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Résumé

La fréquence fondamentale, dite F'0, occupe une position clef dans les signaux
musicaux et les signaux de parole du fait qu’elle soit fortement liée a la per-
ception de la hauteur. Von Helmholtz pensait que F'0 déterminait & elle seule
la perception de hauteur, mais sa théorie fut critiqué un siécle aprés son ap-
parition. Schouten fut le premier & prouver que la périodicité des harmoniques
élevées jouait un roéle important dans la perception de hauteur. Plomp con-
clut des expériences menées par Ritsma que les harmoniques supérieures était
responsables de la sensation de hauteur jusqu’a 1500Hz.

Les théories de ’analyse de hauteur auditive tendent a se distinguer en deux
dimensions: la hauteur spectrale fondée sur I'information de lieu et la hauteur
de périodicité fondée sur I'information de périodicité. Ainsi, les téchniques pour
estimer la fréquence fondamentale peuvent étre catégorisée en deux domaines:
le domaine temporel et le domaine spectral. Les techniques temporelles inclu-
ent ’extraction de fondamentales-harmoniques utilisant des extracteurs pour
générer des marqueurs de période, et ’analyse de la structure temporelle en ob-
servant I’enveloppe temporelle d’un signal. Les techniques spectraux incluent la
méthode d’autocorrélation, les fonctions de distance, cepstrum, la compression
spectrale et 'appariement spectral. Toutes ces techniques ont été appliquée
a la détection de fréquence fondamentale simple, cependant la détection de
fréquences fondamentales multiples requiert des techniques et des connaissances
approfondies.

Les approches récentes fondées sur des modéles statistiques intégrent les
paramétres qui font sens au niveau musical dans un systéme permettant d’estimer
des F0s. PreFEst dévéloppée par M. Goto est capable d’extraire la mélodie et
la basse d’une musique enregistrée. Les modéles graphiques Bayesian, proposés
par Paul J. Walmsley, Simon J. Godsill et Peter J. W. Rayner, fournissent un
cadre pour une modélisation graphique qui représente les dépendances statis-
tiques entre des données observées et des paramétres d’un modéle. Le systéme
de transcription automatique, proposé par Anssi P. Klapuri, qui n’utilise pas
de modéles statistiques fournit un cadre complét pour pouvoir transcrire la
musique multiphonique et est également appliqué a la synthése des signaux
multiphoniques simples. Puisqu’il existe beaucoup de problémes & résoudre
dans lestimation de F'Os multiples, on simplifie la tache courante de la maniére
suivante:

1) Les fréquences cibles F'0s ne sont pas multiples les unes des autres.
2) Le nombre de F0s visées est supposé connu a 'avance.

3) On considére seulement les parties stationnaires dans les signaux musi-



Caux.

f0 est un programme dévéloppé pour estimer les fréquences fondamentales
multiples. On résume ses processus pas par pas:

1)

Les modéles spectraux idéaux se construisent par la superposition des pics
spectraux sinusoidaux espacés de maniére égale.

Elimination provisoire du plus grand pic observé dans le spectre de maniére
4 pouvoir détecter les pics cachés par les formants.

Extraction de pics candidats & étre F0s.
Assigner les regions de pondération pour tous les pics.

Filtrer les pic de bruits en observant les propriétés temporelles-fréquentielles:
bandwidth(largeur de bande), duration(durée), group delay(délai de groupe),
et instantaneous frequency(fréquence instantanée).

Elimination des candidats correspondant aux subharmoniques des F0s en
utilisant H LR o qui mésure les variations des amplitudes spectrales d’une
série de harmoniques. Les pics non désirés sont ensuite filtrés par Devpg,
qui représente la variance de mean time(temps moyenné).

Regrouper les candidats F'Os qui ont une relation d’harmonique. Dans
chaque groupe, le candidat possédant la distance minimale par rapport au
spectre observé est gardé & I’etape finale. En plus de HLRp¢ et Devpyg,
Shiftpg est un autre composant de la fonction de distance et il mésure
les écarts dans le groupe de partiels correspondant & un F0.

Deux composants concernant les propriétés combinées sont introduit dans
la fonction de distance finale. ErrSpecpq®** calcule Ierreur entre la somme
des amplitudes spectrales d’un spectre combiné et celle d’un spectre ob-
servé. Shi ftgg"“ meésure les valeurs Shiftpg combinées. Des propriétés
individuelles comme H LR et Devpg sont additionées pour chaque com-
binaison des F'0s candidats. La combinaison dont la fonction de distance

est minimale représente le resultat de I’estimation.

Les parameétres introduits lors du processus entier sont générés et testés par
l’algorithme d’évolution. Des échantillons sonores sont choisis aléatoirement
parmi des échantillons correspondant & des instruments divers. Pour 100 échan-
tillons choisis aléatoirement, £0 a obtenu une moyenne d’erreur de 23.6%. Si
I’on désire estimer des fréquences fondamentales multiples sur des extraits mu-
sicaux réels (non-simplifiés), une étude approfondie des irrégularités spectrales

sera éssentielle. La détection des attaques de notes pourra également aider &

classifier certains groupes de partiels. Une combinaison de connaissance musi-
cale et de techniques de traitement de signal sera la clef pour pouvoir détecter
des fondamentales multiples dans des extraits musicaux réels.



Abstract

Fundamental frequency, or F'0, occupies a key position in musical signals and
speech signals because it is strongly related to pitch perception. Von Helmhotz
believed that F0 itself determines the percieved pitch and it was critisized one
century after its appearance. Schouten was the first one to prove that the
periodicity of higher harmonics plays an important role in pitch perception.
Plomp concluded from Ritsma’s experiments that higher harmonics rather than
F0 dominate pitch sensation up to a frequency range about 1500Hz.

The theories of auditory pitch analysis tend to differ on two dimensions:
spectral pitch based on place information and periodicity pitch based on period-
icity information. Thus, fundamental frequency estimation techniques could be
categorized into two domains: time domain and spectral domain. Time domain
techniques include fundamental-harmonic extarction using basic extractors to
generate periodic markers, and temporal structure analysis by observing tem-
poral envelope of signals. Spectral domain techniques include autocorrelation,
distance functions, cepstrum, spectral compression and spectral matching. All
these techniques have been applied to single F0 estimation while multiple F0s
estimation requires more techniques and knowledge.

Recent approaches based on statistical models integrate musically meaning-
ful parameters into multiple F0s estimation systems. PreFFEst developed by
M. Goto is capable of extracting the melody and bass lines in complex music
recordings. Bayesian graphical models, proposed by Paul J. Walmsley, Simon J.
Godsill and Peter J. W. Rayner, provides a graphical modeling framework which
represents the statistical dependencies between observed data and model param-
eters. Anssi P. Klapuri’s automatic transcription system without constructing
statistical models gives a complete framework of transcribing polyphonic music
and is further applied to synthesize simple polyphonic signals. Since there are
many problems with estimating multiple F'0s, we simplify our current tasks in
the follwing aspects:

1) The target F0s are not multiples of one another.
2) The number of F0s are assumed to be known in advance.
3) Only stationary parts of musical signals are considered.

f0 is a program developed for estimating multiple F'0s. The processes are
summarized step by step:

1) Constructing ideal spectral models by summing up equally-spaced sinu-
soidal spectral peaks.



2) Removing the largest peak in the observed spectrum to detect the peaks
possibly hidden in formants.

3) Extracting peaks as F'0 candidates.
4) Assigning influential regions for peaks extracted.

5) Filtering noise peaks by observing bandwidth, duration, group delay and
instantaneous frequency of each peak.

6) Eliminating the candidates corresponding to subharmonics of correct F0s
by HLRpo which is a measure of the spectral amplitude variation in a
sequence of harmonic partials. Unwanted peaks are futher filtered using
Devpg, the variance of mean time.

7) Grouping F0 candidates which are harmonically related. In each group,
only the F0 candidate with the smallest distance is kept to the final stage.
In addition to H LRp¢ and Devgg, Shiftgg is another component included
in this distance function and it is a measure of the deviation of the group
of partials belonging to one F0.

8) Two components concerning the combined properties of F0 candidates
are introduced in the final distance function. ErrSpecpg®*® calculates the
error between the sum of spectral magnitudes of a combined spectrum and
that of an observed spectrum. Shi ftgg"” measures the combined Shi ft o
values. Individual properties like H LRpo and Devgg are summed for each
combination of F0 candidates. The combination of the smallest distance
gives the final result.

The parameters introduced in the whole process are generated and tested by
the evolutionary algorithm. Testing samples are randomly mixed by samples of
a variety of musical instruments. For 100 randomly mixed samples, £0 has been
tested to perform an average error rate of 23.6%. To be able to estimate multiple
F0s in real world music, a profound study on spectrum irregularities is essential.
Detecting the onsets of notes also helps to classify certain groups of partials.
That is, integrating musical knowledge with signal processing techniques is the
key to estimate multiple F'0s in real world music.
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Chapter 1

Introduction

1.1 Pitch perception of complex tones

A simple description of the process of pitch perception could be stated as: the
inner ear(cochlea) converts a vibration pattern in time(that of the eardrum)
into a vibration pattern in space(along the basilar membrane) and, in turn, into
a spatial pattern of neural activity which could be interpreted by human brain
as a pitch. The American National Standard Institute(ANSI) defines the term
“pitch” as that auditory attribute of sound according to which sounds can be
ordered on a scale extending from low to high. The French standards orga-
nization(Association Frangaise de Normalisation, AFNOR) adds that pitch is
associated with frequency and is low or high according to whether this frequency
is smaller or greater.

In Von Helmhotz’s pitch theory, a pitch is considered to be determined by F0,
the fundamental frequency, which was generally accepted for about one century.
The first successful attack on the significance of F0 in low-pitch! sensation was
made by Schouten|[2]. He investigated that the pitch of the complex tone was
the same as that prior to the elimination of F'0. He described the sensation
induced by a periodic sound wave with many partials:

“The lower harmonics can be perceived individually and have almost
the same pitch as when sounded separately. The higher harmonics,
however, cannot be perceived separately but are perceived collec-
tively as one component with a pitch determined by the periodicity
of the collective waveform, which is equal to that of the fundamental
tone.”

The controversy that F0 is not essential for perceiving low pitch raises the
question as to which harmonics are most important. From Ritsma’s experiments
in 1963, Plomp concluded that those partials below the fifth harmonics give a
much better low-pitch sensation than the higher harmonics. Plomp further
found that higher harmonics rather than F'0 dominate pitch sensation up to a
frequency of about 1500Hz.

1Depending upon the experimental conditions, the pitch of complex tones are referred to
as residue pitch, low pitch, periodicity pitch, time separation pitch, repetition pitch, virtual
pitch, etc.



The theories of auditory pitch analysis tend to differ in two dimensions[1]:
whether they see pitch analysis as based primarily on “place” information — spec-
tral pitch or on “periodicity” information — periodicity pitch, and what method
is used to derive the pitch from the type of information that is used. Human
auditory system seems to perceive pitch through “pattern matching”. We rec-
ognize a sound by its spectral pattern composed of a series of partials which
characterize it. Even when some partials are too weak to be detected, human
auditory system tends to reconstruct the missing partials and complete the pat-
tern matching task.

1.2 Fundamental frequency estimation

Wolfgang Hess categorizes the PDA (pitch determination algorithms, or funda-
mental frequency estimation algorithms), into two domains[3]:

1) Time domain: If there is a time-domain signal at this point that has the
same time base as the input signal, the PDA works in the time domain.

2) Spectral domain: The alternative is the lag domain if the input is a corre-
lation function, or the frequency domain if the input is a Fourier spectrum
or some functions derived from it. All these other than the time domain
itself are labeled as spectral domains.

1.2.1 Time domain techniques
Fundamental-harmonic extraction

There are three basic extraction methods: the zero crossings analysis basic ex-
tractor(ZXABE), the nonzero threshold analysis basic extractor(TABE), and
the TABE with hysteresis(two-threshold basic extractor). They can be char-
acterized as event detectors. When the extractors detect the significant event
they are designed for, a marker is generated. If the basic extractor operates
correctly, the elapsed time between two consecutive markers represents a pitch
period.

The technique of fundamental-harmonic extraction in the time domain re-
quires the first partial to be present in the waveform. This restricts the appli-
cation of these techniques to those cases where the signal is not band limited
unless nonlinear preprocessing reconstructs the first partial. Another drawback
of these techniques is their sensitivity to low frequency signal distortions.

Temporal structure analysis

Basically, one should be able to read the periodicity of the signal out of its
temporal structure. In this respect we could model the process from which
periodicity is determined visually from an oscillogram. There are mainly two
types of methods based on this concept:

1) Modeling of signal envelope and searching for discontinuities which mark
the beginning of individual periods.

2) Direct investigation of the temporal structure by algorithm; search and
extraction of anchor points from which periodicity is derived.

10



To increase the overall efficiency of the system, a simplification of the temporal
structure such as inverse filtering is usually applied.

1.2.2 Spectral domain techniques
Autocorrelation

Correlation is a measure of similarity. In the case of autocorrelation the input
sequences are correlated with themselves, with the lag as the parameter of the
autocorrelation function. If the signal is periodic or quasi periodic, there are
great similarities, i.e., high correlation coefficients, when the lag equals one
period or a multiple thereof.

Distance function

Contrary to the correlation techniques which are measures of similarity, distance
functions detect periodicity by investigating the global deviation between two
sequences. A strong minimum implies that the lag equals T0 = 1/ FO0.

Cepstrum

The term cepstrum was introduced by Bogert and has been accepted terminol-
ogy for the inverse Fourier transform of the logarithm of the power spectrum of
a signal. The pulse sequence originating from the periodic signal reappears in
the cepstrum as a strong peak at the “quefrency”(lag) T0.

Spectral compression

Spectral compression, first proposed by Schroeder(1968), opens an avenu to
accurate determination of F'0 from higher harmonics without requiring the re-
spective harmonic numbers to be known. The frequencies of selected peaks are
noted as its entries. They are first divided by two, three, four,..., and so on
and then to be added together. The histogram finally has a distinct maximum
at FO.

The harmonic product spectrum and the harmonic sum spectrum are the
generalizations of the principle of spectral compression. The harmonic product
spectrum is computed when the log power spectrum is compressed and added.
Similarly, the hamonic sum spectrum is defined when the compressed amplitude
spectra are added instead of the compressed logarithmic spectra.

Spectral matching

Martin applies the principle of harminic pattern matching with a comb filter[11]
to estimate pitch:

The principle behind the comb method consists in the search for val-
ues of the spectrum situated at harmonic frequencies, and whose sum
is a maximum for a given frequency interval. The intercorrelation
of spectrum and comb amounts to the calculation of the sum of the
spectral components corresponding to a given harmonic structure.
The fundamental corresponding to the harmonic structure giving
the largest sum is then taken to be the fundamental frequency of

11



the signal, as long as this sum differs sufficiently from the values
obtained for other structures in the same spectrum.

1.3 Analysis/Synthesis team at IRCAM

The main objective of the Analysis/Synthesis team is to design and develop tools
to help composers and musicians implement their creative ideas, and also to pro-
vide musicologists with efficient measures to analyze musical pieces. Under the
direction of Xavier Rodet, the Analysis/Synthesis team has accomplished many
important projects like “Chant” and “Farinelli” projects, and has kept exploring
new techniques in creating high-quality analysis/synthesis tools. The research
areas include signal modeling, fundamental frequency estimation, separation of
signals, physical modeling, signal description, score and speech following, ges-
tual control, to mention just a few. Creative softwares like Super Vocodeur
de Phase, AudioSculpt, Diphone Studio and Chant have been provided
for IRCAM forum members. Estimating single fundamental frequency has been
studied profoundly and implemented in these tools and £0 is the first project to
estimate multiple F'0s. Since the complexity in real world music is difficult to
deal with, we start studying this problem under simplified conditions.

1.4 Organization of this thesis

In this chapter, we review some important concepts concerning pitch perception
of complex tones. Several F0 estimation techniques are surveyed, too. In the
second chapter, we discuss the recent approaches to estimating multiple F'0s and
clarify our current tasks. In the third chapter and the fourth chapter, we propose
the algorithms for estimating single F'0 and multiple F0s. The testing results
will be shown and discussed in the fifth chapter. Finally, we give conclusions of
the current algorithms and propose future work.

12



Chapter 2

Recent approaches and
difficulties

Since multiple F'0s estimation is a complicated and difficult task, we first survey
three recent approaches to study this problem and then we define our current
tasks.

2.1 PreFFEst

Masataka Goto developed a method called PreFEst (Predominant-F0 Estima-
tion method)[5], which is based on the EM(Expectation-Maximization) algo-
rithm and which is able to detect the melody and bass lines in complex mix-
tures containing simultaneous sounds of various instruments. This method is
summarized as follows:

— Estimating the F0 of the most predominant harmonic structure in the
input mixing signals.

— Simultaneously taking into consideration all the possibilities of F0s and
the input mixture which contains every possible harmonic structure with
different weights.

— Regarding the input frequency components as a weighted mixture of har-
monic structure tone models of all possible F'0s and finding the F0 of the
maximum-weight model corresponding to the most predominant harmonic
structure.

— A multiple-agent architecture is introduced to consider the global temporal
continuity of estimated F'0s and the final FO output is determined on the
basis of the most dominant and stable F0 trajectory.

The probability model Goto constructed contains several important concepts
and, however, has some limitations:

1) For each F0 tone model, the center frequencies of all partials are modeled
by a Gaussian distribution, given a variance of about 16 Hz. This modeling

13



method takes into consideration that the harmonic partials usually deviate
from the theoretical position®.

2) Two kinds of tone models are evaluated for each FO candidate. One is
the tone model with constant peak magnitudes and the other is the tone
model with 2/3 peak magnitudes at even harmonic partials. Introducing
different, tone models is a solution to modeling the variations between the
relative levels of even and odd harmonics due to the nature of musical
instruments or tone quality controlled by musicians.

3) Since PreFFEst depends strongly on the spectral magnitudes, peaks cor-
responding to the FOs of simultaneous sounds tend to compete in the
observed spectral probability density and are transiently selected. A
multiple-agent architecture is used to find the most predominant as well
as the most stable F0. Thus, a modeling method depending too much on
the spectral magnitudes is not the best model.

4) In PreFFEst, the analyzing region is divided into two: one for estimating
the melody line and the other for estimating the bass line. Then, single
F0 estimation is evaluated, based on a mixed spectrum, in each analyzing
region. This tells us the reason that Goto’s system works better for pop
music: an usual mixing technique brings out the vocal part, thus the
melody, and the bass part the most.

5) The features of overlapped peaks are not treated separately form those of
independant peaks.

2.2 Bayesian graphical models

Proposed by Paul J.Walmsley, Simon J. Godsill and Peter J.W. Rayner, Baysian
graphical models are a flexible tool for the modeling of musical signals[7]. To
model musical signals, they employ a graphical modeling framework which repre-
sents the statistical dependencies between observed data and model parameters.
Each frame of data is modeled as the sum of a number of musical notes. The
notes in each frame are assumed conditionally independent of hyperparameters
which demonstrate their underlying variations. One of the main assumptions
at this stage is that the parameters of musical signals are highly correlated in
time, i.e., they vary slowly over several frames.

The Bayesian framework allows for incorporating a priori information into
the model and also forms a basis for probabilistic model selection in the joint
detection and estimation of musical signals. Markov Chain Monte Carlo meth-
ods are employed to produce maximum a posteriori parameter estimates which
enable the flexible choice of a priori probability distributions, which would oth-
erwise be analytically intractable.

This has been regarded as a powerful statistical approach and here are a few
discussions of its advantages and disadvantages:

1) The choices of a priori distributions give a good example of constructing
a statistical model. It is pointed out in[7] that the priors could be made

I Multiples of the fundamental freqeuncy

14



more informative if salient prior knowledge is available. However, for
the variance of fundamental frequency(hyperparameter), it is difficult to
produce a value that represents the prior belief.

Musical signals generally exhibit a rapid variation and thus frequencies
may vary rapidly. Dealing with the transient parts of musical signals is
always another challenge, especially when they are mixed with stationary
parts. Detection of onsets of notes and quantization of durations of notes
is necessary to produce a musically readable output.

The inharmonicity is not modeled in this method. The excitation of some
instruments may have some degree of aperiodicity as a result of the chaotic
oscillations causing the excitation, whereas the harmonic model assumes
periodic oscillations.

In a recent paper|[8], an improved Bayesian model has been proposed. The
inharmonicity is modeled as an detuned factor of each partial. However, robust
results are obtained restrictly for no more than three notes.

2.3 Automatic transcription of music

An automatic music transcription system developed by Anssi P. Klapuri gives
a complete framework of transcribing polyphonic music signals. Here is an
overview of this system:

— A simplified version of [9] is used to detect the onsets of notes: detecting

onsets in the logrithmic magnitude envelopes at distinct frequency bands
and then combining the results across channels.

A concept of dealing with the features of a mixture of harmonic sounds
is introduced[10]: the features of prime number harmonics of each F0 in
polyphonic music signals are the most independent features.

Controlling the emphasis of “weighted order statistic’(WOS) filters, which
estimate the probabilities of the interference among partials belonging to
different sources, on the observed features, a tradeoff between the features
of independant partials and those of dependant partials could be made.

Based on the Bounded Q transform?, the F0 candidates are estimated
by combining the offset likelihoods in each band to yield global pitch
likelihoods and the maximum global likelihood is used to determine F0.
After iteratively separating a series of harmonics of the maximum F0
and estimating the most predominant F0, multiple F0s are obtained in a
succession of iterative calculations.

To compensate for a subtracted spectrum at each iteration, a spectrum
smoothing method is proposed. The idea is derived from psychoacoustics,
since the human auditory system prefers to associate a series of partials
to a single acoustic source if they have a smooth spectrum and decreasing
amplitude as a function of frequency[1].

2Constant number of bins in each octave
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Keith D. Martin has built an automatic polyphonic music transcription sys-
tem within a blackboard framework integrating frond ends based on autocorre-
lation with musical knowledge[11]. The implementation of this system is sum-
marized as follows:

— The front end signal processing is modeled after the log-lag correlogram

of Daniel Ellis[12]. A log-lag correlogram has three axes: filter channel
frequency, lag(inverse of pitch) on a logarithmic scale, and time. Ellis
normalizes the output of each frequency/lag cell by the energy in that
filter bank channels, yielding a summary autocorrelation. The contention
to built a transcription system with a correlated-based front end is that
it requires no instrument models.

The local maxima, of each summary autocorrelation frame form a series of
subharmonics from which periodicity hypotheses could be extracted.

Onset hypotheses are derived directly from the energy envelope of the
signal.

Note hypotheses consist of one or more periodicity hypotheses combined
with one onset hypotheses.

Five knowledge souces are arranged in the sequence of processing to label
and rate the hypotheses at each stage. A “Prune Note” knowledge source
emphasizes above all western musical intervals to obtain a musically mean-
ingful output.

Martin believed that the correlogram/periodogram representation may offer an
advantage over sinusoidal representations for detecting the presence of octaves.
He also mentioned that integrating musical knowledge such as the number and
the type of instruments is necessary to build a useful transcription system.

2.4 Difficulties in estimating multiple F0s

After suveying the above methods, we summarize the difficulties in estimating
multiple F0s:

1)

The number of FO0s is difficult to estimate without integrating perceptual
and musical knowledge. Goto’s system doesn’t deal with this problem.
The transcription system based on Bayesian graphical models keeps the
notes with an energy within 30dB of the signal energy. Klapuri has mea-
sured several features such as the signal-to-noise ratio as indications to
stop the iterative estimation-separation process.

The irregularities of the spectrum should be modeled into the estima-
tion system. Except Martin’s system, the recent approaches mentioned
above have included certain concerns about inharmonicity. Although the
physical inharmonicity of musical instruments might be integrated into an
estimation system, inharmonicity caused by different playing techniques
is difficult to estimate.
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3)

Even though a series of harmonic partials corresponding to one F0 are
correctly estimated, it remains a challenge to extract reliable features of
all partials since many of them are disturbed by harmonic partials of other
F0s. Klapuri controls the importance between independant features and
dependant features with the WOS filters.

Estimating multiple F0s in frames where transient parts and stationary
parts are mixed requires another technique by observing time-frequency
properties.

While room acoustics is taken into account, the estimation task becomes
even more complicated: The harmonic structure is “blurred” and the pro-
longation of notes causes more complex mixtures in the spectrum. Also,
the room boosts certain low frequencies.

2.5 Task description

Since there are many problems with estimating multiple F0s, we simplify our
current tasks in the follwing aspects:

1)
2)
3)

The target F0s are not multiples of one another.
The number of F0s are assumed to be known in advance.

Only stationary parts of musical signals are considered.
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Chapter 3

Current algorithms for
estimating F'0 in monophonic
signals

f0 is a program developed for estimating multiple fundamental frequencies.
Although the previous version is developed to estimate single F'0 in speech
signals, many of its criteria are designed for estimating multiple F0s. In this
chapter, the architecture of £0 is explained and its single F'0 estimation criteria
will be discussed concerning multiple F'0s in polyphonic signals. The testing
results of the previous version could be found in [13].

3.1 Constructing spectral models

In estimating single fundamental frequency, £0 takes all the frequencies in a
predefined range as candidates. For each fundamental frequency candidate, a
spectral model is constructed by equally placing spectral peak models obtained
from the Fourier transform of harmonic sinusoids(Fig. 3.1).

3.2 Detecting peaks covered by the largest peak

Since the formant often covers its neighboring peaks, we remove the largest
peak(the most possible formant) to resolve the hidden peaks. There are two
techniques to estimate its frequency and the frequency slope: the quadratic in-
terpolation method and the reassignment method. The largest peak is modeled
by A-ei?ei?(") of which ¢(n) is simply the accumulation of the estimated peak
frequencies. The optimal amplitude A and phase 6 should meet the demand
that the error between the original signal and the processed signal is minimized.
Given a signal s(n) and a window w(n), we define the error R to be

Z |s(n)w(n) — w(n) - Ae??eI®™ |2 (3.1)
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Figure 3.1: F0=144 Hz ideal model

and calculate the optimal amplitude and phase by setting 3 BR =0 and gf} =0.
Then we have

Lnllw(n)ls ( )e=3%(m)]
Y allw(n)Ps*(n)eom)]
Znﬂw( )|2Re[s( e~ 39€—j¢>(n)]}

A= _

2on [w(n)]
The method which removes less the total energy is chosen to detect hidden

peaks. A comparison of the spectrum before and after formant removal, Spec
and Spece,ror respectively, is shown in Fig. 3.2.

(3.2)

3.3 Peak extraction

The peaks in the observed spectrum are extracted based on three principles:

1) In Specerror, peaks with magnitudes larger than those of their neighboring
frequency bins are chosen.

2) Each peak chosen should meet the constraint that the minimum difference
bewteen its corresponding magnitudes of Spec and Specerror is 4 dB.

3) The peaks resolved but situated no further than half the width of a model
peak from the largest peak are excluded. The largest peak is finally added
back to the group of the extracted peaks.

After extracting all the peaks, their magnitudes are assigned to the correspond-
ing magnitudes in the original spectrum.
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Figure 3.2: Spectrum before and after formant removal

3.4 Peak influential region assignment

To observe the spectral properties around each peak, it is necessary to define
an influential region for each peak. The influential region of each peak is the
combination of its influential region to the left, m, with that to the right, M. If
one peak is well separated from its neighboring peak!, we assign m = BW (or
M = BW), where BW is one half of the mainlobe size of the analysis window.
If one peak is not well separated from its left neighboring peak, we assign its
left influential region using the following rule:

if distleft; > BW

Peak; — Peak;_1 Peak;_1 .
= -BW - distleft;
m Peak; + Peak;_4 + Peak;_1 + Peak; istleft: (3.3)
otherwise '
Peak;

= - distleft;
mn Peak;_1 + Peak; istleft;

where Peak; denotes the spectral magnitude of the ith observed peak, and
distleft; denotes the distance to its left neighboring peak. And the same way
can be applied to defining its influential region to the right, M. In this way, a
larger peak will assign a larger influential region.

3.5 The distance function for estimating single
FO

The main principle of the distance function is to evaluate the designed criteria
which compare the properties of each candidate with those of the observed spec-

ITts distance to a neighboring peak is larger than the mainlobe width of the analyzing
window
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trum. After adjusting different weightings on these criteria, we sum the weighted
components, for each candidate, to obtain the final “distance”, of which the min-
imum corresponds to the most probable F'0 among others. For estimating single
F0, it is formulated as follows:

. 1 )
Distpog = —zg——(p1-Corrpo + p2 - Shiftro+ p3- HLRpo + ps - Devrg) (3.4)
j=1DPj

where p1,p2,ps and ps are weightings to adjust the importance of each of the
evaluated criterion, and Corrgg, Shiftrg, HLRpo and Devpo are the four
components which will be explained in the following paragraphs.

For each F'0 model, we divide the observed peaks into peaks explained and
peaks not explained by its harmonic model peaks according to:

S0 s = | fpeak; — FO - round(f}’;_‘a’“i)
F0,7 — —F0

(3.5)

where a controls the range of explaining one peak, and fyeqk; is the frequency
of the ith observed peak. A peak is explained if spg; < 1. This criterion for
choosing explained peaks is a key component in the evaluation of the distance
function.

Discussion I

Since the calculation of the distance components is considered for the peaks
explained by each model, the peak-explaining range should be properly defined
for multiple F0s estimation since peaks related to different F'0s are mixed in
the spectrum. A setting of @ = 0.4 in the previous version of £0 works well
for monophonic signals even though a higher F0 candidate does include more
unrelated peaks. But for polyphonic signals, a should be modified such that a
F0 model not only includes all the related peaks but also excludes the unrelated
ones as many as possible. A theoretical a should be about 0.0293( 3/2 = 1.0293)
to be able to distinguish among notes a half tone apart, and thus the theoretical
range of explanation should be around 2 -0.029 - h - F0 where h - F0 represents
the frequency of the hth model peak. Around the 18th partial, the neighboring
harmonics are to be explained(0.029 - 18 > 0.5), too. Therefore, the limit of the
range of explanation should be set as min(2-0.029 - h - F0, F0).

The first component — Corrgg

Corrpg is designed as an estimation of the “sinusoidality” by comparing the
similarity between the peaks explained and an ideal model peak. By taking
into consideration only the peaks that are explained, this criterion penalizes
especially the higher harmonics of a correct FO since they could never explain
the whole spectrum as much as the correct F'0 does.

The correlation between each peak explained and the window spectrum is
calculated within the 6dB bandwidth, §, of the analysis window. For the ith
observed peak explained by one F0 model, Peakro,i(k), its center is first lined
with the center of the window spectrum Win(k) and we assign the correlation
value

> kes Win(k) - Peakrq,i(k)

\/Zked [Win(k)[* - Zke& |Peakro,i(k)[?

CFO,i = (36)
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to all frequency bins within its influential region, A;. Notice that Win(k) and
Peakro,;(k) are of complex values. Thus, an explained peak of non-constant
phase will decrease cro,; and it attenuates cro,; of non-sinusoidal peaks. For
the influential regions without any peak explained, the correlation values are
assigned to 0. Then the first distance component is defined as:

Corrpg = Z[l — cFO(k)‘”] - |Spec(k)| (3.7

where 61 = 0.5.

Discussion IT

In estimating F'0 of a monophonic signal, the local minima of the first distance
component occur around 7 - F0 of which m and n are positive integers. That
is, the higher-harmonics and subharmonics of one F'0 tend to explain well of the
observed peaks. The complex product of Win(k) and Peakro (k) attenuates
the correlation of the peaks with smaller magnitudes, non-symmetrical shapes
or varying phases, such that the explanation of a well-formed peak has a higher
advantage than that of a badly-formed peak of the same amplitude.

The second component-Shi ftgg

The model with a smaller total displacement from its explaining peak sequence
implies better explanation.

For the ith observed peak, it is explained by one F'0 model peak if spg; < 1.
Otherwise, we set spg; to 1. Then sgg; is weighted by

1 1

n-FOQ’ fpeaki) (38)

hFO,i = mm(

By choosing the minimum between the two weightings, the shift values of the
model peak with frequency larger than n - FO(n € N) are attenuated. In single
FO estimation, n = 1 is evaluated to perform well for speech signals. This
weighting is based on the fact that higher harmonics usually deviate more from
its theoretical position due to inharmonicity and thus their shift values are less
reliable.

The second distance component is then formulated as

CéFlo,i : h(IS“QO,i -8r0,i - | Spec(k)|
2k C%lo,i 'hdF?O,i -|Spec(k)|]

where spg; = 1 for the peaks not explained. 61 and 02 are parameters to be
evaluated by the evolutionary algorithm on the database “Bagshaw“[13]. The
weighting of the spectral magnitudes is meant to emphasize srg ; values of pre-
dominant peaks. The weighting of cﬁ}o’i attenuates spq,; of less-correlated peaks

Shiftro = (3.9)
k

and the weighting of h%,i attenuates the shift values for higher frequency com-
ponents.

Discussion III

The exponential weighting factor 2 emphasizes more on FO itself and should
be treated with care. For signals with relatively small magnitude at a correct
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FO0 (as found in the sounds of several musical instruments), Shiftgo fails if 62
is set too large and the effect of magnitude weighting will be too strong. To
avoid problems that strong higher-harmonics might perform better than F0 in
Shiftro, we could either use n ~ 5(according to the discussion in section 1.1)
or choose a §2 which emphasizes the shift vaules of some of the first partials.
For polyphonic signals, summing up all explained peaks in calculating Shi ft g

might tend to include the peaks better explained by other F'0 candidates if « is
not properly set. A constant range of 2-0.4- F0 as used in the previous work|[13]
apparently includes many unrelated peaks.

The third component-H LR g

The partials of a correct F'0 usually form a smoother spectrum envelope vector
than those of its subharmonic partials do. The third distance component aims
to attenuate the competing performance of subharmonics of a correct F0 in the
preceeding two distance components.

For the hth model peak to explain certain observed peaks, arg,p is defined
as its corresponding magnitude in the observed spectrum. For the model peak
to explain none of the observed peaks, its magnitude is assigned to 0. One
spectrum envelop vector ag is constructed by the sequential ensemble of these
magnitudes. Then we flip apg around zero and combine it with the original arg
to form a new vector Apo. After high-pass filtering Ao obtains A%, we define
the third distance component as

2H
_ L Aol
= 2H

2 oh=1 [Aro,nl?
where H denotes the number of harmonic partials of one F'0 model. An example

comparing the variation of spectrum envelop between F'0 and F0/2 is shown in
Fig.3.3.

HLRpo (3.10)
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Figure 3.3: The variation of spectral amplitude vector Apg
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Discussion IV

Although this component seems to work well for monophonic signals, a more
reasonable assignement of arg,; is the magnitude of the nearest explained peak.
However, it is possible that an unrelated peak is chosen as the nearest peak.
Then, the result will be less reliable.

The fourth component-Devpg

Partials of one instrument should have similar time evolution of amplitudes. By
observing the variance of mean time for the harmonic group of each peak, we
could obtain smaller variance for those F0s with most sinusoidal-like partials
and could be used to punish the candidates corresponding to noise peaks.

The deviation of mean time is formulated as

Devpg = /Varpo = Z {[tro,i — Z (Wro,j - tro,)]? - wro,i}

i€allpeaks j€allpeaks

(3.11)
where I?F()’i denotes the mean time of the ith observed peak. Mean time is an
indication of the center of gravity in the time domaine. Its values other than
zero indicate that the corresponding F'O deviates from the center of the analysis
window. For the jth peak, wgo ; is a weighting factor defined as

_ |Peakro,;|* - (1 = sro,j)
wFO,j - 2
ZjeallpeaksnpeakFO,j' (11— SFO,J')]

(3.12)

and is used to attenuate the weightings of those peaks deviating too much from
the window center. For the peaks not explained by one F0, they are excluded
since spo,; = 1. Devpg is then normalized by half of the window size to be used
as the fourth distance component.

Discussion V
For modulated signals, Devr¢ will not always give a minimum among other
candidates.

3.6 Final judgement on F(

Combining the four distance components multiplied by different weightings
which are evaluated by the evolutionary algorithms, the F'0 with the small-
est “distance” is chosen as the final output of the single fundamental frequency
estimation.

24



Chapter 4

Algorithms proposed for
estimating multiple F'0s

The creteria in evaluating single F'0 are designed under the hypotheses of mono-
phonic cases, and they evaluate the individual properties of each F0 candidate.
To estimate multiple F0s, the distance function should be modified to observe
not only the individual properties of each F'0 candidate but also the combined
properties of F'0 candidates. To this end, especially the first two distance com-
ponents will need to be changed to evaluate the properties of the explained peaks
by a combination of FO candidates. To reduce the number of possible combi-
nations among F'0 candidates, we propose a sequence of strategies to eliminate
unwanted F'0 candidates such as the subharmonics corresponding to correct F'0s
and the higher-harmonics corresponding to correct F'0s.

4.1 First selection of F0 candidates

In general, the peaks in the spectrum are regarded as top F0 candidates. Thus,
we start with observing four time-frequency descriptors of all the peaks and use
them as measures to get rid of non sinusoidal-like peaks.

The four descriptors observed are duration, bandwidth, group delay and
instantaneous frequency. Different thresholds for the four properties are set
in advance. For each peak, if two of the four descriptor values fall within the
preset thresholds, it is chosen as a F'0 candidate. The following explanations of
the four descriptors are based on Cohen’s book[14].

Duration

Consider the signal expressed in the frequency domain S(w) = |S(w)|-e/¥“). We
denote the spectral region around the ith observed peak as I Reg;. The mean
time of the ith observed peak, (t;}, could be calculated as follows:

() = — / ¥ ()| S(w) [Pdw (4.1)
w€EIReg;

which indicates where the energy of the ith peak is concentrated in the window.
As explained in Cohen’s book, we could calculate the duration of the ith peak
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as

72— [ (ISP )+ v @PIS@P o (42)
IReg;

which describes to what extend the energy of the ith peak is concentrated around
the average.

Bandwidth

The energy density spectrum tells us which frequencies existe during the total
duration of the signal. If |S(w)|? represents the energy density in frequency, we
have the average frequency for the ith peak

(wi) = / o oIS (4.3)

and bandwidth!
B2 = / (@ = (wi)? - |S()2dw (4.4)
IReg;

which is an indication of the energy spread in frequencies for the duration of
the ith peak. We further normalize B; by dividing the width of I Reg;.

Group delay

As expressed in eq.(4.1), we could consider group delay, —¢(w)’, as an indication
of the average time for a particular frequency. In the reassignment methods
proposed in [15], group delay could be expressed in terms of the short time
Fourier transform, ST FT, of the signal:

STFTh,(t,w) - STFT}(t, w)} (4.5)
|STFTh(t, )2 '

—!(w) = —Re{
where h(t) is the analysis window and hr(t) =t - h(t).

Instantaneous frequency

Consider the signal expressed in complex form s(t) = A(t) - e¢() where A(t) is
its amplitude and ¢(t) is its phase. If |s()|? represents the energy density in
time, mean frequency can be further expressed as

() = / & (8)|s(t)Pdt (4.6)

and we obtain the instantaneous frequency w;(t) = ¢'(t).
Similar to the calculation of group delay, the instantaneous frequency could
be expressed in terms of the short time Fourier transform of the signal:

STFTy, (t,w) - STFT} (t,w)

where hp = %gt).

1Root mean square bandwidth
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4.2 Second selection

The second selection aims at eliminating the candidates corresponding to sub-
harmonics of correct F0s. The third distance component HLRpg plays an
important role at this stage.

In the previous version of £0, the amplitude vector Agq is high-pass filtered
at a prefixed frequency and this does not provide the variation information
below the prefixed frequency. Therefore, we modified HLRpy in a way that
the bandwidth of the amplitude vector Apg is evaluated instead of high-pass
filtering it at a prefixed frequency. A threshold is set to preserve those F0s of
small HLRpq values, that is, more energy concentrates in the low frequency
region. This threshold will be optimized by the evolutionary algorithm.

After selecting F'0 candidates with smooth spectral envelopes, we further
filter those candidates of which the explaining partials deviate too much from
the center of the analysis window. A threshold is set to filter the candidates
with Devgg > 0.1.

4.3 Harmonic grouping

To reduce the number of F0 candidates corresponding to higher-harmonics of
correct F0s, we categorize the candidates into different harmonic groups and in
each group only the F0 of the smallest distance value is chosen. The distance
function applied here excludes Corrpg in the previous version and is formulated
as:

, 1 .
Distpo = —g——(p2 - Shiftro + p3 - HLRFo + ps - Devryo) (4.8)
j=2Pj

Since F0s in musical signals are somewhat harmonically related, there is am-
buiguity of grouping a harmonic partial related to more than one F'0. Consider
two notes with fundamental frequencies F'0; and F0a, both explaining the other
candidate FO3 ~ n - F0; =~ m - F0,, i.e., 11::—8; ~ % where m and n are both
positive integers. Using sro,; as an indication of how well one peak is explained
by one F'0, we assign this peak at F'03 to the F'O group with the smallest srg ;
value.

However, annoying problems may occur in situations where:

1) If one lower-frequency peak(either a subharmonic of a correct F'0 or simply
a noise peak) is not filtered out in the previous stages, there is possibility
that it includes more than one correct F0 in the same group.

2) Modulated F0s with largely deviated partials produce less reliable Shi ftrq
values.

To ensure Shiftgo’s performance in the situation mentioned above, we could
reassign a F'0 candidate to its right-neighboring frequency(in the same peak in-
fluential region) with the minimum sum of Shi ftro and HLRpq. This correction
could ensure each F'0 candidate to explain the most of its corresponding partials
in the observed spectrum because inharmonicity appears as a rising tendancy
in the series of partials.
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An example of the distance components is shown in Fig.4.1. This is a mixture
of three notes played by the cello, the piano and the oboe with F0s at 328Hz,
885Hz and 1047Hz. The cross signs represent F'0 candidates and those F'0s
circled are the candidates selected by H LRp¢ and Devgg at the previous stage.

— Corr
051 T
0 Il Il
0 500 1000 1500
1
— Shift
051 T
0 Il Il
0 500 1000 1500

Figure 4.1: Distance components

4.4 The distance function for estimating multiple
FOs

Assume the number of notes is known to be N, and the number of final

FO0 candidates is M qq:. There are ( Ncadt combinations, one of which will
note

explain best the observed spectrum. To compare the combined properties of the
final candidates, we construct a new distance function as

. 1 )
Dlstgade — 87(p5 . ETTSpech‘“E +p6 . Shlftgaﬁe

Zj:s pj

+ Z [pr - HLRFo + ps - Devro))
Nnote

(4.9)

where HLRpg and Devpg are as explained before. Different from HLRpg and
Devpg which are calculated individually for each F0 candidate, Err.S’pec%”"e
and Shi ftgg"“ compare the properties of a combined model spectrum with
those of the observed spectrum.

The first component — ErrSpecgg"‘e

A combination of all correct F0s should explain the most of the spectral mag-
nitudes in a mixed spectrum. ErrSpecgg‘“e is an error rate of the spectral
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magnitude sum of a combined model spectrum, compared to that of the ob-
served spectrum. It is formulated as:

Zk |Speanote (k)l
2. |Spec(k)|

where Specgg"te is obtained by combining the spectral magnitudes of Npoqe
model spectrums?. For the spectral regions explained by more than one F0
candidates, the average values are assigned to the corresponding magnitudes.

A graphical example is shown in Fig. 4.2. This is a polyphonic signal with
F0; = 328Hz(cello), F0, = 885Hz(piano) and F03 = 1047Hz(oboe), which
orrespond to the notes E4, A5 and C5, respectively. Notice the calculation in
ErrSpecF“““ uses the linear spectral magnitude, while the graphical example
uses log magnitude to show more clearly how a model spectrum fits into the
observed spectrum.

ErrSpecF""te =1- (4.10)
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Figure 4.2: Log spectrum of the combined model

The second component — Shiftggote

Assume {F0u, FOy2, ..., FOin,.. } is one of the possible combinations of all
F0 candidates. To explain the ith observed peak by a combined sequence of

model peaks, the minimum shift value among {sro; i}j—¢1 42, . tNaore 1S assigned

to the shift value, s%"je of a combined model spectrum. The weighting factor

in eq.(3.8) is modified to be

1 1
gt = min( ) 4.11
FO,i men n- ma.’L’(FOj:t17t27___7thote) ’ fpeaki ( )

2Individual model spectrum is obtained by multiplying the observed spectral magnitude
with an ideal spectral model as shown in Fig. 3.1.
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around the ith peak. n is used to attenuate Shi ftyg°** after the nth harmonics.
Then we define the second component as

Nnote |6 Nnote
Shiftygms =" cHo,i - (hwg3°)° - swoii - |Spec())| (4.12)
FO - note :
k Zk[céFIO,i ’ (hgo,it )%2 - |Spec(k)]
where
Nuore _ min((5po,,i) j=t1 42,... tNnor ), for peaks explained (4.13)
FO,i 1, otherwise :

and §1 = 0.5.

4.5 Final judgement on multiple F0s
After the distance values of all combinations of F'0 candidates are calculated,

the combination with the smallest “distance” is chosen as the final output of the
multiple fundamental frequencies estimation.
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Chapter 5

Testing results and
discussions

The musical instrument samples used are produced by the electronic music
studios of Towa University. The samples chosen to be tested include samples
of several musical instruments: alto saxphone(with vibrato or without vibrato),
contrabass(bowed or plucked), bassoon, Bb clarinet, cello(bowed or plucked),

flute,

french horn, oboe, piano(non-anechoic) and tenor trombone. By randomly

combining these samples, we construct a database of polyphonic music samples
to test our algorithms. Some specifications in this test are:

1)

The range of notes chosen is from C2(65Hz) to B6(1980Hz). In combining
a Npote voices polyphonic samples, Ny of twelve(C, Db, D, Eb, E, F,
Gb, G, Ab, A, Bb, B) different note names are chosen first to ensure no
octaves-related notes are mixed in one sample. For each note chosen, a
musical instrument is randomly selected. Notice that instruments played
by different techniques are regarded as different instruments in this test.
Then, notes of different amplitudes(ff, mf, pp) and different octaves are
randomly chosen to be combined into a polyphonic sample.

The stationary parts of the samples are preselected to combine a poly-
phonic sample. In each combination of notes, samples are normalized to
have an equal sum of spectral magnitudes before mixing.

The FO estimation range is set from 50Hz to 2000Hz and the maximum
analyzing frequency is 5kHz. A large window size of 4500 samples and
2-8192 points FFT are used to dectect a F'0 as low as 50Hz and to obtain
a higher frequency resolution to resolve close F'0 peaks.

The number of samples used in this test is 100, including equal amount
of samples for one-voice signals(25 notes), two-voice mixing signals(50
notes), three-voice mixing signals(75 notes) and four-voice mixing sig-
nals(100 notes).

We rewrite eq.(4.8)

1 )
Distpo = —z——(p2 - Shiftro + p3 - HLRFo + p4 - Devro)
7j=2 p]
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and eq.(4.9)

. 1 )
DzsthOte — 37(105 . E'{"[‘Specgaate +P6 . Shth]F\%Ote

j=5Pj

+ Z [p7 - HLRFo + ps - Devro))
Nnote

The parameters to be evaluated by the evolutionary algorithms are pa, p4, ps, Ps, Ps,

with ps = 15 and p; = 1 fixed beforehand. The other three parameters to be
evaluated are « in eq.(3.5) which controls the range of explaining peaks for each
model peak. n in eq.(3.8) as well as in eq.(4.11), and 62 in eq.(3.9) as well as
in eq.(4.12), both emphasize the weightings on shift values of the first several
partials .

5.1 Testing results

The following tables show some of the results obtained. The first column lists
the sets of parameters for the two distance functions. The second column lists
n which determines the attenuation of the shift values after the nth partials.
The third column lists the threshold used for HLRpq¢ in the second selection
stage. The columns “ONE”, "TWO”, "THREE” and “FOUR” show the numbers
of wrongly estimated notes in the four data sets. The last column lists the error
rates.

(p2, P4, P5,06,p8) | n | thrshd3 o 62 | ONE | TWO | THREE | FOUR | error
(35,30,14,35,7) | 3 0.49 0.029 | 1.5 | 1/25 | 6/50 13/75 44/100 | 25.6%
(23,23,16,35,8) | 3 | 0.47 | 0.035 | 1.5 | 0/25 | 4/50 | 17/75 | 50/100 | 28.4%
(15,19,12,40,6) | 2 | 045 | 0027 | 1.5 | 1/25 | 8/50 | 14/75 | 51/100 | 29.6%
(19,33,10,40,6) | 1 | 0.47 | 0.035 | 25 | 0/25 | 8/50 | 17/75 | 50/100 | 30.0%
(19, 35,20,50,10) | 1 0.4 0.035 | 4.5 | 0/25 | 10/50 18/75 52/100 | 32.4%

The randomly mixed musical samples often include samples of which F0s are
multiples of one another. Lower notes tend to group higher notes because higher
harmonics of lower notes usually situate in the same peak-explaining range of
higher notes. Especially for the data set “FOUR?”, there are quite a few samples
mixed by FOs that are likely to be grouped together. After tracing the errors
using the first set of parameters and do not consider the errors due to F'0s which
are multiples of one another, we obtain an error rate 17.7%?.

Another result is shown in the next table. In this second test, several mod-
ifications are made:

1) In harmonic grouping, additional better F0 candidates are kept of which
the number is the floor integer of the number of F0s(in one group) divided
by 5. The range of explaining peaks is also limited to a maximum of
2-0.4- F0 instead of 2- 0.5 - FO.

2) The amplitude arg p, of each model peak is assigned the magnitude of the
nearest peak in each peak-explaining region.

IThe error rates for the four data sets are 4%, 8%, 17% and 27%, respectively.
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(p2,P1,D5,06,08) | n | thrshd3 Q 62 | ONE | TWO | THREE | FOUR | error
(23,21,20,25,11) | 4 | 051 | 0.029 | 1 | 1/25 | 3/50 | 14/75 | 41/100 | 23.6%
(33,21,18,20,12) | 4 | 051 | 0029 | 2 | 1/25 | 4/50 | 13/75 | 42/100 | 24.0%
(33,7,18,45,18) | 4 | 049 | 0033 |15 | 1/25 | 5/50 | 16/75 | 42/100 | 25.6%
(23,13,20,20,16) | 3 | 0.49 | 0.029 | 1.5 | 1/25 | 5/50 | 14/75 | 41/100 | 25.6%
(33,21,14,20,12) | 4 | 051 | 0031 | 2 | 1/25 | 4/50 | 16/75 | 44/100 | 26.0%

After tracing the errors using the first set of parameters and do not consider the
errors due to F'0s which are multiples of one another, we obtain an error rate
16.1%>.

5.2 Discussions

5.2.1 The parameters

1) In the previous version of £0[13], hro,; emphasizes more on FO0 itself with
n =1 and 62 = 4.5. In this test, better performances are obtained when
n > 1, that is, we emphasize the first several partials. This coincides with
our preceeding discussions since the brass instruments often have a weaker
F0 and it is reasonable to weight more on the first several partials.

2) The weighting 02 seems to work better for values smaller than 4.5 obtained
from testing speech signals in the previous work. The balance between n
and 62 could be optimized for each data set but a best value for all requires
testing for more polyphonic signals.

3) The value of « larger than the theoretical value 0.029 sometimes improve
the performance. This might be due to the fact that when there is a strong
modulation such as in bowed strings, higher partials tend to deviate more
than one half tone from the theoretical frequencies and a larger a could
ensure related peaks to be included. However, for musical signals mixed
with more than four notes, a larger a will cause more unrelated peaks to
be explained by each F'0 candidate.

5.2.2 Examination of the proposed algorithms
First selection

Since the window size is as large as 4500, the number of unwanted peaks, such
as noise peaks and sidelobe peaks, are not effectively reduced. A compromise of
reducing the size of the analysis window is not feasible because errors do occur
when two adjacent notes(one half tone apart) of different instruments are not
resolved. Before applying a larger window, we should improve the robustness
of separating sinusoidal-like peaks from non sinusoidal-like peaks.

Second selection

As explained in the previous chapter, this selection aims to filter subharmonics
of correct F'0s. However, the threshold set for HLRpg is case sensitive and

2The error rates for the four data set are 4%, 6%, 17% and 23%, respectively.
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causes correct F'0s to be filtered in a few tests. For reed instruments such as
clarinets, the even harmonics are weaker than odd harmonics and thus there are
more variations in the spectral amplitude vector A ¢ which is not fair compared
with other instruments.

Harmonic grouping

Proper harmonic grouping strongly depends on the performance of the first two
selections. A lower-frequency noise peak will group correct F0s together and we
will always lose some correct F'0s because only the best candidate in one group
is kept to the next stage.

Since we are dealing with F0s that are not multiples of one another, this
strategy works to reduce the number of F'0 candidates a lot. However, in music,
F0s are mostly multiples of one another and it will be difficult to examine how
many correct F'0s are grouped together.

The distance function

ErrSpecgg“‘e fails in cases where a predominant partial exists and competes
with the correct F0. The spectral model is constructed from equally-spaced
hamonics which often deviate from the observed partials. Once a correct F0
model explains a small part of that predominant partial, it fails to compete
with some higher-harmonic F0 candidate which explains more energy of the
predominant partial.

As long as correct F0s are kept to compete at the last stage, the distance
function performs well in current consideration. Notice that all samples are
normalized before being mixed such that ErrSpecgg‘”e and Shi ft%“’” work
well. For real musical signals in which notes of different levels are mixed, it is
difficult to extract a relatively weak F'0 since spectral magnitudes are introduced
in the two combined properties.
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Chapter 6

Conclusions and future work

Estimating multiple fundamental frequencies in musical signals has always been
an important research topic in music technology. Considerations for single F0
estimation no longer meet the demand of estimating multiple F'0s. A “black-
board” system is necessary to include signal processing knowledge as well as
musical knowledge such that we could manage to model the estimation system.
In £0, many signal processing techniques are applied to detecting hidden peaks,
to estimating correct peak frequencies, to constructing ideal models, to observ-
ing time-frequency properties, etc. On the other hand, musical knowlege is not
yet integrated while it is the key to accomplishing this complicated task. More
information should be taken into account:

— Spectrum irregularities: Spectrum irregularities include inharmonicity,
relative strength between even harmonics and odd harmonics, formant
characteristics and modulated partials.

— Omnsets of notes: The onsets of notes play an important role in identifying
groups of partials and estimating the number of notes.

Integrating signal processing techniques with musical knowledge, it would
be possible to classify peaks into independent partials, overlapped partials and
noise peaks. Independent partials provide cues to overlapped partials. Over-
lapped partials should be resolved to obtain more partials. A possible modi-
fication of harmonic group assignment is to examine the partials in two ways:
from low to high and from high to low. Onset information will be essential
to estimate F'0s hidden in overlapped partials. That is, we should observe the
spectral evolution instead of concentrating on the current frame only.

In polyphonic musical signals, notes are usually of different amplitudes.
Weighting the linear spectrum in the distance components attenuates relatively
weak FOs while emphasizes relatively strong partials belonging to other F0s.
Weighting a log-scaled spectral magnitudes might be a way to attenuate the
degree of difference in the linear spectrum.

There are many parameters in the distance functions to be tested by the
evolutionary algorithm. However, a more logical way to automatically adjust
the parameters could save lots of testing work and also ensure an optimization
for all cases. A statisical modeling method will be a good choice because the

35



parameters introduced in the model could be optimized based on the EM algo-
rithm, for example. The difficulty lies in applying reasonable prior probability
distributions to the parameters considered.

Although many problems with estimating F'0s of real world polyphonic sig-
nals are not yet solved, we do have the following achievements:

1) HLRpq is an effective strategy to punish subharmonics of correct F0s.

2) Reducing a great amount of FQ candidates by harmonic grouping eases
the calculation work in the final stage.

3) The distance function performs 84% correct estimation on the database
mixed from a variety of musical instrument samples.
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Appendix A

EM algorithm

A.1 Bayesian statistics

Bayesian statistical methods provide a complete paradigm for both statistical
inference and decision making under uncertainty. The Bayesian paradigm is
based on an interpretation of probability as a conditional measure of uncertainty.
Statistical inference about a quantity of interest is described as the modification
of the uncertainty about its value in the light of evidence, and Bayes’ theorem
specifies how this modification should be made.

The Bayes’ theorem is written as:

p(X16,7)p(6|Z)
polx, 1) = B0 (A1)
where 7 represents all prior information and assumptions about the model,
p(X|Z) is the evidence, which may generally be regarded as a nomalising factor,
p(8|Z) is the prior probability density of the parameters before the data are ob-
served, and p(0|X,7) is the posterior probability density. Bayes’ theorem can,
therefore, be summarized in the form [16] :

likelihood x prior

posterior = (A.2)

normalization factor

In Bayesian parameter estimation, both the prior and posterior distributions
represent, not any measurable property of the parameter, but only our own
state of knowledge about it. The width of the distribution indicates the range
of values that are consistent with our prior information and data, therefore,
which honestly compels us to admit as possible values.

A.2 Prior probability

A central element of any statistical analysis is the specification of a probability
model which is assumed to describe the mechanism generating the observed data
as a fuction of parameters, sometimes named the state of nature, about whose
value only limited information is available. Thus, the main problem encoun-
tered is to describe all uncertainties by means of probability distributions. In
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particular, unknown parameters in probability models must have a joint proba-
bility distribution which describes the availible information about their values.
This is often regarded as a characteristic element of the Bayesian approach.
Parameters are treated as random variables, which is not a description of their
variability but a description of the uncertainty about their values.

An important particular case arises when either no relevant prior informa-
tion is readily available, or that information is subjective and an objective anal-
ysis is desired. This is addressed by reference analysis which uses information-
theoretical concepts to derive appropriate reference posterior distributions, de-
fined to encapsulate inferential conclusions on the quantities of interest solely
based on the supposed model and the observed data. It is assumed that proba-
bility distributions may be described through their density functions, interper-
ting the propability of an event as a conditional measure of uncertainty, on a
[0,1] scale, about the occurence of the event in some specific conditions. The
limiting extreme values 0 and 1, which are typically inaccessible in applications,
respectively describe the impossibility and the certainty of the ocurrence of the
event.

A.3 General EM algorithm

The Expectation-Maximization algorithm given by Dempster et al.(1977) has
gained considerable popularity for soving MAP estimation problems. It is an
iterative optimization technique specifically designed for probabilistic models.
EM makes a local approximation that is a lower bound to the objective
function. Starting from a current guess of a set of parameters, we choose the
new guess to maximize the lower bound that will be an improvement over the
previous guess, unless the gradient at the current guess was zero. Therefore
the idea is to alternate between computing a lower bound(the “E-step”) and
maximizing this bound(the “M-step”), until a point of zero gradient is reached.

A.3.1 EM as lower bound maximization

Maximum A-Posteriori(MAP) estimation concerns the maximization of the func-
tion

f(0) = p(X,0) (A.3)

where X is the matrix of observed data. If f(@) is a simple function, then its
maximum can often be found analytically, e.g., by equating its gradient to zero.
Equivalently, we can maximize the logorithm of the joint distribution which is
proportional to the posterior [17]:

0* = argmax log p(X, 6) = argmax logZp(X, h,8) (A4)
0 0 m

The idea behind EM is to start with a guess 8¢ for the parameters 8, compute
an easily computed lower bound B(6;6%) to the function log p(6, X), and then
maximize the bound. After iterative computation, this procedure will converge
to a local maximizer 8* of the objective function, provided that the bound
improves at each iteration.
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Maximizing the above equation is difficult to deal with since it involves the
logarithm of a big sum. Thus, we construct a tractable lower bound B(6;6?)
that contains a sum of logarithms instead.

To derive the bound, we write log p(X,0) as [1§]

logp(X,8) =log Zp(X,h 9) long X h 0) (A.5)
h

where ff(h) is an arbitrary probability distribution. The bound used by EM is
the following form of Jensen’s inequality:

Zg(j)aj > H 9(5) (A.6)
provided ] J
Y aj=1,0a;>0, g(j) >0 (A7)
Thus, we define the boundj
B2 Y s log 2 <1 WL PEED @

A.3.2 Finding an optimal bound

One further step is to find the best bound that touches the objective function
logp(X,0) at the current guess #¢. Intuitively, finding the best bound at each
iteration will guarantee an improved estimate #**! when we locally maximize
the bound with respect to 6. Since B(6;6?) is a lower bound, the optimal bound
at ' can be found by maximizing

oot p(X,h, 6%
B(6';6") Zf T (A.9)

with respect to the distribution ff(h). Introducing a Lagrange multiplier X to
enforce the constraint ), ff(h) = 1, the objective becomes

H=M1-) fi(h) +th )log p(X, b, 6%) Zf )log ft(h) (A.10)
h

taking the derivative
o0 _
oft(h)
and solving f*(h) we obtain
p(X, h, %) _ p(X,h, %) _
Ynp(X,h,0Y)  p(X, 6

By examining the value of the resulting optimal bound at 6%, we see that it
indeed touches the objective function:

—X +logp(X,h,6") —log fi(h) — 1 (A.11)

fin) £ p(h|X,6") (A.12)

gt
B(6%:6") = Zp h|X,6%)1 ((h|X 9t)) log p(X, 6%) (A.13)
applying p(X, h,6") = p(X, ' )p(h|X,6")
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A.3.3 Maximizing the bound

In order to maximize B(6;6") with respect to #, we can write

B(6;6") £ Ep[logp(X,h,0)] +H
= & [log p(X, h|0)] + log p(6) + H (A.14)
=Q'6) +1ogp(f) + H

where &[] denotes the expectation with respect to f(h) £ p(h|X,6%), Q*(6) is
the expected complete log-likelihood defined as Q*(6) £ &;«[log p(X,h|6)], and
p(6) is the prior on the parameters and H = —E&:[log f*(h)]. Since H does not
depend on 6, it is equivalent to maximizing the bound with respect to 6 using
the first two items only:

6't! = argmax B(#;6") = argmax [Q*(6) + logp()] (A.15)
0 9

At each iteration, the EM algorithm first finds an optimal lower bound
B(0;6") at the current guess 6%, and then maximizes this bound to obtain an
improved estimate 8¢71. Because the bound is expressed as an expectation, the
first step is called the “expectation-step” or E-step, whereas in the M-step we
are optimizing Q!(f) with respect to the free variable @ to obtain the new esti-
mate §'T1. It is proven that the EM algorithm converges to a local maximum
of log p(X, 8), and thus equivalently maximizes the log-posterior log p(6|X). In
practice, the E-steps and M-steps alternate repeatly until the difference changes
by an arbitrarily small amount in the case of convergence of log-likelihood val-
ues.
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Appendix B

PreF Est: Predominant-F'0
estimation

B.1 Weighted-mixture of tone models

Goto formulates the tone model as [5]

H;
p(z|F,m, D (F,m)) = p(=, h|Fym, ) (F,m))
h=1
o (B.1)
=Y D (h|F,m)G(z; F + 12001log, h, W;)
h=1

where z is a conversion from frequency F to cents, m (1 < m < M;) is the
number of tone models, i denotes the melody line(i=m) or bass line(i=b), H;
is the number of harmonics considered, W? is the variance of the Gaussian
distribution G(-) and p® (F,m) = {c (h|F,m)|h = 1,...,H;} with ¢® (h|F,m)
determines the relative amplitude of the h-th harmonic component satisfying
S @ (h|F,m) = 1.

Assume that the observed probability density function from the spectrum
was generated from a weighted mixture of all possible tone models:

Fh; M;
palt) = [ 3 wOEmp(elFom y O (Fm)E (B2
i m=1

Goto parameterizes the model with the set of parameters () = {w(®) 4} with
w® = {w®(F,m)|Fl; < F <Fh;, m=1,...,M;} (B.3)

p® = {u®D(F,m)[Fl; < F <Fhy, m=1,...,M;} (B.4)

where F1; and Fh; denotes the lower and upper limits of the possible F0 range
and w® (F,m) is the weight of a tone model and satisfies

Fh; M;
/ > wh(F,m)dF =1 (B.5)
F

L =1
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Then the weight w® (F,m) can be interpreted as the probability density func-
tion of FO as

(t) Z w (F,m) (B.6)

B.2 Introducing a prior distribution

A prior distribution py;(#®)) of the parameter §) is chosen by Goto as follows:

20i(09) = poi(w®)poi(u?) (B.7)
where
poi(w®) = ie—BSZDw(wé?;w(”)
“’ B.8)
1 _ Py (t) ® (Fom)n® (Fom (
pO’L(lJ’(t)) = —e¢ fFl Zm 1 ﬁ“z D (N (Fym);p (F,m))dF
w
with
D (t) (t) (t) F 1 (t) (F5 m) dF
N le"’ ™18 0 (7, m)
m= (t)(h|F | (B.9)
(t) (t) (t) Coz , N

defined as Kullback-Leibler’s information and Z,, Z, are the normalization
factors. We could combine the above two sets of equations to get

(i')(F’m)

(t) (Fhy M; ()
.(,w(t)) — 1 _'sz Jr1;* Zomia wo; (Fym)log (t)(F’,m)dF
w
B.10
1 W pFhi =M s<Hi )(h|Fm)log—E’MdF (B-10)
pOi(/J/(t)) — — ¢ PuildEy m=1 2.h=1 €0i O (h|F,m)

I

For the prior distribution of the shape of tone models, Goto uses
¢b (h|F,m) = Qi.mgm,nG (1 1, Us) (B-11)

where «;,,, is a normalization factor, U; is the variance in cents and

2/3, m—=2and hi
- { /3, m=2and h is even (B.12)

1, otherwise

B.3 MAP estimation using EM algorithm

The problem to be solved is to estimate the model parameter #®*) on the basis of
the prior distribution py;(6‘Y)) when we observe p‘(lf) (z), the probability density
function of the band-pass filtered frequency components BPF;(z), and it is
defined as [6]

BPF;(x)¥}) ()

[ BPF(z)¥ (z)dz

Py (@) = (B.13)
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where lIJg) is the power distribution function calculated with unit cents.
In E-step, the bound is formulated as

Quiar(0162) = Q(69(6%),) + log poi(61) (B.14)
and
t
QOM 6

- / (t)( )gFm h[lng(.Z‘,F,m,hw(t))]d{E

Fh; M z
/ / (t) v (2)p(F,m, hlz, 0521) log p(zx, F,m, h|0(t))dFd:c
Fl;

m= 1 h 1
Fh; Ml H; (t)
/ / O (2)p(F, m, hla, 610))
Fli =1 h 1
-log {w(t) (F, m)p(m,h|F,m,u(t) (F, m))}dFda:
Fh; M H
= [ [T S @ m e o)
Fli =1 h 1
-log {w® (F,m)c® (h|F,m)G(z; F + 1200log, h, W;) }dFdz
(B.15)
where o o
p(F, m, h|1‘, 0((;21) — wold(FJ m)p(m, h|F7 m, ,U/old)(FJ m) (B16)

p(z(6%))

Then, the iterative calculation is performed to maximize Quap (0(’5) |0$21) with
respect to 8%) = {w)(F,m), u® (F,m)}.
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Appendix C

Spectrum characteristics of
musical instruments

Here are some notes, taken from [19] and [20], about the spectral behaviors of
some musical instruments. The spectral characteristics of musical instruments
should be taken into consideration to improve the performance of a multiple
F0s estimation system.

C.1 Piano

It is a well-known fact that a piano sounds better with stretched octaves and
there are physical reasons and psychological reasons for preferring stretched
octaves.

The physical reasons are related to the inharmonicity of the string partials:

/14 h2B

where B is the inharmonicity coefficient. In order to minimize beats between
each pair of octaves, the octaves should be stretched.

The psychoacoustical reasons are found through the results of several ex-
periments that listeners judge either sequential or simultaneous octaves as true
octaves when the interval is about 0.6% greater than a 2:1 frequency ratio.

C.2 Bowed string instruments

Real strings are stiff and the Helmhotz corner is not perfectly sharp. Corner
rounding leads to a slight flattening of pitch as the bow force increases.

A broad resonance region that enhances certain harmonics lying in a fixed
frequency range is called a formant. The resonance curve shapes the spectrum
of vibrating strings and thus provides cues to identify complex tones of musical
instrument. The three resonance modes are: air modes, top modes and body
modes. The air resonance of a double bass, for example, is around 60Hz and its
body resonance is around 100Hz.
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C.3 Woodwind reed instruments

An idealized cylindrical pipe with close-open ends sounds an octave below the
pitch of a similar pipe open at both ends. In other words, the overtones of
a close-open-ends pipe are odd harmonics of its fundamental frequency. The
clarinet of which the mouthpiece with the reed behaves as a close end has a
resonance curve boosting at odd harmonics, while dipping at even harmonics.
However, an oboe has a full harmonic spectrum with a relative weak F0 and a
slope of -12dB/Oct. above the cutoff frequency.

C.4 Brass instruments

The steady-state spectral envelope of a brass instrument is characterized by a
cuttoff frequency below which spectral magnitudes are approximately equal or
they increase gradually with frequency, and above which the amplitude decreases
sharply. The rate of rise below cutoff is typically 2 to 4dB/Oct., and the rate
of fall above cutoff is typically -15 to -25dB/Oct..

As the instrument is played more loudly, a greater fraction of the radiated
power is contained in the partials near and above cutoff. The slope below cutoff
increases and the slope above cutoff decreases as the intensity level is increased.

Ancell has measured the silimlar acoustic behavior of several mutes on brass
instruments. Most of the mutes show a Helmholtz resonance associated with
their internal cavity at a frequency in the range 200-300Hz. This resonance
causes a broad dip in the radiated spectrum of the instrument in the region of
the first and second harmonics over most of its compass and makes the sound
thin and reedy. The resonances and antiresonances of all kinds of mutes lie
above about 1000Hz and impart particular tonal qualities to the sound.

C.5 Mallet percussion instruments

A bar of uniform thickness with free ends vibrates in a series of normal modes
whose frequncies are approximately in the ratios: (3.011)% : 52 : 72 : 92 : 112 :
---. Removing materials from a bar affects certain modal frequencies and thus
could be applied to tuning the individual partials. It is customary to tune one
marimba, xylophone or vibrphone, such that the first two partials are 4 times
and about 10 times, respectively, the magnitude of the fundamental frequency.
However, adding resonating tubes with open-close ends, for example, might
boost the odd-numbered harmonics and regularize the spectrum.
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Appendix D

Important techniques used in
f0

D.1 Optimal phase differences introduced in the
superposition of model harmonics

In order to maintain a clear spectral representation of model peaks, we minimize
the sum of the spectral magnitudes by introducing an optimal phase shift to
each harmonic partial. Thus, for the hth harmonic partial, it is constructed by:

Fe

Partialpop(t) = a - cos(2m On +(h=1)-®po) (D.1)

where a represents a constant amplitude and ® pg represents the optimal phase
shift and is calculated as

®po = angle{FT[w(n) . f2mFO0/Fe-(n=1)] FT[w(n)]} (D.2)
where w(n) is the window function, F'T{-} denotes the Fourier transform. This

result is obtained by minimizing the sum of the absolute squared spectrum for
two partials with offset F0.

D.2 Eliminating phase slopes in model peaks

Considering a harmonic signal s(n) = e/“"** truncated by a rectangluar win-
dow rect(n) with length N, the discrete Fourier transform of s(n) - rect(n) is
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Figure D.1: Quadratic interpolation for the peak position

calculated as

N-1
Z a(n)ejwn—i-p X 627rkn/N
n=0
N-1 N-1 ;
_ pjw—27wk/N)N
= i Y eiloamk/mn - 3 L2 € Lot/
1 _ ei(w—2mk/N)
n=0 n=0

, el 2mk/NN/2gin[(w — 2nk /N)N/2]
ei(w=2mk/N)/2  gin[(w — 27k /N) /2]

— oin . glo—2mk/N)(N-1)/2 sin[(w — 27k /N)N/2]
sinf(w —27k/N)/2]

(D.3)

Thus, we could eliminate the phase variation in model peaks by multiplying the

truncated signal with e/

(27k/N)(N—1)/2_

D.3 Local quadratic approximation for correct-

ing

the peak frequency

A real maximum peak of one formant might present between two frequency bins.
Thus, we apply a second order polynomial approximation function to obtain a
better estimate of the peak frequency(Fig. 4).
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D.4 Estimating peak frequencies and frequency
slopes using reassignment operators

In [15], F. Auger and P. Flandrin proposed a reassignment method for the time-
frequency representation based on finding the center of gravity of the energy
distribution around the time-frequency position (¢, w). Given a STFT using the
window h(t), the reassignment operators could be expressed as:

STFT,(t,w) - STFT} (t,w)

tt,w) =t —Ref \STETH(t, )2

} (D.4)

STFTy, (t,w) - STFT} (¢, w)

Gltw) = w—TIm{ |STFTy(t, )2

} (D-5)

where hy(t) =t - h(t) and hp = %it). The frequency slope is thus obtained by

ow(t,w)
W' (t,w) = ai‘sz (D.6)
ot
where
di(t,w) . {STFThDT(t, w) - STFT}(t, w)}
ot |STFT(t,w)|?
— Ref STFThy(t,w) - STFTy(t,w) STFTh,(t,w) -STFT,’:(t,w)}
|STFT(t,w)|? |[STFT(t,w)|?
aW(t,UJ) _ Im{ STFThDD (t7 w) ) STFTh (tJUJ)}
ot |STFT,(t,w)|?
STFTy,(t,w) - STFTy(t,w)
-7
m{ |STFTh(t, ) }

(D.7)
with hpr(t) = -8’5—?) and hpp(t) = ai,’;gt). Furthermore, we use this frequency
slope to update the peak frequency estimation[21]:

Ot,w) = w— [t — H(t,w)] - w'(t,w) (D.8)
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Appendix E

Evolutionary algorithms

Evolutionary algorithms are stochastic search methods that mimic the metaphor
of natural biological evolution. Evolutionary algorithms operate on a population
of potential solutions applying the principle of survival of the fittest to produce
better and better approximations to a solution. In each generation, a new set
of approximations is created by the process of selecting individuals according to
their level of fitness in the problem domain and breeding them together using
operators borrowed from natural genetics. This process leads to the evolution of
populations of individuals that are better suited to their environment than the
individuals that they were created from, just as in natural adaptation. Evolu-
tionary algorithms work on populations of individuals instead of single solutions.
In this way the search is performed in a parallel manner.

At the beginning of the computation a number of individuals (the popula-
tion) are randomly initialized. The objective function is then evaluated for these
individuals and the first generation is produced. If the optimization criteria are
not met the creation of a new generation starts. Individuals are selected accord-
ing to their fitness for the production of offspring. Parents are recombined to
produce offspring. All offspring will be mutated with a certain probability and
then the fitness of the offspring is computed. The offspring are inserted into
the population replacing the parents, producing a new generation. This cycle is
performed until the optimal criteria are reached.

Such a single population evolutionary algorithm is powerful and performs
well on a broad class of problems. However, better results can be obtained
by introducing many populations, called subpopulations. Every subpopulation
evolves over a few generations isolated (like the single population evolutionary
algorithm) before one or more individuals are exchanged between the subpopu-
lations. The multipopulation evolutionary algorithm models the evolution of a
species in a way more similar to nature than the single population evolutionary
algorithm.

Selection

Selection determines which individuals are chosen for recombination and how
many offspring each selected individual produces. The actual selection operates
after the first generation. Parents are selected to fit the best of the criteria
predefined.
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Recombination

Recombination produces new individuals in combining the information con-
tained in the parents. Discrete recombination performs an exchange of variable
values between the individuals and is applied in our test.

Mutation

After recombination every offspring undergoes mutation. Offspring variables are
mutated by the addition of small perturbations(size of the mutation step), with
low probability. In our test, the perturbations based on Gaussian distribution
and uniform distribution are assigned with different probabilities.

Reinsertion

If fewer offspring are produced than the size of the original population the
offspring have to be reinserted into the old population. Similarly, if not all
offspring are to be used in each generation or if more offspring are generated than
needed, then a reinsertion scheme must be used to determine which individuals
should be inserted into the new population. Usually, the used selection method
determines what is applied.
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