random
samples from normal distributions with equal means and equal but unknown variances
regarding a certain significance level (5% in our case), against the alternative that the
means are not equal.

T-statistic

t = x̄ − ȳ

s

�
1

nx
+ 1

ny

(C.1)

s =

����(nx − 1)s2
x + (ny − 1)s2

y

nx + ny − 2 (C.2)

where x̄ and ȳ the respective sample means, ny and nx the respective sample numbers,
sx and sy the respective sample standard deviations of the two sample vectors x and y.

Criterion

From table of critical value of t-distribution, the critical value for our test is 1.0 according
to the degree of freedom (i.e. (nx +ny −2), 448 in our case) and the significance level,5 %.

If t is inferior to the critical value, the null-hypothesis is accepted: the means can be
considered as equal. Otherwise, the null-hypothesis is rejected: the means are not equal.
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Appendix D

More CCA results

Figure D.1: Representation of the canonical correlation strength and the canonical load-
ings for all relevant performances of a single wind sound texture extract over all partic-
ipants (16 performances). Lo: loudness, SF: spectral flatness, SC: spectral centroid. HP:
horizontal position, VP: vertical position, Ve: absolute velocity, Ac: absolute acceleration,
An: absolute angle, AV: absolute angular velocity.
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Figure D.2: Representation of the canonical correlation strength and the canonical load-
ings over all relevant performances (8 performances) on the different sound extracts of
wind texture for one participant (subject 2). Lo: loudness, SF: spectral flatness, SC:
spectral centroid. HP: horizontal position, VP: vertical position, Ve: absolute velocity, Ac:
absolute acceleration, An: absolute angle, AV: absolute angular velocity.
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Figure D.3: Representation of the canonical correlation strength and the canonical load-
ings over all relevant performances (7 performances) on the different sound extracts of
wind texture for one participant (subject 6). Lo: loudness, SF: spectral flatness, SC:
spectral centroid. HP: horizontal position, VP: vertical position, Ve: absolute velocity, Ac:
absolute acceleration, An: absolute angle, AV: absolute angular velocity.
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