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Abstract

Training the score follower, in the context of musical practice, is to adapt its pa-
rameters to improve performance for a certain score. To this aim, every param-
eter used in the system has to have direct physical interpretation or correlation
with high-level desired parameters, in order to be trainable and controllable.
This criteria has forced us to reconsider the design and approach in one of the
main components of the score follower, the probability observation block.

In order to this approach, we developed a criticism based on the notion of
heuristics used in the design of the existing system at the beginning of this
project with a look at empirical-synthetical sciences which score following re-
search is a member. In his respect, we argue that the heuristics used in the
design of the system has been considered in a late stage during the design and
suggests an alternative approach in which heuristics will be used as the lowest-
level of information modeling and higher-level models used in the system would
become an outcome of a series of derivation based on these heuristics modelings.

A novel learning algorithm based on these views called automatic discrim-
inative training was implemented which conforms to the practical criteria of a
score following. The novelty of this system lies in the fact that this method,
unlike classical methods for HMM training, is not concerned with modeling the
music signal but with correctly choosing the sequence of music events that was
performed. In this manner, using a discrimination process we attempt to model
class boundaries rather than constructing an accurate model for each class. The
discrimination knowledge is provided by an alternative algorithm, namely Yin
developed by de Cheveigné and Kawahara (2002).

Following the design of the training method, further experiments were un-
dertaken to improve the response of system. For this purpose, every feature in
the observation process of the system was studied and examined for correlation
with high-level states and using the analysis results, modifications on the exist-
ing feature as well as a totally new feature were introduced to be used in the
system.

During evaluations, the system proved to be more stable and the results
are improved compared to the previous system. Moreover, due to our design
approach, the shortcomings of the current system have physical interpretations
in the terms of current design and can be envisioned for further improvements,
which was not the case with the previous system.

Finally, the new concepts presented in this work, opens a new and more
flexible view of score following for further research and improvements by arising
an urgent need for a database of aligned sound and other research work which
would lead the system towards better following.
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Résumé en français

L’apprentissage du suivi de partition dans le contexte de la pratique musicale
consiste en une adaptation de paramètres permettant d’améliorer le suivi temps-
réel d’une exécution d’une partition donnée. Dans cette perspective, chaque
paramètre utilisé dans le système doit avoir une interprétation physique et être
corrélé directement avec des états haut-niveau désirés, pour que le suivi puisse
être entrâıné et contrôlé. Ce critère nous a forcé à reconsidérer la conception
d’une des composantes principales du suivi de partition: l’observation des prob-
abilités.

Dans cette approche, nous avons développé une critique basée sur la notion
d’heuristique utilisée pour la conception du système au début de ce stage. Pour
construire cette critique, nous regardons les principes des sciences empirique-
synthétiques dont le suivi de partition fait partie. Dans cette perspective, nous
prétendons que les heuristiques utilisées ont été considérées dans une étape
tardive de la conception et suggérons une approche alternative dans laquelle les
heuristiques entrent dans la conception au plus bas-niveau de la modélisation
de l’information. Ainsi, les modèles plus haut-niveau deviennent des résultats
issus de ces modèles bas-niveau.

Une nouvelle approche d’apprentissage basée sur cette perspective nommée
apprentissage discriminatif automatique est implémentée. Elle se conforme aux
critères pratiques d’un suiveur de partition. La nouveauté est que ce système,
malgré les méthodes classiques d’apprentissage des châınes de Markov cachées,
ne prend pas en compte la modélisation des signaux musicaux mais la pertinence
du choix des séquences des événements musicaux joués. Grâce à l’utilisation
d’un processus de discrimination, nous tentons de modéliser les marges des
catégories au lieu de construire un modèle précis pour chaque catégorie. Ce
processus de discrimination utilise un algorithme extérieur du suivi de parti-
tion, notamment Yin de Alain de Cheveigné et Kawahara (2002). La méthode
d’apprentissage proposée est indépendante des paramètres de reconnaissance,
ce qui est essentiel pour le développement futur du système.

Après la conception d’une méthode d’apprentissage, des expériences plus
approfondies ont été menées pour améliorer la réponse du système. Pour cela,
la corrélation entre les paramètres du processus d’observation et les états haut-
niveau a été examinée. En utilisant les résultats de cette analyse, nous avons
modifié certains paramètres et en avons introduit d’autres dans le système pour
une meilleure reconnaissance.

Pendant l’évaluation, le système s’est montré plus stable et les résultats
d’alignement ont été améliorés comparativement à l’ancien système. Ces évaluat-
ions sont le résultat d’une simulation sur ordinateur et d’expériences dans un
studio avec des musiciens. Pendant les expériences en temps-réel, le système
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a obtenu des résultats meilleurs pour certaines phrases qui n’avaient jamais
été reconnues avec le système précédent. Grâce à notre démarche conception-
nelle, les défauts du système ont des interprétations physiques permettant des
améliorations futures, ce qui n’était pas le cas avec l’ancien système.

Finalement, les nouveaux concepts présentés dans ce travail, ouvrent une
nouvelle image plus flexible du suivi de partition pour de futures recherches
en introduisant des nouvelles demandes comme le besoin urgent d’une base de
données de sons alignés. Ils ouvrent de nouvelles pistes de recherche qui doivent
conduire le système à un meilleur suivi.
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Introduction

This project started with the primary goal of implementing a learning method
for IRCAM ’s score follower. However, it soon changed its direction towards
design considerations of the existing system to have a better following which led
to a novel training method as well as new component designs in the system. It
should be noted that this work is a result of collaborations with the composer
Philippe Manoury and his musical assistant Serge Lemouton along with Andrew
Gerzso who organized several sessions with soprano Valérie Philippin for testing
the score following on live and on En Echo.

Before we introduce the contents of each chapter, we would like to emphasize
on some terminologies used throughout this report. To this aim, high-level
states refer to music symbols modeling the HMM system, which are silence
and note events (attacks, sustains and rests). Features are essentially audio
descriptors marking the first stage of information extraction. Respectively, high-
level feature state probabilities correspond to probabilities of high-level states
extracted from audio descriptors.

Chapter 1 marks the early studies towards this project, containing detailed
studies of other similar systems’ implementations followed by a detailed analysis
of IRCAM ’s score follower. In his analysis, the author has undertaken a different
view than the articles published in literature on the system in order to emphasize
shortcomings and criticize the concepts behind the design of the existing system.

In Chapter 2, a static analysis is described on the system’s features intro-
duced in Chapter 1, trying to analyze features’ behaviors and their correlations
with high-level states. At the same time, a critic on the basis of the existing
system is developed which results into modifications presented in other chapters
and describes partly the objectives of this project. In this manner, a feature
modification and one totally new feature are introduced for the score follower.

A more general analysis on the probability observation component of the
system is documented in Chapter 3, which culminates to a redesign and recon-
sideration of the probability observation based on critics introduced in Chapter
2. The basis of the model and methodology in detail is demonstrated in this
chapter.

As a result of the designs and considerations in previous chapters, Chapter 4
introduces a novel training algorithm with subsequent results, called automatic
discriminative training. The novelty lies in the discrimination section in which
we emphasize on modeling feature boundaries instead of trying to model the
features themselves.

Chapter 5 demonstrates some evaluations of the new system and comparisons
between the previous system in practice. This is continued in Chapter 6 by
listing future works which are necessary for further developments of the system
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2 INTRODUCTION

and are in continuation of the current work with a conclusion for this report.



Chapter 1

Previous works and
Background

We need not destroy the past. It is gone.
— John Cage

In this first chapter, we aim to give an overview of the previous works which
count the early studies undertook for this project. As the first attempt, a history
of score following is studied, showing its evolution from the technological and
musical side in time and some reflections on the general notion of score following
and its outcome in the future. It follows with a more elaborated section on
IRCAM ’s latest score following system which will be the main ground of this
work. In studying the IRCAM ’s score follower, the author develops a subjective
scientific view of the topic which would help for understanding the new designs
followed in the coming chapters.

1.1 Score Following: A definition in practice

Some remarks on the historical definition of score following will be seen in the
next section. However, score following being a medium of interaction between
new demands from performers and composers at one side and new scientific
technologies on the other side, has changed and evolved in its definition over 20
years. Therefore, a subjective definition can easily loose its account over time.
Here we try to define a general definition according to its nature in practice:

Score following serves as a real-time mapping interface from Au-
dio abstractions towards Music symbols and from performer(s) live
performance to the score in question.

The challenge always lies in how this mapping succeeds and engenders different
musical situations in practice such as errors of the musicians and different styles

3



4 CHAPTER 1. PREVIOUS WORKS AND BACKGROUND

of interpretation. Over about 20 years of score following research, interestingly,
the objectives of this technology have been widened through other disciplines
such as Music Information Retrieval among others. However, in our report
and research, we rest with the score following used in the context of music
performance.

1.2 A brief history of Score Following

Studying the evolution of score following is essential for this work since at all
moments throughout this report, we encounter how composers’ and musician’s
expectations along with researchers would help evolve this technology. For this
purpose, the author started his work contemplating on the evolution of score
following throughout its history leading to the recent notions of score following
being a result of almost 20 years of experience and interaction between music
and sciences.

It should be noted that while this introduction does not include all the
researchers involved in the domain, it tries to lie down most of the main concepts
introduced into score following along with introducing their innovators. We
have tried to give the least subjective definition on each approach and all the
comments on each technology is limited to author’s familiarity with the system
as well as the literature available. In this manner, Figure 1.1 shows a score
following timeline which is gathered and mentioned due to their initiatives,
original views and importance in the application and history of score following.
We will elaborate on different aspects of each system in the following sections.

In our review, we divide the history of score following in four sections:
the early definitions which marks the beginning of score following history, the
years of string matching and pitch detection containing systems using those ap-
proaches, statistical approaches and other important systems. After the timeline
is over, we contemplate on the important subject of system evaluations and give
an overview of the training aspects of each mentioned system, if any.

1.2.1 Early Definitions

The history begins officially in 1984 with Roger Dannenberg’s and Barry Ver-
coe’s articles appearing in the International Computer Music Conference (ICMC )
independently. The two articles mark the first attempts towards real-time score
following and real-time accompaniment which would become a major research
topic in various research centers and as we will see later, would initiate and
mark early attempts for other research topics currently being undertaken in
audio research community.

Barry Vercoe’s 1984 article titled ”The synthetic performer in the context
of live performance” defines the objective as follows:

To understand the dynamics of live ensemble performance well enough
to replace any member of the group by a synthetic performer (i.e.
a computer model) so that the remaining live members can not tell
the difference (Vercoe 1984).

While the article describes the system developed in collaboration with Larry
Beauregard and for flute, Vercoe pictures the system as having three main ele-
ments: LISTEN, PERFORM and LEARN. While he discusses briefly temporal
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Authors Institute Description Year

Barry Vercoe MIT/Ircam First definition, tempo and pitch 

considerations, Synthetic performer 

1984-

1986

Roger

Dannenberg

Carnegie

Mellon

First definition- String matching 

algorithm, Pitch oriented with 

heuristics

1984-

1985

Vercoe, 

Puckette

MIT/Ircam Training the synthetic performer, 

string matching added, ‘cost’. 

1987

Puckett Ircam EXPLODE, Pitch oriented 1990

Baird, Belvins, 

Zahler

Conneticut

College

String Matching, phrase matching 1990

Vantomme McGill

University

Temporal Patterns 1995

Dannenberg CMU Statistical Modeling 1997

Christopher

Raphael

University

of Amherst 

HMM based score following 1999

Loscos, Cano 

and Bonada 

UPF HMM based score following 1999

Nicola Orio Ircam HMM based score following 2001

Schreck

Ensemble

Schreck

Ensemble

Neural Network Approach, Pitch 

based

2001

Pardo,

Birminghm 

University

of Michigan

Pitch based, probabilistic ‘cost’ 2002

Christopher

Raphael

University

of Amherst 

Bayesian Belief Approach 2001-3

Figure 1.1: Score Following Timeline

modeling of the live performance, his main cue for detection is pitch, which
according to the article and the technologies at the time ”implies detection at a
speed almost impossible for audio methods alone” and thus uses fingering infor-
mation on the flute. Another interesting contemplation on this early attempt
is its author’s considerations for learning or as he puts it, learning to improve.
One year later, along with Miller Puckette, he would elaborate more on this
topic (Vercoe and Puckette 1985). The learning aspect of Vercoe and Puckette
will be studied in a later section.

While Vercoe’s approach undertook a ”synthetic performer”, in his 1984
article, Roger Dannenberg searches for ”An On-line algorithm for real-time ac-
companiment”. In his approach, Dannenberg clearly defines his goals as to first
detect what the soloist is doing; second, to match the detected input against
a score and third, to produce an accompaniment that follows the soloist (Dan-
nenberg 1984). In his approach, he uses dynamic programming to produce the
match and consequently concentrates on the second problem above. In his mod-
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eling, he considers ”error” cases which consist of omitted notes as well as extra
notes in the sequence. In his matching algorithm, while considering events as
string sequences, the best match is defined as ”the longest common subsequence
of the two streams.”(Dannenberg 1984) In this manner, Dannenberg’s approach
can be regarded as a string matching technique. It should be mentioned that
Dannenberg’s approach, too, is dependent on pitch in the soloist event detec-
tion. Dannenberg’s string matching algorithm ,for which he holds a patent
(Dannenberg 1988), is more elaborated in this article by Bloch and Dannenberg
(1985).

1.2.2 Years of string matching and pitch detection

The years that follow the early definition of score following mark several im-
plementations of score following mainly based on pitch detection and string
matching as mentioned above and before the next jump to the statistical ap-
proach. Also, we would encounter first attempts to the use of score following in
musical composition mainly at IRCAM.

Before 1990, Roger Dannenberg and his students would concentrate on im-
proving his string matching algorithm. In (Dannenberg and Mont-Reynaud
1987), they expand previous work by addressing the problem of following solos
improved over fixed chord progressions rather than fixed note sequences, leading
to new matching algorithms. In order to make the score following more robust,
Dannenberg and Mukaino (1988) introduce the idea of using multiple matchers
centered at different locations. In this version the system can also deal with
trills, glissandi, and grace notes by considering different matching technics for
each event. The main low level changes in this version of Dannenberg’s score
following are the use of multiple matching algorithms at the same time (no-
tion of matching objects instead of matching procedure) and the use of delayed
decisions which prevents accidental matching by not trusting all reports from
the matcher and adding a delay of about 100ms to open more decision making
opportunities.

The year 1990 marks the appearance of Miller Puckette’s EXPLODE article
(Puckette 1990). In this article, Puckette defines the interface used for score
following at IRCAM and the score follower itself is more described in (Puckette
and Lippe 1992). Puckette’s EXPLODE marks several pieces written originally
with having score following in mind, particularly Philippe Manoury’s Pluton
and Pierre Boulez’ . . . Explosante-fixe. . . . The algorithm consists of pitch
recognition along with a pointer to the ”current” note as well as a set of pointers
to prior notes which have not been matched (Puckette and Lippe 1992). In the
92 article, Puckette and Lippe give an honest report of their result (which is
rare in other literatures) noting the weaknesses of the system and when it can
not follow perfectly, adding the following comment:

... Composers are often forced to make compromises so that their
music is followed in such a way that the electronic events in the score
are correctly triggered (Puckette and Lippe 1992).

It should be again noted that this version of IRCAM score following has no
dependency on tempo and makes no predictions about the future behavior of the
music to be followed. Rather than use predictions to arrange for the computer
and player to act simultaneously (which is Dannenberg’s case), the effort was
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made to make the delay between the musician’s stimulus and the computer’s
response imperceptibly small (Puckette 1995). This score following had in mind
compositions in the score following repertoire at the time of implementation
and its assumptions had to be dropped for new composition demands to come,
namely Philippe Manoury’s En Echo for soprano and computer premiered in
Summer 1993.

In 1995, Puckette publishes the results of the new approaches to score fol-
lowing as a result of the compromise between technology and new composi-
tional demands (mostly due to Manoury’s En Echo)(Puckette 1995). While
this system, known as F9 in Max/MSP, is still dependent on pitch detection,
the instantaneous pitch recognition uses the accelerated constant-Q transform
as described in (Brown and Puckette 1992) and (Brown and Puckette 1993).
This approach is very similar in its concept to what is being used in the latest
HMM Score Following’s PSM (Peak Structure Match) to be elaborated later.
In this manner, the best pitch is the instantaneous pitch corresponding to the
highest instantaneous power at which a pitch was present (Puckette 1995). For
score following, two parallel match signals would be present with different de-
lays and the reliable one would be used as the input to a discrete-event score
follower.

In parallel to the above systems, Baird, Blevins and Zahler have revised a
new matching algorithm which was based directly on (Dannenberg 1984) and
(Vercoe 1984) with the difference that it is based on the concept of segments
as opposed to single events. Matching is performed on segments of predefined
length; that is, segment sizes are not necessarily based on any musical heuristics
or analytic conventions. Comparisons by events and rest positions are performed
and stored tentatively until the set of previously heard and unsegmented events
match one of four segment types as described in (Baird et al. 1990) and (Baird
et al. 1993).

1.2.3 The paradigm of the statistical approach

Contemplating on the nature of score following, we encounter that even with
perfect feature observations (pitch, temporal patterns) we always remain in a
realm of uncertainty due to various types of errors by the musician or the relative
nature of a music performance especially in the temporal aspect. Therefore, it
is natural to consider probabilistic approaches towards real-time score following.

The pioneering work in this domain belongs to Grubb and Dannenberg
(1997b) for which they hold a patent (Grubb and Dannenberg 1997a). In this
approach, the position in the score is represented by a probability density func-
tion. Unlike previous systems, it does not require subjective weighting schemes
or heuristics and it can use formally derived or empirically estimated probabil-
ities describing the variation of the detected features. In this approach, at any
point, the position of the performer is represented stochastically as a continuous
density function over score position. The area under this function between two
score positions indicates the probability that the performer is actually where
in the score. As the performance progresses and subsequent observations are
reported, the score position density is updated to yield a probability distribu-
tion describing the performer’s new location. In this manner, for tracking the
performer and to calculate new observation, current score position density and
the observation estimations are used to estimate a new score position density.
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It is worth to make a comparison between this new paradigm of statistical
approach and the previous mainly pitch oriented approaches. In this new ap-
proach, if pitch detection is applied to the performance, then this information
would provide a likelihood that the detector will report that pitch conditioned on
the pitch written in the score, despite the previous constraints of score followers
highly dependent on the output of the pitch detection.

A simpler statistical approach on the same line as the string matching algo-
rithm is reported at (Pardo and Birmingham 2002) and (Pardo and Birmingham
2001) from University of Michigan. Their algorithm is based on the same ideas
in (Dannenberg 1984) and (Puckette and Lippe 1992) by defining a match score
and skip penalty with the difference that these ”costs” are modeled by some
probability distribution instead of mere numbers. In this manner, the system is
trained off-line and on a date base of sound (not on the music itself), to obtain
a match score matrix.

One of the most important works in statistical score following systems has
been undertaken by Christopher Raphael in a series of research marking its be-
ginning in 1999. The IRCAM Score following system finds its roots in Raphael’s
1999 article on ”Automatic Segmentation of Acoustic Musical Signals Using
Hidden Markov Models” (Raphael 1999b). In this pioneering work and as his
first published experiment with real-time score following, he defines musical
analogies as Markov models consisting of note models (attack, sustain, duration
modeling) and rest models which would be derived from the score and spectral
feature observations would be used to calculate state probabilities and decode
in real-time. Since there is much similarities between Raphael’s system and the
system in consideration for this report, we would refer the reader to Section 1.2
and also to Raphael’s fully documented article in (Raphael 1999b) and (Raphael
1999a). One last comment on the difference between Raphael’s system and that
of IRCAM is the way the observation probabilities are calculated. In Raphael’s
system, there is no such distinction between observation probabilities and the
HMM system and his features are statistics over the data frame.

Similar work on the use and consideration of HMM systems for score follow-
ing have been published at the same time but for limited applications namely
in (Loscos et al. 1999a) and (Loscos et al. 1999b).

Raphael would continue on his way and explore more models for automatic
music accompaniment which are crucial in the context of our work. In his
more recent research papers he reports a new approach by coupling the HMM
system by a Bayesian belief network (Raphael 2001). The basic idea behind
this coupling is HMM ’s famous incapability of handling temporal issues. He
uses the output of the HMM system as onsets of the Bayesian network which
would train themselves on a performance sample, thus learning some ”interpre-
tational” aspects of the performance and using tempo anticipation in triggering
the accompaniment. This issue will be observed in more details later. It should
be noted at this point that Raphael’s system is pointed more towards accom-
paniment rather than synchronizing the follower with the performance.

1.2.4 Other approaches

As indicated in the previous subsections, most score following systems described
do not consider temporal patterns as main cues for recognition. One of the first
attempts to use temporal patterns as the main following cue was done in univer-
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sity of McGill by Vantomme (1990). The main input of the system, however, is
the onset time of each event in MIDI format and there is few discussion of the li-
ability of this information for the system. Moreover, the implementation is done
in LISP which, despite the insistence of its author on unimportance of real-time
issues surrounding LISP, should limit processing for certain pieces. Following is
based on performer’s rhythms which, again despite the insistence of the author
on the stylistically unbiased system, should limit its usage specially for con-
temporary repertoire with non-stationary and complicated rhythmic patterns.
However, reports in (Vantomme 1990) indicates that the system is independent
of the performer’s errors in pitch and robust enough in rhythm recognition,
assuming that everything works.

One completely different approach is the ComParser score following de-
veloped by Schreck Ensemble in Netherlands as a free open source software
(Schreck Ensemble and Suurmond 2001). Before going into some brief tech-
nical details, it should be noted that ComParser has been developed to meet
its ensemble’s musical needs. Therefore, it has certain applications which had
not been visioned in the previously mentioned systems such as following Audio
instead of symbolic musical scores. For this reason, the authors of the system
refer to their approach as a sonic approach as opposed to ”IRCAM ’s Symbolic
approach.” This system uses the neural network technology for audio recogni-
tion with spectrum features as inputs of the network. Although being used in
performances of Schreck Ensemble, ComParser is under development and as of
their last report, the network architecture used is a modified Avalanche network
as originally introduced in (Grossberg 1982) with the addition of time-delays,
weights on forward connections and limited lengths and activities of previous
activity windows. Like most neural network systems, ComParser requires su-
pervised training on audio which can be frustrating, but reports indicate that
it is fairly robust. However, use of neural networks technologies introduce prob-
lems which would never be encountered in previous ”formalized” systems such
as premature recognition and over-fitting due to the generalization behavior of
the network. On the other hand, recognition of note onset, release and change
seems to be not much of a problem and is dependent on training issues.

1.2.5 Evaluation

Speaking about 12 different systems in the previous sections, it is evident to ask
about the performance evaluation of systems in general and their advantages
and drawbacks among each other. Unfortunately, all the published reports and
articles focus on the scientific aspect of the systems and speak less or not at
all on evaluation and comparison. This is mostly due to few musical practice
in most institutions and non existence of a data base and unified approach for
evaluation. However evaluation of score following was a topic of a panel in the
ICMC 2003 conference but to this date no action has followed that meeting.

One main important issue, not previously addressed, in evaluation of score
following is the non-unified definition of score following among its authors. This
issue becomes clear by having a closer look at Section 1.2.1, the early defini-
tions. From the beginning we see that the term score following is ambiguous
between automatic accompaniment and synchronization. Vercoe and Puckette’s
approach (or more precisely IRCAM ’s score following) is dealing with the prob-
lem of synchronizing the performer to the score at each instant and on the
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other hand, Dannenberg and Raphael’s approach is more towards automatic
accompaniment. The difference is that in the first approach, we want exact
synchronization of the performance with the score and the computer does not
impose anything directly on the performer but in the second approach, mostly
due to temporal anticipations, future events might occur before the performer’s
cues and at those moments, the performer must adapt itself to the accompa-
niment(Dannenberg 2004). This ambiguous usage of the term score following
makes the use of literature more difficult and leads to false expectations and
comments from each side.

On the other hand, it is at IRCAM ’s interest to evaluate score following as
an in practice procedure mostly due to its wider repertoire using score following
and musical production environment. In IRCAM ’s case, the user of the score
following is not the developer or researcher and we are always dealing with the
tradition of musical practice. Moreover, at IRCAM we are dealing with new
music repertoire with more demanding and finer score followers than classical
music repertoire. Most of the systems described above, besides the IRCAM
system, are tested and trained using the researchers as musicians and on classi-
cal repertoires; thus, not considering their system as an interface dealing with
musicians and more over using simpler musical excerpts for score following.

Recently, the Real-time Applications Group at IRCAM has brought forward
the issue of evaluation in an article published at the NIME conference (Orio
et al. 2003). In that article, they elaborate the issue by discussing objective
and subjective evaluations, suggesting a framework for evaluation of different
existing systems. To conclude, evaluating score following is an essential topic
which should be seriously considered for further progress. We would elaborate
more on its details in the concluding chapter of this report.

1.2.6 Training in the context of score following

Since one of the main objectives of this project is to obtain an automatic training
of IRCAM ’s score follower, it is worth to look at training in the context of
different score following systems observed before.

The first learning scheme in the context of score following occurred in Ver-
coe’s score following and appeared in Vercoe and Puckette (1985). In describing
the objective of training Vercoe’s score following, we quote from the original
article:

. . . [speaking about the 84 score follower] there was no performance
”memory”, and no facility for the synthetic performer to learn from
past experience. . . since many contemporary scores are only weakly
structured (e.g. unmetered, or multi-branching with free decision), it
has also meant development of score following and learning methods
that are not necessarily dependent on structure(Vercoe and Puckette
1985).

Their learning method, interestingly statistical, allows the synthetic performer
to rehearse a work with the live performer and thus provide an effective perfor-
mance, called ”post-performance memory messaging.” This non-realtime pro-
gram begins by calculating the mean of all onset detections, and subsequently
tempo matching the mean-corrected deviations to the original score. The stan-
dard deviation of the original onset regularities is then computed and used to
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weaken the importance of each performed event. When subsequent rehearsal
takes place, the system uses these weighted values to influence the computation
of its least-square fit for metrical prediction.

While in Dannenberg’s works before 1997 (or more precisely before the statis-
tical system) there is no report of training, in Puckette’s 95 article (F9 system)
there are evidences of off-line parameter control in three instances: defining the
weights used on each constant-Q filter associated with a partial of a pitch in
the score, the curve-fitting procedure used to obtain a sharper estimate of f0

and threshold used for the input level of the sung voice. According to (Puckette
1995), Puckette did not envision any learning methods to obtain the mentioned
parameters. In the first two instances he uses trial and error to obtain global
parameters satisfying desired behavior and the threshold is set by hand during
performance.

By moving to the probabilistic or statistical score followers, the concept of
training becomes more inherent. In Dannenberg and Grubb’s score follower,
the probability density functions should be obtained in advance and are good
candidates for an automatic learning algorithm. In their article, they report
three different PDFs in use and they define three alternative methods to obtain
them:

First, one can simply rely on intuition and experience regarding vocal
performances and estimate a density function that seems reasonable.
Alternatively, one can conduct empirical investigations of actual vo-
cal performances to obtain numerical estimates of these densities.
Pursuing this, one might actually attempt to model such data as
continuous density functions whose parameters vary according to
the conditioning variables (Grubb and Dannenberg 1997b).

Their approach for training the system is a compromise of the three mentioned
above. A total of 20 recorded performances were used and their pitch detected
and hand-parsed time alignment is used to provide an observation distribution
for actual pith given a scored pitch and the required PDF s would be calculated
from these hand-discriminated data.

In the HMM score following system of Raphael, where there can be many
parameters to train and there are traditional ways to train the system, he does
not train the HMM transitional probabilities. For training his statistics (or
features in our system’s terminology) he uses the posterior marginal distribu-
tion {p(xk|y)} to re-estimate his feature probabilities in an iterative manner
(Raphael 1999b). In his iterative training he uses signatures assigned to each
frame for discrimination but it is not clear from the article whether a parsing
is applied beforehand to obtain the right behavior or not. In his latest system,
incorporating Bayesian Belief Networks (BNN), since the BNN handles tem-
poral aspect of the interpretation, several rehearsal run-throughs are used to
compute the means and variances of each event in the score, specific to that
interpretation.

In the case of Pardo and University of Michigan’s score follower, a training
is done to obtain the probabilistic costs which is independent of the score and
performance and is obtained by giving the system some musical patterns such
as arpeggios and chromatic scales (Pardo and Birmingham 2002).

For IRCAM ’s score following before this project, training has been done
once to obtain the global PDF s describing desired behavior and in the context
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described in (Grubb and Dannenberg 1997b) as empiric and intuitive and in
(Orio et al. 2003) as heuristic. That is series of observations were made on
different sound files and musical situation, and using ”heuristics” the PDF pa-
rameters were chosen to obtain desired behavior. It should be noted that in that
version of the score following, PDF s were fixed exponential functions. There
has been no publication to date of an automatic training for this system.

1.3 IRCAM ’s Score Following

This project is done in the context of IRCAM ’s score following system as briefly
described before. Therefore, as a prerequisite of this work, the current system
needs to be studied in depth for further analysis and modification.

In this section we aim to define the architecture which existed upon arrival
of the author in the Real-time Applications Group at IRCAM on March 2004. It
should be noted that while the system described hereafter is well documented in
(Orio and Schwarz 2001), (Orio and Déchelle 2001) and (Orio et al. 2003), the
author’s view of the system focuses on different aspects than in the mentioned
articles, in order to emphasize more on the learning aspects and shortcomings of
the system to be considered during the project and design of a new architecture
in Chapter 3.

1.3.1 System Overview

Before anything, it should be noted that while the score following runs in real-
time and on audio, it prepares itself for following in advance by loading the
score into the system. In general, we can imagine two some-how independent
components for the whole system as illustrated in Figure 1.2. In this figure and
thereafter, dashed lines refer to information which is processed off-line into the
score following.

Observations

Score

Score cue activation

Decision and Alignment

Parameters

Score

Audio data

Figure 1.2: General overview of IRCAM ’s score following
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In this view, score following consists of two some-how independent com-
ponents running in parallel: the Observation and Alignment. To describe the
functionality of each block, it is natural to vision a human listener. In this
case, the observation is what is being observed on the raw audio by human ears
and alignment is the high-level information deducted from these observations.
Score is being pre-processed for both blocks which is basically preparation of an
anticipation for observation and preparing the symbolic or high-level targets for
the alignment and parameters are needed for the observation in order to adapt
itself to the situation.

Following this introduction, Figure 1.3 reveals the system with more details
on the technologies and terminologies used throughout this report.

Feature Calculation and Probability Observation

Score

......

Audio frame data

Parameters

Feature probabilities

(out of time)

(in time)

Event Following

Hidden Markov Model

Score

Figure 1.3: More detailed general diagram of IRCAM ’s score following

Getting more detailed, the observations are spectral features calculated on
audio frames of about 6ms length and what are actually observed by the align-
ment section are feature probabilities and not the features themselves. In this
manner, the observation block in Figure 1.2 consists of both feature calculation
and probability mapping of the calculated features at each instant. As seen in
Figure 1.3, Hidden Markov Models (HMMs) are used for score modeling and
alignment. The score is defined as a Markov model and using feature state
probabilities, the system decodes this information into the high-level musical
states in the HMM which in terms, upon the activation cues marked in the
score, triggers outside events.

We can argue that in observation we are handling an acoustic modeling as
in the alignment section we are undertaking a music modeling.

The score is loaded beforehand into both blocks to prepare the right feature
calculation and to construct the HMM score model for observation and align-
ment respectively. Preparation of a HMM model from the score is called score
parsing which is studied in Section 1.3.3. At the same time, and again off-line,
parameters are needed to define the probability models for each state features
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to be sent to the HMM system.
At this point, we are ready to consider each block in Figure 1.3 in more

details. From now on in this report, the general score following term will refer
to IRCAM ’s HMM based score following.

1.3.2 Features and Observations

Figure 1.4 shows a detailed diagram of the early Feature Calculation and Proba-
bility Observation section of the score following. This figure shows the real-time
process of the mentioned block which undertakes feature calculations and their
mapping to high-level state probability observations. Complete lines in the fig-
ure refer to number flows as dashed lines refer to vector flows at each instant of
score following.

First, we need to define the features being used in the mentioned figure. As
is seen, all the features are calculated on the magnitude spectrum or FFT of the
present frame. In this section we go through each feature and through the end,
define the probability observation mapping shown in Figure 1.4.

The main ambition in choosing a feature is that each corresponds to one or
several high-level states (note sustain, note attack and rest) and that they would
be mutually independent among each other. At this point we will not discuss
the validity of these features but aim to introduce them for further discussions
followed in coming sections. In the score following in question the following
main features were in use:

Log of Energy feature (loge)

This feature is simply the Log of the energy contained in the FFT frame as
shown in Equation 1.1, assuming y to be raw audio signals in a frame. FFT in
this context signifies the magnitude of the FFT of a windowed time frame using
a hamming window. Main characteristic of this feature is that it will help the
system distinguish between note and non-note events.

LogE = log
(∑

FFT(y)
)

(1.1)

Delta Log of Energy feature (∆log)

The Delta log of energy feature is simply the difference between the current
frame’s log of energy and the previous one as shown in Equation 1.2. It is
hoped that this feature would observe less activity during note sustain and rest
and high activity during attacks.

Dlog(n) = loge(n)− loge(n− 1) (1.2)

Peak Structure Match (PSM)

This feature is handling some notion of pitch and at each moment specifies the
energy contained at a specified peak structure in the spectrum1. More precisely,
the pitch is not used as a feature directly but the structure of the peaks in the

1This subsection is mainly adopted from Orio and Schwarz (2001).
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Figure 1.4: Feature and Probability Observation Diagram
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spectrum given by the harmonic sinusoidal partials. The advantage is that, this
concept can be easily extended to polyphonic signals.

For this purpose, expected peaks are modeled from the pitches in the score.
For each note, 8 harmonic peaks are generated. In the latest version, the peaks
take the form of trapezoidal spectral bands with an equal amplitude of 1 and
no overlap. Figure 1.5 shows a visualization of a one note PSM with different
trapezoidal slopes. In the score following, a slope value of 1 is being used with
no overlap. Each band has a bandwidth of one half-tone to accommodate for
slight tuning differences and vibrato.
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Trapezoidal Harmonic Filter Bands  range = 1−189 bins = 21.5332−4069.78 Hz

filter (slope = 0)
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filter (slope = 1)
filter (slope = 2)
odd bands
even bands

Figure 1.5: PSM Trapezoidal filter banks for one sample note

This generated score spectrum (S ) is multiplied by the Fourier magnitude
spectrum (P 2) of one frame of audio during performance. Normalization of the
result is necessary to prevent a loud, noisy frame from matching all generated
bands. Equation 1.3 shows the mathematical analogy of what is described above
where m corresponds to the frame number in performance and n is the note
event number in the score. Thus, PSM is a vector at each instant carrying
information about all possible notes in the score (the reason for having dashed
lines in Figure 1.4).

PSM(m,n) =
∑

SiPi
2

∑
Pi

2 (1.3)
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Delta of Peak Structure Match (∆PSM)

Like Delta log of energy, the ∆PSM reports local bursts for each PSM and it
is there to force and help the recognition of attacks and note changes since we
expect to have high rise in PSMs during attacks and also for assuring sustain
states since, by heuristics, we expect to observe low activity of ∆PSM during
sustain. The equation is essentially similar to that of 1.2.

Probability Observation Mapping

After the features are calculated, their values are being used to compute obser-
vation probabilities for high-level states in the HMM score model. There are
three high-level states at this moment: Attack, Sustain and Rest. To compute
the state probability of the three mentioned states, all or some of the features
are used. Before we get to the procedure and practical details of the system
as illustrated in Figure 1.4, it is necessary to approach the matter using some
mathematics and lie down the assumptions used throughout this process, which
would eventually help us in redesigning and training the observation block2.

A frame of our data (after the FFT block), lies in a high dimensional space
– <J where J=1024 in our experiment. Thus, we can look at the observation
block as a dimension reduction process towards high-level states to make repre-
sentation and training possible. In this way, we can consider each feature as a
vector-valued function, mapping the high dimensional space into a much lower
dimensional space. We can think of the features s(y) as containing all relevant
information for estimating the desired segmentation, i.e. the alignment l, given
no information but y, that is, we assume s is a sufficient statistic for l, meaning
that p(y|s(y), l) does not depend on l. As a consequence:

p(y|l) = p(y, s(y)|l)
= p(y|s(y), l)p(s(y)|l)
= p(y|s(y))p(s(y)|l) (1.4)

Since p(y|s(y)) will be constant for each frame we disregard that factor and
concentrate on the way we would be connected to the hidden segmentation l.
Adding the assumption of conditional independence of each feature (sd) along,
the above equation follows as:

p(y|l) ∝ p(s(y)|l)

=
D∏

d=1

p(sd|l) (1.5)

Which is actually why in Figure 1.4 feature probabilities are being multiplied
to obtain the high-level state probabilities. In our case, s(y)= [loge(y), ∆log(y),
PSM(y), ∆PSM(y)] with D = 2 + 2 · N , N indicating the number of notes in
the score, as our feature space.

Knowing this, we are now ready to contemplate on the calculation of each
probability density or the details of p(.) functions discussed previously.

2The interpretation demonstrated here is partially inspired by (Raphael 1999b) and (Ra-
biner 1989).
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A key design decision in acoustic modeling (given a decision/training crite-
rion such as maximum likelihood) is the choice of functional form for the state
output probability density functions. After that we try to adapt these functions
to our application by controlling their parameters.

Most HMM recognition systems use a parametric form of output PDF. In
this case a particular functional form is chosen for the set of PDF s to be es-
timated. Typical choices include Laplacians, Gaussians and mixtures of these.
The parameters of the PDF are then estimated so as to optimally model the
training data. If we are dealing with a family of models within which the correct
model falls, this is an optimal strategy.

For the score following in question the parametric form of PDFs is chosen
as an exponential function with upper or lower thresholds. Documentations
indicate that these functional forms were chosen because they model the a priori
behavior of the features well enough. In order to better understand the nature of
the heuristics used, we demonstrate a simple case of calculating Rest probability
for the Log of Energy feature: In this case, heuristics tell us that the less the
energy, the more the probability of being at rest and after some certain value we
are sure we would be at rest. Using this reasoning, a lower bounded exponential
function is chosen as the probability mapping function in question.

Following the above heuristics for every feature, two kinds of exponential
probability mapping is chosen to demonstrate an upper threshold (Eq 1.6) and
a lower-threshold (Eq 1.7). As is seen in the corresponding equations, for each
function the µ and σ parameters need to be adjusted.

y = e
−(σ−x)

µ for (σ − x) > 0 y = 1 for (σ − x) ≤ 0 (1.6)

y = e
−(x−σ)

µ for (x− σ) > 0 y = 1 for (x− σ) ≤ 0 (1.7)

Figure 1.6 demonstrates the general forms of the above probability maps
with different parameters.
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Figure 1.6: Upper (left) and lower (right) threshold exponential CDFs

Looking back into Figure 1.4, the blocks on the second row refer to the
mentioned probability mappings which means, having five blocks, there are 10
parameters to adjust.
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1.3.3 HMM based alignment

As mentioned before, in the HMM system the music model is being handled
from the observed acoustic model or it can be viewed as the main bridge from
the audio abstraction to music symbolism. At this point, we describe the process
being done in the HMM system to align to the right place in the score and the
music model used and how it is being mapped in score following.

Hidden Markov Models

Interested readers in HMM mathematics and its general model are referred to
the historical article of Rabiner (1989). In this section we aim to discuss general
issues of HMM s which are in direct interest of score following applications.

Hidden Markov Models (HMM s) are among the ideal models in literature
for sequential event recognition. Score following in its nature is a sequential
event recognizer. In a Hidden Markov modeling of audio or music we assume
that audio is a piecewise stationary process. A HMM is a stochastic automation
with a stochastic output process attached to each state. Thus we have two con-
current stochastic processes: a Markov process modeling the temporal structure
of music; and a set of state output processes modeling the stationary character
of the music signal. HMMs are ”hidden” because the states of the model, q,
are not observed; rather the output of a stochastic process, y, attached to that
state is observed. This is described by a probability distribution p(y|q).

In the context of our score following, qs correspond to the high-level state
features in the music model which will be described in the coming subsection
and probability distributions p(y|q) are the output of our observation block as
described previously.

For recognition the probability required is P (Q|Y ). It is not obvious how
to estimate P (Q|Y ) directly; however we may reexpress this probability using
Bayes’ rule:

P (Q|X) =
p(y|q)P (Q)

p(Y )

This separates the probability estimation process into two parts: acoustic mod-
eling, in which the data dependent probability p(Y |Q)/p(Y ) is estimated; and
music modeling in which the prior probabilities of sequence models, P (Q), are
estimated (Renals et al. 1993). When we use the maximum likelihood criterion,
estimation of the acoustic model is reduced to p(Y |Q) as we assume p(Y ) to be
equal across the model and which is the case in our follower.

Therefore, after the observation process described in the previous section, we
have all the probabilities required and at this moment, we choose the sequence
that has a more likely chance of being the current sequence which in terms,
reveals the current place in the score.

Music Model

HMM serves as a bridge from audio abstraction to music symbols. Moreover, it
is the HMM which handles time evolution of the score during a performance.
For this purpose, a music model should be derived using Markov models.

The model used in score following, considers three high-level states as dis-
cussed before: Attack state, Sustain state and Rest state, which the first two,
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obviously are characteristics of a note while the last describes silence and the
end of a note. Figure 1.7 shows the Markov model for a single note. It is a left-
right model which represents time evolution and to this end, the model consists
of one attack state, several sustain states modeling the note duration and one
rest state which models the end of a note which can jump to the next event
(silence or note; note in this example) for the case of legato notes.

...a s ss ar

Figure 1.7: Note Markov Model, a=attack s=sustain r=rest

The number of sustain states for a note or the number of rest states for a
no-note event as well as the transition probabilities between them models the
duration specified in the score. Since this is not the subject of this research,
we refer the reader to (Mouillet 2001) which is essentially on the subject of this
system’s temporal modeling.

Other important parameters in a HMM model are the transition probabili-
ties between the states. In the score following, due to the nature of a music per-
formance, only transitions to previous and next states as well as self-transition
are allowed which are fixed numbers and assume equal probabilities for each
transition (except for time modeling which is the issue in (Mouillet 2001)) and
essentially assures a temporal left-right flow in the score, which is natural.

Using this Markov model vocabulary and before each performance, the score
is translated into a left-right chain of Markov models. This process is called
score parsing which is one of the off-line processes discussed before. Figure 1.8
demonstrates a visualization of this process.

... ... ... ...a s ss a sss r rr a s ssr r r

Figure 1.8: score parsing visualization

Sequential recognition and Alignment

So far we have discussed the observation probabilities and the music model.
While being used in real-time, the score follower is examining the probability
that a sequence of events would occur. In the classical HMM literature an
efficient procedure called Forward-Backward procedure computes this variable
which takes into account both probability of the states before and after a certain
state for computation. Clearly, since we are dealing with real-time situations
we can have no chance of observing the future states and therefore, we use only
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the Forward Procedure which takes into account the observation probabilities
for all states from the observation block, transition probabilities obtained from
the music model and previous sequence probabilities. Classically, this Forward
variable is referred to as αt which is basically the probability of the partial
observation sequence O = O1O2...Ot (until time t) and state Si at time t, given
the HMM model λ, as demonstrated in Equation 1.8 (Rabiner 1989).

αt(i) = P (O1O2...Ot−1, qt = Si|λ)

=

[
N∑

i=1

αt−1(i)aij

]
bj(Ot) (1.8)

Note that in Equation 1.8, aij is the transition probability between states
which is obtained from the music model and bj(Ot) is p(Ot|qt = Sj) which is a
direct outcome of the observation block computed for every state in the HMM
music model. Also N is the total number of states available in the HMM score.

After computing all possible α variables for the audio frame in consideration,
we can solve for the individually most likely state qt, as

qt = argmax1≤i≤N [αt(i)] (1.9)

Equation 1.9 is referred to as decoding and specifies the most likely high-level
state depending on previous matches, new observation probabilities as well as
the score and in real-time. At this moment, score following is done!
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Chapter 2

Static Analysis

A sound does not view itself as thought, as ought, as
needing another sound for its elucidation, as etc.; it
has not time for any consideration–it is occupied with
the performance of its characteristics: before it has
died away it must have made perfectly exact its fre-
quency, its loudness, its length, its overtone structure,
the precise morphology of these and of itself.
— John Cage, Experimental Music: Doctrine

Experiments with the score following and profound look at the music model
in the alignment section reveals that an important aspect of the score following
is in the observation section. In this manner, we believe that by having a strong
observation we will always be able to pass to the right state in the music model.

In this chapter, we aim to analyze the behavior of features in the observation
section and suggest improvements on the features and probability observations
to better correspond to the musical events we wish to observe.

We start the chapter by a rather epistemological critic on the basis design of
the existing observation block at the beginning of this project, which reveals our
methodology in analysis and redesign as well as the approach we believe would
lead to a stronger observation. It follows by an analysis of existing features
using the mentioned approach and new features would be introduced in Section
2.3.

2.1 A Critic of Pure Heuristics

Heuristics are the main basis of the probability observation block of the score
following. Although the notion is not quite clear, we try to approach it from
a scientific regard and criticize the manner in which it has been used from an
epistemological point of view.

In the design of the score following (covered in Section 1.3), the scientific facts
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assumed are based on the reproducibility of measurements and the possibility
of predicting a result, which makes it possible to validate a theory. In the epis-
temology literature, this way of integrating scientific data is called Empirical-
Logical in which the score following lies in the Empirical-Synthetical category
which is founded on systematic synthesis of the empirical data, interpreted
within the framework of the structural level of organization and the emergent
functional properties (Castel 1999). This empirical-synthetical method, in epis-
temological continuity with experimental sciences has its own methodological
and scientific validation framework.

In the context of our score following the choice of the probability density
functions and features are synthesis of empirical data based on some heuristics
assumed dealing with music information retrieval. While the empirical data has
been gathered from a database of music sounds, the decision or the synthesis
of these observations which should culminate to a reproducible and predictable
results, based on heuristics, is not clear.

2.1.1 Heuristics in features

The heuristics assumed or forced on features are rather simple and straightfor-
ward. First of all we need the features to have correlations with the desired
high-level states and second, as discussed in Section 1.3.2 on Page 17, features
should be mutually independent with atleast no significant correlations among
each other so that the multiplication in the last layer of Figure 1.4 on Page 15
would make sense.

In analyzing the features, we would base our exploration on evaluating the
two mentioned assumptions. After having the ”right” features, we need to
evaluate and adapt the probability observations on the calculated features.

2.1.2 Heuristics in Probability Observation modeling

Since we are dealing with statistical modeling in the probability observation
calculation and the choice of PDF s, we can evaluate the heuristics used from
a statistical point of view which is a wide topic in statistical modeling and
estimation of observed data (Pollard 2001).

The dogma used in estimating feature observation probability in the score
following is that each feature is modeled with an exponential probability dis-
tribution with µ and σ parameters to control as demonstrated in Section 1.3.2.
Two questions arise while studying the behavior of this choice as a probability
mapping:

• Whether the choice of exponential probability provides enough flexibility
for high-level state observation and how we have derived this form of
representation?

• How would the parameters µ and σ correspond to physical phenomena for
adapting the functionality to a certain performance?

As mentioned before, the choice of the exponential probability mapping is
due to logarithmic descending and ascending probabilities of feature behavior
followed from heuristics. While the author of this article does not criticize
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the use of heuristics in the case of an empirical-synthetical implementation, he
criticizes the stage these heuristics are used for the mentioned modeling.

For the score follower in question, heuristics impose the probability model
and the parameters are to be optimized by looking at observations. Without
hesitation, this methodology produces a loop of evaluations on the model since
we use observations to fit a model which has apparently been derived from con-
sidering observations along with heuristics. Moreover, the heuristics in defining
this model have entered in a very high-level stage. The author believes the
natural way of dealing with such empirical-synthetical situation is to impose
heuristics at the lowest-level of information modeling and construct the higher-
level models on this ground basis information. In this manner, the probability
model will not be directly a result of any heuristics but a series of derivations
which in their roots are based on some heuristics.

This argument will become clear when trying to control the µ and σ param-
eters as σ clearly signifies the threshold for a certain detection but µ does not
find any clear physical interpretation for training; which simply means that the
heuristics in constructing these models have not been well-defined. A suggested
training method for exponential PDFs will be covered in Section 4.2.

We have based our redesign of the probability observation block on the above
methodology which conforms to a empirical-synthetical approach as well as the
special case of score following.

2.2 Feature Analysis

Training and adapting parameters would make sense when features correspond
to the desired high-level states. If we adapt all parameters and the features do
not behave as desired, we can not have an acceptable score following. There-
fore, eventhough the main objective of this research project was training the
score following, we examined the features at the same time and what is being
presented are contemplations of the mentioned work.

For this purpose, we examine two features which seemed to be most prob-
lematic for certain high-level states1: the Delta Log of Energy and the ∆PSM.

An ideal feature should observe atleast three behaviors:

• High correlation with the appropriate high-level state

• Mutually independent from other features

• Stability in the sense that during the appropriate high-level state event,
we should not observe steep changes.

Using the above criteria we examine the two mentioned features. The exper-
imental results shown are feature observations on three pieces that use score
following extensively: Phillipe Manoury’s En Echo for soprano and electronics,
Pierre Boulez’ . . . Explosante-Fixe . . . and Philippe Manoury’s Pluton for piano
and electronics.

One problem of the score following even with trained probability mapping
is that we observe early detections such as jumps to future states at unwanted

1Experience and the ground basis of score following show that the two other features (Log
of Energy and PSM) are quite stable and are good candidates for forcing correct passes.



26 CHAPTER 2. STATIC ANALYSIS

times such as during a note sustain. This is because the probability of another
note’s attack state becomes suddenly higher than the sustain probability at
an inappropriate time. Our experience shows that this inconsistency is mainly
produced because of:

1. Inconsistency of the two delta features with the appropriate feature, and

2. Instability of the two delta features leading to sudden jumps when there
should not be any.

Here, we demonstrate these inconsistencies of the two delta features:

2.2.1 ∆Log of Energy

From its original conception, we expect that the ∆log energy would observe
high activity for Attack states and low activity during Sustains and Rests.

Figure 2.1 shows the ∆log energy features observed for measure 39 of ”Riv-
iere”, the first movement of En Echo for soprano and electronics as one of short
phrase, summarizing most of the score following problems: repeated notes in the
beginning and sudden jumps during the following. The red features correspond
to the beginning of a note, extracted with the aid of YIN (de Cheveigné and
Kawahara 2002).
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Figure 2.1: Discriminated ∆log energy feature for measure 39 of RIVIERE

From the figure we can see that large feature changes occurs when there is
no attack (in this case sustain). The reader might argue that these changes are
not as large as the ones observed during attacks but we remind that first of all,
due to the nature of the feature, the probability model of this feature would
be very steep leading to big change in probability by observing a small burst,
and secondly, an increase in ∆log energy implies an increase in attack state
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probability and decrease in sustain and rest states at the same time. This ex-
periment among with other similar results brings out immediately the question
of stability and right correlation with the high-level states.

In order to make things more clear about the above argument, Figure 2.2
shows a histogram of the ∆log features observed on note sustains and only for
values over 0.4 and on the entire movement of ”Riviere.” As mentioned before
we expect to observe none or very few high activation of this feature during
sustain states which is clearly not the case.
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Figure 2.2: ∆log energy feature histogram during note sustains, for ∆log ≥ 0.4

2.2.2 ∆PSM

Like ∆log energy, the ∆PSM feature helps in differentiating between sudden
bursts and mainly signifies note transitions. One quantitative difference between
this feature and ∆log energy is that for each analysis frame it is a vector rather
than a number, representing delta operation applied to each PSM feature of
each note in the score.

Figure 2.3 on Page 28 shows two instances of ∆PSM feature again on measure
39 of ”Riviere.” Here again, the red color represents the beginning of a note and
we expect to observe high activity only during this time and stable low activity
at other times.

While the same arguments for ∆log energy hold here, we see that they are
more exaggerated to the extent that we can question the foundation of this
feature for having the right correspondence with the desired high-level states.
Being very unstable, this feature can not be a representative of attack states as
well as sustain states.

Moreover, we can argue on the nature of this feature, being the delta of the
PSM representing the pitch structure, that a simple ∆ function and on the same
pitch, can in no way represent changes in high-level states for several reasons:
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Figure 2.3: ∆PSM for note 1 and 2 on measure 39 of RIVIERE

• At each instant during the performance, the presence of partials of other
notes in a harmonic spectrum of a different note would cause changes in
PSM and subsequently bursts in ∆PSM.

• On the other hand, in computing a notion of difference in the case of PSMs,
it is natural to use some notion of distance between all notes whether here
the difference is being calculated on the PSM in question itself without
any consideration for PSM values of other notes.

2.3 New Feature Considerations

Following our observations and contemplations on two problematic features, we
attempted to refine the features as well as introduce features that would better
meet the criteria described in Section 2.2. Here we represent a refinement on
the ∆log feature after series of experiments and also a completely new feature
which so far best meets the criteria mentioned.

2.3.1 Moving Average ∆Log of Energy (mdlog)

As one main problem of the ∆log energy feature is its instability, we try to make
the feature smoother by considering not only the previous frame information for
calculating the delta but a frame window. As a natural choice, we used a moving
average process which is defined as in Equation 2.1 which can also be regarded
as a filtering on the feature.

mdlog[n] =
1
M

M−1∑

k=1

dlog[n− k] (2.1)

Figure 2.4 shows the moving average ∆log feature that corresponds to the
same sample of Figure 2.1 on Page 26. Comparing the figures would reveal
improved stability of the new feature still despite the presence of unwanted
peaks.
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Figure 2.4: Moving Average ∆log energy for measure 39 of Riviere

One drawback of the moving average filtering is the introduction of delays.
In this manner, the discrimination undertaken for Figure 2.4 has a delay of
about 5 frames compared to the discrimination done for Figure 2.1.

Although the moving average approach has improved the earlier feature,
still the same arguments for ∆log energy holds but in a slighter manner. There-
fore, some efforts were taken in looking for new features that would resolve the
problems observed with ∆ features.

2.3.2 Spectral Activity Feature

As one of the last attempts in this research project, we tried to implement a
feature consistent with the criteria defined in 2.2 to have a more stable, correct
and smooth score following. As a result, we introduce a new feature called
Spectral Activity feature as described in Equation 2.2 where it is applied to each
frame’s FFT output and J signifies the number of FFT points.

SpectralActivity(y) =
(
∑bJ/3c

j=1 y2(j)− 2
∑b2J/3c
bJ/3c+1 y2(j) +

∑J−1
b2J/3c+1 y2(j))

∑J−1
j=0 y2(j)

(2.2)
From a mathematical point of view, this feature provide us with a measure

of the spectrum’s curvature at that frame and the physical interpretation is a
measurement of spectral burstiness of the signal. A closer look at the equation
reveals that we are computing different levels of energy in three spectral bands.

Figure 2.5 shows the spectral activity feature again on the same excerpt used
before (measure 39 of ”Riviere”).

The feature’s behavior is much more stable than the delta features discussed
before and it directly distinguishes attacks, sustains and rests. More interest-
ingly, as is demonstrated in Figure 2.5 it has been able to distinguish the re-
peated notes (a classic problem of score following since its conception) that YIN
algorithm could not recognize. Again in this figure, the red color corresponds
to the beginning of the note.

To provide more comparison, Figure 2.6 demonstrates the histogram of the
spectral activity features during note sustains. Clearly, the values of this feature



30 CHAPTER 2. STATIC ANALYSIS

Repeated Notes
Not found by YIN

Figure 2.5: The new Spectral Activity feature on measure 39 of Riviere

are highly concentrated near 1 which demonstrates the desired stability for score
following as opposed to our previous observations in Figure 2.2.
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Figure 2.6: Spectral Activity feature histogram during note sustains on the
entire Riviere

Moreover, since the spectral activity feature is strong enough to distinguish
between the three high-level states, we were able to safely remove the two ∆
features from score following, since we doubted their direct correlation with
high-level states as well as enough stability, without any need for more features.
Therefore, in the version of score following using the Spectral Activity feature,
the total number of features are reduced to three: Log of Energy, PSM and
Spectral Activity features.



Chapter 3

Probability Observation
Design

One of Mies van der Rohe’s pupils, a girl, came to him
and said, ”I have difficulty studying with you because
you don’t leave any room for self-expressions.” He
asked her whether she had a pen with her. She did.
He said, ”Sign your name,” She did. He said, ”That’s
what I call self-expression.”
— John Cage, Indeterminacy

Having acceptable features, we need to have a probability observation that
would be well-defined on both the features and the high-level states. Having
a well-defined architecture would allow us to better plan a training leading to
desired behavior as will be discussed in Chapter 4. In this chapter, we first
go through the basis of our modeling, describing how our model’s basis beliefs
diverges from that of the previous system. It follows by an overview of the
probability functions used in the design and the notion of discrimination used
widely in this report. After this introduction, a statistical analysis will study
and model each feature based on the described basis. Finally, the new designs
for Probability Observation block of score following are demonstrated along with
some remarks.

3.1 Model basis

The model basis suggested here is what follows directly from critical thoughts
in Section 2.1.2 on Page 24. In those lines, we envisioned heuristics to enter the
model at a low-level stage in order to have more control over parameters and
behavior of the system.

In the previous model, all probability mappings are modeled by exponential
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functions as a result of experience and heuristics and ideally, its parameters
should be controlled to fit to an observed model. But as discussed in Section
2.1.2, the insufficient definition of this probability mapping would lead to train-
ing algorithms which are mathematically and physically hard to interpret with
suboptimal results in the end as will be demonstrated in Chapter 4.

In our methodology, we force no a priori probability mapping. We believe
that in its nature, a probability mapping is a posteriori and should be derived
from low-level observations. In this way, our a priori data would be several
observations on recorded music and we would fit some pre-defined probability
models, obtained from statistical analysis of several observations, and construct
the probability mapping using each feature’s heuristics and in the end of the
process.

In this manner, the new model requires a statistical analysis of feature ob-
servations by synthesizing the empiric data into probability models which we
assume would predict and reproduce future events. This way, the probability
mapping will be constructed as a final outcome rather than an a priori model.

Before we get to the statistical analysis and modeling, we would give a sum-
mary of the probability preliminaries used as well as the notion of discrimination
which is used widely in this report.

3.2 Probability preliminaries

In this section, we give an overview of the probability concepts and functions
in use in the new probability observation block. In general, after statistical
analysis of features, we would model each high-level feature observation with
a gaussian or normal distribution. Equation 3.1 demonstrates the gaussian
probability density function (PDF) which is demonstrated in Figure 3.1.

P = f(x|µ, σ) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (3.1)
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Figure 3.1: A Gaussian PDF with µ = 0 and σ = 1

After modeling the feature states, we model the probability mapping for each
high-level feature states. For this stage we make use of Cumulative Distribution
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Function(CDF) and its inverse associated with each modeled gaussian PDF.
Equation 3.2 and 3.3 demonstrate the calculation of CDF and inverse CDF
respectively from a PDF. Note that the inverse CDF is simply 1−F (x). Figure
3.2 visualizes both functions for the same PDF in Figure 3.1.

F (x) =
∫ x

−∞
f(t)dt (3.2)

Finv(x) =
∫ +∞

x

f(t)dt (3.3)
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Figure 3.2: CDF and inverse CDF samples with µ = 0 and σ = 1

For choosing the right function for the probability mapping we make use of
the heuristics associated with each high-level feature states. In this manner, a
CDF is chosen for state features which observe high probability for higher values
(case of all sustain features) and inverse CDF for state features observing high
probability for lower values (case of rest features) and the gaussian PDF itself
when the value should be concentrated around some observations.

To conclude this section, we note that the notion of PDF has been used in the
previous system for probability mapping, but mathematically, the exponential
functions used are not PDFs but CDFs. Moreover, use of gaussians rather than
exponential functions leaves us with more physical interpretation of parameters
and more precision during training.

3.3 Introducing Discrimination

When trying to model each high-level state in the features, we note that while
distinguishing note events and rest events are not complicated, distinguishing
between higher-level note events (that is attack and sustain states) is not that
straightforward. For this reason, we introduce a process of discrimination on
note states, distinguishing between attacks and sustains whenever there is a
note event. We will elaborate more on the foundations of this notion in Section
4.3.

For this project, Yin f0 estimator (de Cheveigné and Kawahara 2002) is used
for discriminating high-level states. At each frame, Yin provides us with an es-
timation of the aperiodicity of the time-domain signal as well as an estimation
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of f0. Using this information, we can easily distinguish between rest and note
events and further more, by putting more constraints on the signal, the attacks
and sustain frames. The imposed criteria for discriminating attack is the begin-
ning of f0 events which exist in the score with an imposed minimum duration.
During our experiments, we have concluded that with our analysis parameters,
taking about 15 frames at the beginning of each mentioned f0 would give an
acceptable estimation of attack feature values.

We should note that we only need a not-so-precise approximation of features
out of discrimination since we are working with statistics. That is, eventhough
Yin seems to be working very well in our case, introduction of errors in dis-
crimination would not harm our modeling. Finally, note that since Yin works
in time-domain, we would adapt its parameters so that there would be a one-
to-one correspondence between our feature frames and that of Yin.

3.4 Statistical Analysis and Modeling

As stated, we tend to observe the features for as many musical situations as
possible (empirical) and construct a probabilistic model upon them to reproduce
desired behavior and predict future observations (synthetical).

The ideal approach to this empirical-synthetical method is a huge data base
of aligned music files, specially the ones which use score following in perfor-
mance. While there is a huge need for such a database, it does not exist up
to the time of writing this report. Therefore we have used music files which
exist in the score following database, that is music which uses score following
in performance. While the results are promising and are currently in practice,
having such database is necessary for further progress in score following as will
be discussed in Chapter 6.

In this regard, we aim to observe statistical behavior of features in high-
level states. That is we observe how each feature reacts during rests, attacks
and sustains and decide upon modeling each high-level feature probability mod-
eling. After this modeling, using each feature’s heuristics (as demonstrated in
Section 3.2) we define the probability mapping associated. For each case, we
demonstrate one or two examples as a report of the entire work.

3.4.1 Log of Energy Feature

Since log of energy feature is directly correlated to the distinction between note
event and rest event, it can be observed directly without need for further dis-
crimination of high-level states in the feature. However, for Attack observation
we would always need discrimination as described in the previous section.

Figure 3.3 on Page 35 shows three instances at which this feature has been
calculated for an entire piece with the histograms produced. We can see that, for
each histogram presented there are two places where population is centered. The
lower value population corresponds to rests in the piece (silence and background
noise) and the higher value population corresponds to note events.

Moreover, by synthesizing this concept and looking further at the shape
and population we can assume to model each high-level event in this case by
a Gaussian. By this assumption, we try to fit one gaussian to each population
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representing note and rest events as is demonstrated for one histogram in Figure
3.3.

For modeling the high-level state probability mapping using the derived
gaussians, we use the same heuristics used in the previous system but in a more
mathematical rigor: For rests, an inverse CDF would fit the heuristics that for
less energy, the rest probability is here. Conversely, a CDF would model both
sustains and attacks.
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Figure 3.3: Histograms of LogE for ”Riviere” (top-left), ”. . . Explosante Fix
. . . ”(top-right) and ”Pluton” (low-right) with estimated gaussians for ”Riviere”
(low-right)

3.4.2 Spectral Balance Feature

Looking at the Spectral Balance feature’s histogram, we can still distinguish the
rests and notes but not higher level note states as is the main job of spectral
balance feature.

Figure 3.4 on Page 36 shows the histogram of spectral balance done on
”Riviere” as well as results of discrimination for all three high-level states. As
for Log Energy feature, we can model each event using a gaussian.

After modeling each high-level feature probability with a gaussian, as before,
we model the final probability mapping uing features’ heuristics. In this respect,
for rests an inverse CDF would model the right probability as the least activity
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suggests higher probability. Conversely, a sustain is modeled with a CDF. In
the case of attacks, we need the probability to raise as activity increases but low
down as we are in sustain. Therefore, for attack observation, we use the same
gaussian PDF that models the statistics.
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Figure 3.4: Histograms of Spectral Balance (top-left) and Discriminated Spec-
tral Balance for high-level states (in ”Riviere”)

3.4.3 PSM feature

The same procedure followed above applies to PSM features with the difference
that, as mentioned before, PSM features come in vectors in which each value
presents the feature value for one note in the score and also, as its nature
suggests, PSM will not be used for rest probability.

Figure 3.5 (left) shows the PSM feature calculated on the entire ”Riviere”
where the feature values are presented for all different notes in the score. Note
that a pitch match in PSM means a value of very close to 1 and we see clearly
that the population around 1 is not very high since this figure is generated
without discrimination. In order to further discriminate this feature we use
Yin’s f0 output plus a filtering method which would allow us to extract the
right notes at the right place. For this purpose, as shown in Figure 3.6, for
every note present in the score we construct a bandwidth and we extract the
frames’ information that lie within each interval which in terms corresponds to
feature values for a certain note in the score. Figure 3.5 (right) shows the result
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of this discrimination on the same feature values.
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Figure 3.6: PSM discrimination using Yin

This discriminated data will be used to model sustains and attacks using
two gaussians. In this respect, the probability mapping for both features would
be CDFs.

3.5 Design Summary and Remarks

Integrating the suggested models for probability observation and mapping, the
new probability observation block would become as demonstrated in Figures 3.7
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on Page 39 and 3.8 on Page 40 for different feature suggestions. Features used
in each diagram correspond to our discussions in Section 2.3. In Figure 3.7,
the Spectal Balance feature has replaced both Delta features and in Figure 3.8,
Moving Average ∆log feature has replaced ∆log feature.

In the new system, each probability mapping block (2nd layer) is loaded
before performance with its appropriate trained gaussian model. We see that
after this modeling and above discussions, training gains a physical meaning
and becomes integrated into the system. Training will be discussed in details in
Chapter 4.

The two proposed systems are the final outcome of this project and the
right choice between the two depends on Robustness results of the two systems
for which experiments are underway to use in concerts. So far, the system with
Spectral Balance feature has proven be more robust and leading to better results
than others.
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Figure 3.7: New Feature and Probability Observation Diagram (1)
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Figure 3.8: New Feature and Probability Observation Diagram (2)



Chapter 4

Training

The principles of form will be our only constant con-
nection with the past. Although the great form of the
future will not be as it was in the past . . . , it will be
related to these as they are to each other: through the
principle of organization or man’s common ability to
think. — John Cage, Credo

In this chapter, we introduce a training method for IRCAM ’s score following
based on designs in Chapter 3. Before we enter the training itself, we need to
define the notion of training and also contemplate and differentiate between
and ideal training and training in the context of music practice, defining the
objectives of training for the score following in question.

4.1 Training and Music Tradition

As discussed before, by training we aim to adapt the observation parameters
to a certain piece. Speaking about training for score following, often initiates
fear of system obsolesce and portability for musicians and composers using the
system. For this reason, we tend to specify what we mean exactly by training
in our case.

In an ideal training, the system runs on a huge database of aligned sound
files and adapts its parameters to the performance. In this case, the training
is usually supervised and is integrated in the system’s practice. However, in a
musical situation dealing with traditions of music rehearsals and performances,

• Musicians prefer no additional item added to their practice situation.

• No database of aligned audio exists and moreover, working in the context
of contemporary music limits the availability of different performances and
recordings for a piece.

41
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Figure 4.1: HMM for ”Orio training”

• Whatever added to the system in general, should not reduce the portability
of the piece. Musicians travel with the piece!

The above constraints would limit the ideal training to an unsupervised train-
ing, having few or just one rehearsal run-throughs to be observed. In this con-
text, the training will be off-line and would use the data during rehearsal to
train itself. Atleast for portability issues, training should be automatic.

Also from a developmental point of view, since score following is a work in
progress as composers’ demands increase and change, training should be ideally
independent of features so that by introducing new features, training does not
need any change.

4.2 Previous Work

The training method discussed here is proposed by Nicola Orio and Diemo
Schwarz and marks the beginning of this project. Note that this method was
proposed for the old observation block in Figure 1.4 on Page 15.

In their unsupervised training, Orio has proposed using a simple three-state
HMM, demonstrated in Figure 4.1, with the same transition probabilities and
observation block as the score following. The system would observe and decode
the HMM using Viterbi algorithm at each iteration and the new µ and σ pa-
rameters for each exponential probability mapping is found by a curve fitting
on the histogram of the feature observation. Figure 4.2 shows one iteration of
this training for Log of Energy’s sustain feature where the red-line indicated the
newly fitted exponential mapping to be used in the next iteration.

Without going into the evaluation of the score following using the trained
parameters, which were not satisfactory, we can criticize this methodology from
different point of views:

• This training method assumes the same heuristics criticized in Section
2.1.2 and therefore fails to construct a basic correspondence between the
parameters and high-level states.

• Assuming the training is appropriate, this method experience error prop-
agation, that is, if there is a tiny error at one iteration by propagation
through other iterations it becomes bigger and bigger.

• The curve fitting method is highly dependent on the precision of the his-
togram constructed over features which is not fixed for different pieces and
features and would highly affect the parameters found.
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Figure 4.2: One iteration of ”Orio training”

• There is no discrimination done for high-level states and therefore we can
never be sure whether what we are observing at each iteration correctly
corresponds to the desired high-level state.

• It is assumed that this method converges to stable values after several
iterations. There is no method in evaluating this convergence and the
converged values are highly dependent upon histograms’ precisions and
starting points and finally, they is no direct correspondence between these
values and desired parameters for a better alignment.

Following the above critics and the new probability observation constructed
in Chapter 3, we propose a training method which is again automatic (if not
unsupervised) but more controllable in terms of behavior and intermediate pa-
rameters.

4.3 The automatic discriminative training

In score following we are not concerned with estimating the joint density of the
music data, but are interested in the posterior probability of a musical sequence
using the acoustic data. More informally, we are not finally concerned with
modeling the music signal, but with correctly choosing the sequence of music
events that was performed. Translating this concern to a local level, rather than
constructing the set of PDFs that best describe the data, we are interested in
ensuring that the correct HMM state is the most probable (according to the
model) for each frame.

This leads us to a discriminative training criterion (Renals et al. 1993).
Discriminative training attempts to model the class boundaries - learn the dis-
tinction between classes - rather than construct as accurate a model as possible
for each class. In practice this results in an algorithm that minimizes the likeli-
hood of incorrect, competing models and maximizes the likelihood of the correct
model.

While most discriminative training methods are supervised, for portability
issues and other reasons discussed before, we need our training to be automatic
if not unsupervised. For this reason, we introduce an automatic supervision
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over training by constructing a discrimination knowledge by an alternative al-
gorithm which forces each model to its boundaries and discriminates feature
observations. Yin (de Cheveigné and Kawahara 2002) has been chosen as this
algorithm to provide discrimination knowledge after several considerations.

Figure 4.3 shows a diagram of different steps of this training. The inputs of
this training are an audio file plus its score. There are two main cores to this
system: Discrimination and Training.

Score Audio File

Load Score

score parsing

Discrimination Knowledge

Yin
Feature Calculation

Discriminate Features

High-level state features

Train Gaussians

EM Algorithm

Construct Structures

Store
Structures

Figure 4.3: Automatic Discriminative Training Diagram

4.3.1 Discrimination

During discrimination, using the discrimination knowledge (provided by Yin),
the score information (list of all notes in the score) and audio features, high-level
state features will be discriminated from each other. For example, the Spectral
Balance feature will be discriminated to Spectral Balance - Attacks, Spectral
Balance - Sustains and Spectral Balance - Rests. In this manner, we would be
ready to model the class boundaries and learn the distinction between classes.
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The discrimination done here is basically what has been described in Section
3.3 and Section 3.4.3.

4.3.2 Training

Having all high-level state features discriminated, we are ready to model the
gaussians described in Section 3.4. We evade using fitting algorithms due to
robustness and since we are dealing with gaussian mixtures (Reynolds 1995;
Cappé 2000) and are projecting more mixtures in a row for future, we use EM
Algorithm (Bilmes 1998; Dempster et al. 1977) to construct the gaussians on
observed discriminated features.

The result of the training is a set of PDF s that correspond to each high-level
state feature. We go further and construct structures containing µ and σ values
for each PDF as well as the corresponding type of probability mapping for each
state feature (as described in Section 3.4) and probability range and observed
feature’s range for calibration. This way each file structure would correspond
to one state feature with all the above information. This data will be stored in
a database which will be used in the real-time score follower’s observation block
as shown in Figures 3.7 and 3.8.

4.4 Some results and remarks

To train the probability mappings for Figures 3.7 and 3.8, there will be a total
of 13 PDFs to train. Here we demonstrate for the case of Log of Energy feature,
the results of each training step as well as the final mapping results for the case
of the first movement of En Echo, ”Riviere,” for soprano and electronics.

Figure 4.4 on Page 46 shows the three high-level states (attack, sustain and
rest) extracted from Log of Energy on the left with the trained gaussian in red.
Associated with each gaussian is the probability mappings on the right which
will be stored in the database.

Note that the automatic discriminative training implemented is independent
of the features. This characteristics is crucial for the development of score
following because, as seen before, the notion of score following and expectations
of the system evolves with time and necessitates introduction of new features.
In this manner, if the new feature has enough ”sense” for discrimination, the
training will be done in the same manner as before.

One nice considerations for the future of score following is the ability to have
local models for each event in the score. With the new system this is totally
imaginable and we only need to consider a chain of gaussians for each high-
level states each corresponding to an event in score. However, such a progress
requires a sufficient database of aligned audio for training and we can’t rely
on one run-through of a rehearsal. This topic will be more elaborated in the
concluding chapter.
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Figure 4.4: Results of training for LogE feature in ”Rivier”



Chapter 5

System Evaluation

In this chapter we aim to provide a subjective evaluation of systems in Figure
1.4 (old system), 3.7 (new probability observation with moving average ∆log
feature) and 3.8 (new probability observation with Spectral Balance feature),
with the two latter using the outcome of a training session. The evaluations
shown here are simulations of the score follower on Matlab ran on audio files.
However, we tested the system in several test sessions in studios with Philippe
Manoury, Serge Lemouton along with soprano Valerie Philippin on En Echo
which we will describe.

For the simulation, we limit our observations on segmentation output of the
score follower, being the main objective of the score following. We demonstrate
score following results on short fragments of music which were problematic in
the old system and comment on the output. The examples demonstrated here
are excerpts from Manoury’s first movement of En Echo, ”Riviere,” for soprano
and electronics.

Figure 5.1 demonstrates real-time alignment results for measure 39 and mea-
sures 29 − 32 for the three systems mentioned. Observing from the previous
system to the system using spectral balance as feature (system (2) in figure),
we can contemplate on the following remarks:

• The stability of the system has increased, in the sense that we do not
observe jumps to other states during sustains.

• At some instants, specially fast transitions, alignment is improved.

• Even if a high-level state is not recognized, due to the new system design,
the system’s behavior can be explained and remarks can be gathered for
further development of the system (example: first repeated note in mea-
sure 39 in system (2) which is not recognized and is because of higher
precision needed in the Spectral Balance feature and finer training.

The real-time tests in the studio, led to similar improvements specially for
the mentioned measures and similar instants in the score where we were not
able to detect before. Although the score follower turned out to be almost per-
fect on audio recordings of a performance, its performance in real-time was not
perfect to that extent. But due to our design approach, every shortcoming of
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the system encountered a direct physical interpretation which could be over-
come by adjusting the parameters during performance; thus, leading to more
considerations for future research.

As a conclusion for evaluation, we would like to refer the reader to the general
contemplations made on the topic of Evaluations of score following in Section
1.2.5. An important need for the evaluation of new features and elements as
well as final system’s output evaluation is a database of aligned music files. This
topic will be addressed in Chapter 6.
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Figure 5.1: Evaluation of the three systems on measure 39 (left) and measures
29-32 (right) of ”Riviere.” System (1) refers to the observation probability with
moving average ∆ features; System (2) refers to the observation probability with
spectral activity feature and no ∆ features.
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Chapter 6

Future Works and
Conclusion

One day down at Black Mountain, David Tudor was
eating his lunch. A student came over to his table and
began asking him questions. David Tudor went on
eating his lunch. The student kept asking questions.
Finally David Tudor looked at him and said, ”If you
don’t know, why do you ask?”
— John Cage, Indeterminacy

6.1 Future Works and Remarks

In this section we summarize our contemplations on future works and consid-
erations of score following research. In this manner, we go through each aspect
separately since each define separate issues but at the same time correlated
towards further progress of score following in general.

6.1.1 The urge of an aligned database of music

Without hesitation, we emphasize on the importance of the availability of a
database of aligned music files for further progress of score following research.
Since we are dealing with a research oriented towards a empirical-synthetical
approach, it is important to evaluate the changes made in the system on a large
database of aligned music to compare the output and see whether it would be
good enough to be used for score following in practice. While small changes
and improvements are possible without such database, it limits the research
progress since for many proposed works we would need evaluations to ensure
the robustness of the system as well as training.
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We note at this point that the speech recognition literature was standing at
the same point in early 80s and important improvements in their systems took
place by having huge databases of speech available for training and evaluation
of competing systems.

6.1.2 Towards localized probability modeling

One comment on further development of our system is to move from fixed, ”out
of time” observations to localized observations. At this moment, the system
assumes fixed probability mappings for all high-level states in a score (for exam-
ple, one probability mapping for all attacks). This assumption again is based on
heuristics which has never been evaluated since we need the mentioned database.
Another approach, which seems reasonable after our experience, is to assume
localized probability mappings for each high-level states in the system. With
the current system, this means using a mixture of gaussians for each high-level
state and is completely implementable within our new framework. However,
this approach requires the mentioned database for training and evaluations and
considerations of such approach for practical purposes.

6.1.3 Feature tests

Furthermore, the modified features along with the new suggested feature should
be tested for robustness. For this reason, the features need to be run on a large
database of sound files and their behavior should be studied which was out of
the context of this project.

6.1.4 Temporal Considerations in HMM

We believe that with a strong observation, we would always pass to the right
state. However, a classical problem with the HMM approach lies in its temporal
modeling. While this topic was not an objective of this project, we contemplated
on it since it would lead to improvements of the general systems. There has been
many approaches in the literature towards solving this classical problem such
as using parallel HMMs and coupling the system with other approaches. As a
general remark, it seems that in the context of score following where we try to
model a musical (or virtual) time, the idea of using clock time (i.e. frame by
frame analysis and decoding to HMM ) is not a good idea. One famous approach
which is widely used in music information retrieval is to drop the clock time and
use the onset information as the time triggers of the temporal analysis (Takeda
et al. 2003; Takeda et al. 2002).

6.1.5 Refining the Music model

Furthermore, in the HMM Music Model we need to consider adding a release
model. At the moment, the release model used is just a rest model added at the
end of a note model. With the designed observation block and training method,
it is totally possible to extract release features from low-level features and train
them for detection. This will help for faster and easier recognition of attacks,
more cues for special cases such as repeated notes where most features are not
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changing and also better transition modeling for the cases of legato and staccato
notes.

6.1.6 Calibration for real-time score following

In order to have satisfying results as shown in evaluation during a live perfor-
mance, we need to make sure that the feature values produced lie in the same
range as the training samples. In the training literature, this goal is achieved by
an automatic (if not unsupervised) on-line learning. However, due to practical
purposes in a musical situation, this is not possible. One practical solution to
this, after our contemplations is to calibrate the solo input of the system before
each live performance which is a simple audio engineering task.

For this purpose, we have included range of each feature in the saved struc-
ture after training. The audio engineer can ask the soloist to perform a single
fortissimo note while looking at one or several feature values and by controlling
the tabs on the mixer desk, he can calibrate the values to an approximate value
near the maximum of the feature range.

This way, we would make sure that during live performance, feature values
will occur in the same range used during training which in terms assures desired
alignment of real-time score follower.

6.2 Conclusion

The early objective of this project was to implement a training algorithm for the
existing score follower at IRCAM. Such task requires profound understanding
of system’s behavior from a control aspect. The project started by studying IR-
CAM ’s score following and other systems available in the literature. Throughout
this process and after several unsuccessful attempts, the author realized that the
incapabilities of the score follower in question lies in the concepts used for the
component designs and especially in the observation block.

From this moment on, studies and experiments were undertaken to redesign
the observation process of the score follower which resulted in the system in-
troduced in Chapter 3. The proposed system adds more flexibility in terms of
development and physical observation of musical phenomena in score following.
In this design, the author emphasizes on critical thinking developed on the basis
of use of heuristics in the previous systems from a control aspect.

One major outcome of this new design is an implicit notion of parameter
control which eases the process of training introduced in Chapter 4. In this
respect, a new approach to training called automatic discriminative training is
introduced which emphasizes on the alignment goal of score following, being the
main objective of the system, rather than adapting a perfect model. Moreover,
the proposed method is independent of features which makes it usable and
flexible for future developments of score following.

While having adapted parameters out of training and through evaluations of
the system on several music samples, the author realized that the second stage
towards more precision and perfection in score following is refinement of the
features used during observations. In this manner, every feature was analyzed
and some refinements as well as new features were introduced as described in
Chapter 2. The newly introduced Spectral Balance feature, being much more
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correlated to high-level states, is currently in use in the score following and has
replaced two features in the previous system and has proved to be practical for
real-time performance of the system.

Some evaluations of the outputs of the proposed systems were presented in
Chapter 5 which shows more stability, precision and specially more control over
physical behavior of the new system. Real-time tests of the system have proven
improved results and more control over the behavior of the system, as well as
introducing a way to go for further refinements of score follower.

Moreover, during this work and facing new designs and challenges in the
field the author has gathered several contemplations regarding the future de-
velopments of score following in general which was presented in the previous
section.

The field of score following, having almost 20 years of age, has recently gained
much attention and feedback from other domains specially the music information
retrieval literature. Saying this and considering recent advancements in fast
computations, we can argue that the rapid growth of this field in applications
and development is not quite astonishing and we anticipate more interesting
advancements in its technologies and practical aspects in near future.
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Cappé, Olivier (2000, June). Modèles de mélange et modèles de markov
cachés pour le traitement automatique de la parole. Web page.
http://www.tsi.enst.fr/ cappe/cours/tap.pdf.

Castel, Yohan (1999). Human behaviors and psychobiology. Web page.
http://www.psychobiology.org/.

Dannenberg, Roger (1988). Method and apparatus for providing coordinated
accompaniment for a performance. US Patent No.4745836.

Dannenberg, Roger (2004, June). Private conversation with the author.
Hamamatsu, Japan.

Dannenberg, Roger B. (1984). An On-Line Algorithm for Real-Time Accom-
paniment. In Proceedings of the ICMC, pp. 193–198.

Dannenberg, Roger B. and B. Mont-Reynaud (1987). Following an Improvi-
sation in Real Time. In Proceedings of the ICMC, pp. 241–248.

Dannenberg, Roger B. and Mukaino (1988). New Techniques for Enhanced
Quality of Computer Accompaniment. In Proceedings of the ICMC, pp.
243–249.
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