
Hybrid representation for audio effects

David Cournapeau

September 2003



Abstract

Frameworks to decompose signals into different parts for analysis/trans-
formation/synthesis or coding are quite old in the audio DSP field. The idea
behind all these frameworks is that some ”basis sets” (here, bases should
not necessarilly be taken in the strict mathematical sense) are well suited
for some kind of signals, whereas other bases are better for other types of
signal. The phase vocoder, introduced by Portnoff in the late seventies,
was the first real tool for music DSP, and implicitly assumes that the signal
is a sum of sinusoids in each frames. This assumption was the basis for
the work of X. Serra in his famous thesis about sine + noise modeling (see
[Ser97] for an introduction). This model, also known under the acronym
SMS (for Spectral Modeling Synthesis), was the first parametric model for
large classes of audio signals 1

It is well known that additive synthesis with sinusoidal basis vectors can
approximate the signal as well as we want; the drawback is well known,
too: for some kinds of signals, like ”Noise” or ”transients”, we need a lot
of basis vectors to approximate them, and it is quite computive intensive.
That’s why more recent works, based on Xerra’s ideas, try to decompose
the signal in at least 3 differents parts, ie the ”tonal” part, the ”transients”
part, and the residual (also called noise, because it is generally coded as a
stochastic process). These kinds of models has been successfully used for
analysis/synthesis for years in academic areas and in commercial products
2.

Laurent Daudet developed [Dau00]a parametric model for audio signals,
essentially aiming at compression. This model splits the audio signal into
three parts, tonal / transients / residual. But instead of using a sinusoidal
model, it uses thresholding on the MDCT to extract the tonal part; in a
very similar way, transients are extracted by thresholding on wavelet coef-
ficients of the non-tonal part. Hard thresholding is basically a non-linear
approximation3, and is famous since its successful use in image compression
and signal denoising[Mal98]. The idea of my internship is to adapt this
model to analysis/synthesis, and to use it in some high-level transforms like
time-scaling, and more complex schemes like tempo correction (ie changing
the time location of some notes to adapt it to a fixed time-grid).

At first, we will present the basic framework: the principles, the results
on some test samples and the drawbacks for analysis/synthesis purposes,

1the sinusoidal model was also studied a few years before for speech coding by McAuley
and Quatieri [MAR86]

2See for example the realizer from PPG, figure 1 or more recently the neuron synthetiser
project, figure 2

3See Annexe 1



Figure 1: The realizer, the first virtual synthetiser?

Figure 2: The Neuron synthetiser; may use some resynthesis method

mainly on the tonal extraction. The second chapter will present the work I
did to try to avoid some of the main problems, like window switching, wavelet
filtering and MDCT regularisation. The third chapter is a presentation of
the further ideas one can develop to go around the tonal extraction problems,
mainly about a ”complex MDCT” which gives phase informations, and so
phase can be used for steady state compenent exctraction. Finally, the
last chapter will give some details about some implementations I did in
matlab/C++ for my work.
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L’idée de représentations paramétriques pour de larges classes de signaux
audio n’est pas nouvelle. Toutes les représentations existantes à ce jour re-
posent sur l’hypothèse que certains types de signaux sont bien représentés
dans certaines classes de vecteurs alors que d’autres types de classes sont
plus adaptées à d’autres types de signaux ( ces classes de signaux ne sont
pas forcément des bases dans leur acception mathématique du terme, mais
sont plus généralement un ensemble de vecteurs ni forcément générateur ni
forcément linéairement indépendants, et pouvant à la limite dépendre du
signal). Le vocoder de phase, outil introduit par Portnoff à la fin des années
soixante-dix, fut le premier véritable outil permettant l’analyse synthèse, et
repose implicitement sur l’idée que le signal est une somme de sinuoides dans
chaque fenêtre (c’est par exemple l’hypothèse sur laquelle repose le time-
scaling par vocoder de phase). Cette même hypothèse fut le point de départ
du travail de X. Serra sur la modélisationn des signaux audiophoniques par
ue somme de sinuoides plus bruit (voir par exemple [Ser97] pour une intro-
duction). Ce modèle, également connu sous l’acronyme SMS, pour Spectral
Modeling Synthesis, fut le premier modèle explicitement paramétrique d’une
large classe de signaux audiophoniques 4.

On sait que la synthèse par somme de sinusoides peut approcher un
signal donné avec une précision aussi bonne que voulue, sous reserve que
l’on utilise assez de sinusoides; mais cette méthode a un inconvénient de
taille, à savoir le nombre de paramètres mis en jeu: pour certains types
de signaux comme le ”bruit” ou les transitoires, le nombre de sinusoides
nécessaires à une bonne approximation du signal original est gigantesque.
C’est pourquoi des travaux plus récents que ceux de X. Serra tentent de
décomposer le signal en au moins 3 parties: la partie tonale, les transitoires
et le résidu (souvent appelé bruit, car souvent considéré comme la réalisation
d’un signal stochastique). Ce type de modèles est déjà utilisé aussi bien
dans les milieux académiques que dans des outils du commerce: voir par
exemple certains systèmes de la firme PPG dans les années 80 (figure 1) ou
vraisemblablement celui de la firme Hartmann-Neuron (figure 2), bien que
le fonctionnement de ce dernier demeure mystérieux.

Laurent Daudet a développé dans sa thèse [Dau00] un système de décom-
position hybride, dans une optique de codage du signal musical. Ce système
décompose le signal en trois parties, la partie tonale, la partie transitoire
et le résidu. Au lieu d’utiliser un modèle sinusöıdal ou un de ses dérivés,
ce modèle extrait la partie tonale par un seuillage dur sur les coefficients
de la transformée en cosinus discrete modifiée, ou Modified Discrete Cosine
Transform; la partie transitoire est extraite de manière similaire, par seuil-
lage dur des coefficients en ondelette de la partie non tonale (le résidu est
le résultat de la soustraction de la partie tonale sur le signal original). Le

4le modèle sinusoidal fut également étudié quelques années auparavant par Mc Auley
et Quatieri [MAR86] pour le codage de la parole
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seuillage dur est en fait une approximation non-linéaire du signal 5, et a
été utilisé avec succés dans les domaines de la compression d’images ou le
débruitage[Mal98]. Le but de mon stage est d’adapter cette représentation à
l’analyse/synthèse, et de l’utiliser dans des transformations de haut niveau,
telles que le time-scaling ou la correction de tempo (ie changer la localistion
de certaines notes sur une grille de tempo fixée; on pourrait appeler ce type
de transformations quantisation audio).

Dans un premier temps, je vais présenter les bases de la représenta-
tion hybride utilisée: les principes, les résultats sur quelques échantillons
sonores que j’ai utilisés comme références, et les principaux problèmes de la
représentation pour l’analyse synthèse. Le deuxième chapitre explique les
différentes techniques que j’ai étudiées pour résoudre certains des problèmes
du premier chapitre, à savoir un changement de taille de fenêtre adaptatif,
le filtrage dans le domaine des ondelettes, et la régularisation de la MDCT.
Le chapitre 3 présentera le début du travail effectué pour résoudre certains
problèmes liés à l’extraction de la partie tonale, reposant sur une MDCT
complexe, permettant par là d’utiliser la phase.

5voire l’annexe 1
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Chapter 1

Hybrid representation: the
basic framework

1.1 Why a parametric model?

In his thesis, L. Daudet developed a hybrid representation for audio signals
: his aim was mainly to use this representation for compression. Before pre-
senting the model in-depth, it is useful to recall why modeling is important
in audio DSP field.

Today, most audio storing, broadcasting and diffusion is done in a digital
way. The first, and the easier way to code an audio signal is to use a similar
way to analog techniques, ie coding the amplitude in time: it is the PCM
(Pulse Code Modulation) technique. It is used in the oldest and still the
most successful digital support, the audio CD. As digital storage imposes
to code the amplitude and time with a finite set of values, one uses discrete
values. So it is important to be aware of the artefacts caused by time and
amplitude discretisation.

1.1.1 PCM coding

Theoretically, the Shannon-Whitaker theorem shows that if the signal is
band-limited, sinc interpolation can exactly reconstruct the signal from the
regularly spaced time samples. But sinc interpolation demands a knowledge
of all the samples of the signal to reconstruct each value, so more simple
schemes are used for the digital to analog conversion. The sampling rate of
the CD is fixed to 44.1 khz, which means that theoretically, all frequencies
below 22.05 khz can be represented (generally, the human hearing cannot
perceive any frequency higher than 20 khz). But in the real word, the signal
must be filtered before its digitisation, so there is an anti-aliasing filter
which tries to keep all frequencies unchanged below 22.05 khz, and remove
all frequencies higher than 22.025 khz. Practically, it is impossible to have
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such a filter, so one try to make filters which have a very steep slope; this
steep slope causes big problems for transients: because the phase response
of this kind of filter is highly non-linear around the cutoff frequency, the
signal’s time representation is heavily changed for high frequencies1. As
most ”transients-like” signals have a high frequency content, these non-
linearities in the phase response tend to ”blurr” the transients. That’s the
main argument to have 96 khz, or even higher sampling-rate convertors:
that way, it is much easier to design the brickwall filter, with a more linear
phase response in the audible range.

For the CD, the amplitude is coded with 16 bits length words, with a
uniform and scalar quantizer. For this kind of coding, the word-length is
linked to the round-off error. Basically, once the maximum possible value
xmax is fixed, the smallest difference between two consecutive coded values
∆ is around 2:

∆ =
2 ∗ xmax

2R
(1.1)

where R is the number of bits per word. So the range of amplitudes
which map into a single code depends on R. The bigger R is, the smallest
this range is: this kind of error is called round-off error. If we assume that
the amplitude of the input signal follows an uniform distribution, the round-
off error will be likely in the range [−∆/2,∆/2] (ie the probabilty density
of the error signal ε is uniform in the range [−∆/2,∆/2]), and so the error
power of the quantizer can be written the following way:

E[ε2] =
∫ ∞
−∞

ε2p(q)dq

≈
∫ ∆/2

−∆/2

ε2

∆
dq

=
∆2

12
(1.2)

Thanks to 1.1, we can write that:

E[ε2] ≈ xmax
2

3 ∗ 22R
(1.3)

And for a signal with an input power of Pin:
1here, frequency must be understood in a DSP point of view, and not on a perceptive

or even physical one
2in fact, the exact value depends of the type of uniform quantizer: midread, where a

zero input is coded to zero, and midrise, with no zero output. See for example [MB03] for
an introduction to scalar quantizer
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SNR = 10 ∗ log10(
Pin
ε2

)

= 10 ∗ log10(
Pin
x2
max

) + 6.021R+ 4.771 (1.4)

This last equation shows the relation between the relative power of the
signal and the SNR. With 16 bits, for a sinusoid with a amplitude equal to
xmax, we obtain a SNR of 97 dB. This value may seem quite big, but in fact,
most professionals who are working with numeric-based tools had a lot of
problems when mixing different signals (because most signals are quite below
the maximum value, and there is a lack of ”headroom”; the cinema industry
was the first one to use 18, 20 and 24 bits resolution). That’s why most
recent formats (like the DVD audio) can work with a 24 bits resolution
(that is the internal of most semi-pro and pro audio convertors, and the
internal resolution of pro tools, which is one of the most used direct-to-disk
tool in pro audio).

So, audio signals with such a coding scheme will have a bitrate of 24 *
96000 * n, where n is the number of channels. For a stereo signal, it means
that the bitrate is around 500 ko/s, and so 1 hour of music is around 2 Gbyte
! For modern hard supports like DVD, it is not a problem. But for network
broadcasting, or embedded tools (for example some small tools built upon
PDA-like systems), it is still quite annoying. Even for audio-cd quality, the
amount of data is still too big for some applications.

1.1.2 Audio compression

That’s why audio codec receive a huge amount of interest in the last years 3.
Today, with the state-of-the-art waveform codec, like AAC, one can aim at
a compression ratio to 1:15, with a very good audio quality. It seems very
difficult to do better now with waveform codec, ie codec which don’t use
any model for signal, partly because we still don’t know well how masking
is behaving with complex signals.

Recently, some parametric techniques were developed to allow compres-
sion and compression-domain transformations, like [SL]. Parametric mod-
els, physical ones this time, are also used in Mpeg4 (the media-objects, see
[MB03] for a presentation of Mpeg-4).

3everbody knows the so-called mp3 format, and it is certainly one of the invention
in DSP field which has the most economic impact (mp3 was the first format to enable
massive sharing of media contents, and was one of the ground for all the discussion about
copyright, Digital Right Management, etc...)
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1.2 Generalities about hybrid representations

1.2.1 What is a hybrid representation?

Fourier analysis is by far the most used tool in audio DSP: it enables to
map audio signal into the frequency domain, amd one knows very fast algo-
rithms to do it with discrete and finite signals based on the FFT algorithm,
which enables to do the DFT in place. It is well suited for the analysis
of pseudo stationary signals, but it fails with highly non-stationary signals.
This drawback is known for ages, and several tools were discovered and
studied to make a good time/frequency analysis. The famous Heisenberg
relation, that is, for any f ∈ L2(R):

σt
2σω

2 ≥ 1
4

(1.5)

with σt and σω the variance of f and its Fourier Transform respectively,
shows that we can not have a time/frequency representation which is good
in time and in frequency. So we have to deal with a trade-off, which is
particularly annoying in audio DSP.

The other problem is that there is no unique definition of time-frequency
energy density; theoretically, one can show that all time-frequency distribu-
tions can be obtained from the averaging of a quadratic form called the
Wigner-Ville distribution 4.

So, instead of using one space representation with its basis, one can
think about using a larger set than a basis, like frames, or sets of vectors
which are build upon a dictionary (that is matching pursuit techniques); to
be more general, we can also use not one but several kind of set to describe
the signal: it is the principle of hybrid representation. One decomposes the
signal into differents parts (for example the tonal and the stochastic part),
and codes them into different sets of vectors. This can be used for source
separation, denoising, compression, and other relevant transformation on
signals.

Two examples of hybrid representations:

• signal denoising thanks to successive decompositions into trigonomet-
ric and wavelet packet bases [RCG94]. The idea is that the underlying
signal and the noise are well represented in some bases, ie with a few
and big coefficients, and very bad represented in other ones, ie with a
lot of small coefficients. More important, the ”good” bases should be
different for the different kinds of signals. This scheme is implemented
with thresholding on the coefficients 5.

4see the chapter 4 of [Mal98] for a theoric background about the relation between
Gabor atoms, windowed Fourier Transform, wavelet and Wigner-Ville transform

5see Annexe 1
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• SMS [Ser97]: it is an analysis/synthesis framework for audio signals. It
splits the signal into two parts, the tonal part, modelised by additive
synthesis of sinusoids, and the stochastic part, modelled at first by
ARMA approximation, and by more complexe schemes after, to take
into account the frequency resolution of the human hearing (the noise
is taken through a bank filtered which models the so-called critical
bands).

1.3 Presentation of our hybrid representation

1.3.1 Principles

The model we will develop here sucessively decomposes the signal into 3
parts: the tonal part, the transients, and the stochastic part. After each
extraction, the extracted part is removed from the input signal, and the
residual feeds the next extraction (see 1.1)

1.3.2 Tonal extraction

Filter Bank

We know that most relevant informations in audio signal are best seen in
the frequency domain. The first audio codec in MPEG scheme used some
filterbanks to do it. Filterbank is a set of filters which splits the input signal
into different frequency bands; so one can do some processing on each band.
There was a huge amount of research about filterbanks and multi-rate DSP
processing (see for example the chapter ten of [Mit01] to see an introduc-
tion to multi-rate processing, filter bank and polyphase implementation).
The main problems which arise when designing filterbank are efficiency and
perfect or near-perfect reconstruction.

1.3.2 show a 2 bands filterbank: to avoid data-rate increase, each filtering
is followed by a decimator, so that the total data-rate at the output of the
filter bank is the same than at the input. If one imagine that the two filters
are perfect, ie their slope is vertical, one doesn’t loose any information in the
process; indeed, as the spectrum is half wide as the input’s one, the sampling
theorem assures one doesn’t lose by downsampling by a facto 2. But as filters
with vertical slope don’t exist, one can wonder if we don’t loose anything
with such a process. Remarkabely enough, there exist some filterbanks
which enable perfect reconstruction, using an aliasing cancellation principle.

Knowing the basic Z-transform for decimation and interpolation, one can
easily show that the Z-transform of the output X ′(z) is expressed thanks to
the Z-transform of the input X(z) by the following relation:

X ′(z) =
1
2

(H0(z)G0(z) +H1(z)G1(z))X(z)

10
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+
1
2

(H0(−z)G0(z) +H1(−z)G1(z))X(−z) (1.6)

The second term, proportionnal to X(−z), is the aliasing term, so it
must be cancelled for perfect reconstruction. The first way was to define the
reconstructions filters Gi in terms of Hi:

G0(z) = −H1(−z) (1.7)
G1(z) = H0(−z) (1.8)

With these relations, the aliasing term is obviously cancelled. Once H0

is defined, we still need to find H1 so the first term is a simple gain. The
first solution is the Quadrature Mirror Filters, or QMF [MB03]. The filter
H0 is defined like 1.9:

H1(z) = −H0(−z) (1.9)
h1[n] = −(−1)nh0[n]

1.9 means that H0 must verify the QMF law, that is:

H0(z)2 −H0(z)2 = 2z−z (1.10)

For example, the Haar Filter is such a filter.6. Haar filter are FIR filters
whuch have only 2 coefficients, so the frequency resolution is very bad (see
the figure 1.3). Unfortunately, we still don’t know any other FIR which can
be used to build a perfect QMF filterbank; we have to use some FIR which
approximate the QMF solution.

6see Annexe 3 for a brief theoritical background about Wavelet and Haar filters
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QMF condition is not the only one to ensure perfect reconsruction.
An other relation, called CQF (for Conjugate Quadrature Filter), is bet-
ter suited for FIR filters. For example, the 32 bands PQMF filter bank from
audio layers in MPEG1 and MPEG2 is derived from a 2 band CQF filter
bank. See chapter 4 of [MB03] for a detailed explanation of the PQMF filter
bank used in MPEG audio coding.

The MDCT

An other approach for time-to-frequency mapping has emerged from trans-
form coding, the block-based transforms. Here, the main problem is to avoid
edge effects between adjacent blocks: this is linked to the used windows, and
the amount of overlapp between successive blocks (see annexe 2 for a quick
introduction to windowing effect).

The Short Time Fourier Transform (STFT) is a well-known block-based
tool: it takes some overlapping blocks from the input signal, windows it and
computes the FFT, and the signal is resynthetised with another window-
ing and overlapp-add method. But if we take a N point Discrete Fourier
Transform of each N-size time block, there is an increasing of the data-rate,
because of the overlapp. It must be avoided in a coding scheme; that’s
why some people try to find some block transforms which don’t increase the
data-rate, without any lose in the reconstructed signal.
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One way to accomplish this requirement is the so-called Time-Domain-
Aliasing-Cancellation methods: this kind of transforms are not invertible,
but overlapping and adding succesive transformed blocks cancels the recon-
struction artefacts. The second annex briefly explains how this works for
a special case: the Modified Discrete Cosine Transform, which can also be
seen as a windowed version of the Discrete Cosine Transform. An other
point of view on the MDCT is that it introduces less irregularities than
DFT and DCT. The MDCT has been successfully used in the third layer of
audio MPEG1, and is the fundamental tool for time-to-frequency mapping
in more recent audio coders, like AAC.

It worths noticing that PQMF techniques and MDCT are in fact two
different ways to describe the same process: mathematically, they are stricly
the same; one uses one or another according to the number of channels.

The idea here is that steady-state like signals (ie the tonal part) are
well represented by the biggest MDCT coefficients of the signal. So an hard
thresholding on it should give us a good approximation of the tonal part.
Once the MDCT is choosen, one have to choose the the window’s length,
the overlapping and the window.

• As we neither want to lose too much frequency resolution or time
resolution, we have to choose a compromise: L. Daudet fixed it to
1024 samples (at a 44100 sampling rate, it means that each block is
23 ms long, and has a 44100/1024 resolution, ie 43 Hz), with an 50%
overlapp.

• The two most used windows for the MDCT are the Sine window and
the Kaiser-Bessel-Derived. The 2d annexe described the main proper-
ties of these two windows. To sum-up, the KBD window has a steeper
slope but a wider first lobe than the Sine window (see 1.3.2); so the
Sine window is better to separate two narrow bins.

The most difficult part of the approach here is to choose the threshold.
The easiest way would be to impose a global threshold, but the results
would be very bad: the threshold must be chosen adaptively according to
the ”dynamic” of the signal. L. Daudet suggested two different techniques
to adapt the threshold at each frame.

The first technique is based on the fact that each tonal component will
be represented by one big coefficient and its nearest neighbours. So we can
fix the threshold τ according to a fixed ratio of the block’s biggest coefficient:

τ = ρmax|x̂[k]|, k ∈ 1 . . . 1024 (1.11)

But this method has a big disadvantage: τ can change a lot between
consecutive blocks (fast transients often behave as a burst of energy); more
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pedantly, the max operator’s variance is high. As we are not focusing about
compression here, it doesn’t look very important. But in fact, it is, because
of the nature of the MDCT: a simple sinusoid can be kept in one frame and
”forgotten” in another because of the phase difference 7. Even if, as we will
see later, this problem can be partially solved with MDCT’s regularisation
(see 2.1.2), the second method, presented here, will be prefered.

This method uses quantile as a way to estimate the probability density,
and fixes the local threshold τ as a fixed ratio of a fixed quantile. For
example, if P is the probabilty density of the MDCT coefficients, we fixe the
quantile to p, and try to estimate zp such as:

P{|α| ≥ zp} = p (1.12)

and so τ is fixed to the following value:

τ = ρ ∗ zp (1.13)

The longer the window is, the better is the estimation of P, but it is fixed
to the block’s length. So, to have a proper estimation, we take a horizon

7We shouldn’t forget here that MDCT is real, so the coefficients contain amplitude and
phase information.

15



0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time in sec

The MPEG sound

A
m

pl
itu

de

Figure 1.5: The time representation of MPEG sample

wider than one window: 4-5 times the window’s size (ie around 100 ms for
a sampling rate at 44100 Hz) seems to be sufficient in most cases.

Results

This first tonal extraction was implemented in matlab in the transTonal.m
script, and uses the MDCT scripts I implemented 8.

I first try very simple sounds, like monophonic sound: I try to have the
same results than in [LD02a], with the MPEG sample, and then try with
more complexe sounds.

The first sound, used in [LD02a], is monophonic, has a rather ”mellow”
attack, and is quasi tonal after a short period, with a strong pitch (see 1.5
and 1.6). I try several values for p, between 0.9 and 0.999 (at 1, all is in
the residual). Figure 1.7 shows the tonal extraction and the residual for a
threshold at 0.995.

• The tonal extraction in itself is rather good: there is no residual har-
monic sound in the non-tonal part when listening to it, and the tonal
part is not heavily modified.

• There is a pre-echo effect, which was previsible: it is a well known
8see 4 for an explanation
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below one shows the residual
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Spectrogram, with 2048 samples window
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Figure 1.8: Spectrum of the original piano sample

artefact of all the block based audio codecs (See annexe 2 for a quick
explanation of the pre-echo effect). The thresholding on the MDCT
coefficients induces a spread of the ’quantization noise’. It is due to
the thresholding and not to the quantisation. It is also known as
”transients smearing”, a big artefact of classic phase vocoder based
transforms.

The second sound is a piano note. I take this sound because this instru-
ment is known to be difficult to model: there are some noise coming from the
hammer, the finger from the pianist, and there are a lot of partials, which
are not necesserally in an harmonic order, perticularly in the high spectrum
(see figure 1.8)

And as we may expect, the results are a lot more circumspect. I first
try a tonal extraction with a 90% quantile (sound 2): there is no really
extraction. In fact, except some artefacts at the sound’s queue (warbling
effect, see later for the study of this artefact), the tonal part sounds the
same as the original one. With more heavy percentage, the artefacts became
more and more presents. There is some high frequency artefacts, which can
be seen on 1.9, begans quite randomly, and end quite randomly: it is the
warbling effect. It is due to the fact that some partials can be present in
one frame approximation, and not in an another, depending on the phase
value at the beginning of the frame.
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Spectrogram, with 2048 samples window
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Figure 1.9: Spectrum of the tonal part of the piano sample

It is worse with more complex sounds. The warbling effect is previsible:
it is normal with the techniques we are using. But the extraction, on a ”per-
ceptual” point of view, is really bad: the problem is that all the transients
which are burst of energy will have big coefficients in the MDCT, even if
there is no steady-state components in it. To illustrate this point, I used a
congas audio loop, and applied different values for the quantile p. For the
heaviest parameters values, one ends with a low pass filtered sound, still
transients in it, and completely useless for audio transformations.

In conclusion, the tonal extraction doesn’t sound good and doesn’t work
at all. We shall not be surprised here, as the original framework was de-
veloped for audio coding. In this context, the extraction is good if the
compression rate is good, and is hardly linked to the perceptual separation;
on the contrary, we want to use this framework for audio effects, perticularly
time scaling, etc...

All those artefacts can be improved by some solutions I will present in
the next chapter.

1.3.3 Transients extraction

When we hear music, we are used to think about it in events; for example, a
note change, a percussive sound, etc... One generally call transients isolated
fast changes in sound; it is quite different from onsets, which one can define
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as the beginning of a musical event. Defining transients and onset in a useful
DSP way is quite hard (see [CD03] for an overview about transient and onset
detection).

The L.Daudet approach was to define transient not from a perceptive or
musical view, but rather from structures in the Discrete Wavelet Transform
of the signal. DWT is a part of the more general Wavelet transform frame-
work, which receives great attention the last 15 years (see annexe 3 for an
introduction about wavelet transform and [Mal98] for a complete overview).
Is is successful in the analysis of signals which are fast varying, or localised
in times, ie signals which Fourier Transforms fail to analyse well.

There are several types of Wavelet, and here, we are using the Discrete
Wavelet Transform, which decomposes any discrete signal on a wavelet basis.
There are a huge amount of litterature about wavelet bases and frames, here
we shall only consider the orthogonal ones. The wavelet bases vectors are
more and less localised in times. Some of them have compact support:
as we want the maximum time localisation, we shall here use the most
compact ones. Haar basis is the most compact orthogonal basis. We will
limit ourselves to Daubechies basis 9.

The idea here is quite the same than for the tonal part, ie transients
are signals which are well represented in wavelet bases, so an thresholding
should give a good transients extraction. The threshold estimation is exactly
the same than for the tonal part. For simplicity’s sake, I used here a global
wavelet transform on the whole signal, which of course is not applicable for
practical implementations. We will see later a way to do the transform in
blocks, without any edge effect; simply divide the signal into several blocks
and computing their dwt is not a good idea, as the filter bank used in
dwt (computed thanks to the Mallat algorithm) needs some samples of the
previous and next blocks.

The transient extraction is implemented in transExtract.m , and is
pretty the same as the tonalExtract.m , except the dwt, of course. The
dwt is also a personnal implementation of the wavelet transform (Mallat
algorithm). The transient extraction is done on the non-tonal part, which
is the original signal minus the tonal part.

It is a bit difficult to judge the audio quality. Except at the beginning,
the residual (ie the nontonal minus the transients) sounds like a white noise.
The beginning of the noise is a bit tonal, but as the transient extraction
didn’t pick it, it is good. There is also a pre-echo effect, but it comes from
the tonal extraction (since the transients extraction is done on the non tonal
part).

With more complex sounds, the results are not that good, but it mainly
9which main property is having the most support compact for a fixed number of van-

ishing moment; the number of vanishing moments and the compactness of the support is
linked
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Figure 1.10: Tonal and transients extraction for the MPEG sample (take
care to scale effects)
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Figure 1.11: Tonal and transients extraction for the piano sample(take care
to scale effects)

comes from the tonal extraction. It is rather difficult to judge the transients
extraction, as the non-tonal part iself is bad. Most problems are coming from
the bad tonal extraction. The scheme used here detects without problem
the transients ; that’s why I focused on the tonal extraction.

1.3.4 Noise modeling

The residual after the two extractions should be a white noise. It has already
been pointed out in [Dau00] that for a large class of stochastic signals, the
difference between residual from such hybrid frameworks and Gaussian white
noise are negligeable

There are several methods to estimate the mean and variance of the
Gaussian density for each frame. The cepstral method and LPC estimation
suppose that for each frame, the signal is a stationnary process, and try to
model the spectral enveloppe. The third method, which models the residual
as gaussian processes through a bank filter, uses the critical bands hypothe-
sis, that is the hear cannot perceive energy variations within some frequency
ranges.

I didn’t study much the noise modeling.
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Chapter 2

Hybrid representation: some
improvements

The former framework suffers from several problems, and this chapter presents
a few directions to follow. All these methods are studied with the idea that
we want to stay in the transform domains as much as possible.

2.1 The tonal part

The tonal extraction must be improved if we want to utilize our framework
in a useful way. We have already seen the problems with the extraction
process:

• Pre-echo: this is due to the thresholding itself. One good way to reduce
it is to use shorter windows, but we loose frequency resolution, which
is a bit disapointing if we want to extract the tonal part, where the
partials exact values are important. I tried to implement a windows
switching scheme analogous to the one used in MP3 and AAC: the
basic idea is to switch to smaller windows when transients are detected.

• Warbling effects: it is due to the fact that a perfectly stable partial,
because of the phase, can have a big coefficients in one MDCT frame,
and one much smaller in the next frame.

• Too many transients in the tonal part: this problem is linked to the
former one, and made me consider studying a complex MDCT, to use
the phase information to track the tonal part.

2.1.1 Window switching

The trade-off between time-resolution (which demands short windows) and
frequency resolution (which demands longer windows) is well known (see
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Nb
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Figure 2.1: matrix representation for the block switch. Gray area are non-
zero elements

B). One can increase the frequency resolution for a given window’s size by
interpolation schemes (see chapter3), but their precision is limited by the
hypothesis made on the signal. One can also use zero padding to increase
frequency resolution 1 but this is highly computionally intensive.

The MPEG-1 layer 3 adresses this problem by using a windows switching
scheme. The idea is first to detect the transients, and then to adapt the
window’s size: generally, one doesn’t need a good frequency resolution when
there is a transient, and so one can use smaller windows, which provides
better time resolution. The MDCT was conceived to enable window size
switching [MB03].

There exists several techniques for switching block’s size. The first one,
used in the MPEG-1 layer 3 and , was invented by Edler. Let’s see the
normal matrix structure for MDCT/IMDCT, as reminded in B for the case
of window’s size switch; we note Nb the size of the big blocks, and Ns the
size of the small blocks. Overlapping matrices of size Nb leads to identity
matrices, except the last Nb/2 block before the block’s size switch, which
also has some anti-diagonal non-zero elements (see the figure 2.1), and is
meant to be overlapped with a Ns/2 block. This Nb/2 block is equal to
WSL(1 + J)WAR , with the same notations than in B.

The problem is that the antidiagonal of the big block is too big to be
cancelled out by the following short block. The idea of Edler method is to
put some values of the windows WA and WS to 0, so that the antidiagonal

1the N point fft of a N point signal is invertible, ie contains all the information of the
signal. But when the FFT’s size increases, the spectrum ”tended” to the spectrogram
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Figure 2.2: matrix representation for the block switch, after zeroing some
elements in the long block’s windows
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Figure 2.3: Transition window from long block (N = 1024) to short block
(N = 256) with the edler method
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Figure 2.4: Example of a transition window: 1024 to 256 samples. The red
part shows the first window condition, ie wai [n] ∗ wsi [n] + wai−1[N/2 + n] ∗
wsi−1[N/2 + n] = 1, is respected

part of the big block is as long as the short block’s one. As the antidiagonal
part is Ns/2 long for the short block, each side of the big windows must be
zero outside Nb/4−Ns/4; that way, the figure 2.1 becomes as the figure 2.2.
For now, the anti-diagonal part is cancelled; to have perfect reconstruction,
as the first Nb/4 − NS/4 samples of the right side of a long block don’t
overlap with the next shot block, they must be put to 1. The last part
is simply the left side of the short window, so that overlapping it with the
next block leads to the perfect reconstruction condition (the first one, analog
to the STFT one). The design of the transition window assures the time
domain aliasing cancellation; the other conditions for windows are easy to
verify (see figure 2.4)

The implementation of this scheme is a bit difficult, because it is rather
hard to find where errors are coming from. The details are given in 4;
here is a short description: I first implemented a normal MDCT, thanks
to mdct block.m and imdct block.m. These tweo scripts implement a
single block MDCT/IMDCT with FFT. The hard part here is of course to
handle the proper synchrnisation when a block switch has to be done; for
simplicity’s sake, I decided to fix the behaviour when a transient is detected,
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that is:

• One transition window (big to small block)

• Four short windows

• One transition window (small to big block)

And so when a block switch is necessary, a special function is called,
which implements the above scheme, and returns where to continue the
”normal” MDCT. It should be better to have more flexibility, that is to
have different size for short windows, etc... But it becomes very difficult,
and is more of an engineering problem.

For the moment, I have some problems to have significant changes in
quality with block’s size switching. It works well in MP3, but here, as before,
we are not aiming at audio coding, but at much higher level transformations.
That’s why I am thinking about using better transient detection (MP3 uses
a simple High Frequency Content bases detector), as presented in [CD03]. I
didn’t have the time to study and to implement theses methods, though.

2.1.2 MDCT regularisation

The MDCT has a big drawback: it is not translsation invariant. One can
show there isn’t any convolution theorem analogous to the famous one in
Fourier domain for MDCT-like transforms. Why is it a problem for us ?
It means that a simple signal like a sinusoid with constant frequency and
amplitude can have very different MDCT values, if it begins with a different
phase at the beginning of the frame.

Laurent Daudet [LD02c] studied this non-invariant translation and some
possible answers. If the input signal is a sinusoid (notation: x[n] = sin(ωn+
φ)), the MDCT coefficients dp,k, where p is the frame indice and k the
frequency indice, can be approximated with this relation:

d0.k ≈ λMf (k)cos(
π

2
(k − k0) + ψ) (2.1)

Where:

• k0 the integer part of the normalized f (f = ωL/π, where L = N/2 is
the half length of one MDCT block.

• λ =
√

2L
2π

• ψ is a variable which depends on f , k0 and φ. So it is fixed for our
example !

• Mf (k) = − sin(πf)
(f−k)(f−k−1)
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This equation 2.1 shows that dk can heavily depend on ψ. So, if we ap-
ply hard thresholding on the MDCT coefficients, some frames may contain
steady state compenents, and some other frames may not, even if the am-
plitude and frequency values are the same (see the spectrograms of chapter
1, perticularly in the high frequency part).

As I think the threshold method is fundamentally flawed for tonal ex-
traction, I didn’t study this method in depth. [LD02c] explains the method
and how to apply it to reduce warbling effects for audio coding schemes.

2.1.3 Using the phase information to detect tonal part

Most of tonal extraction’s problems come from the fact that amplitude and
phase information are hidden in the MDC coefficients. Approximating the
tonal part (ie extracting steady state-compenants) by a non linear approxi-
mation isn’t very appealing from a perceptive point of view: the advantage
of non linear approximation by hard thresolding over classic linear approx-
imation is that f can still be well approximated even if f has some local
discontinuities (see A). But this advantage doesn’t really make sense for
tonal elements, which by definition are more or less constant within a cer-
tain time horizon.

That’s why I begin to study several methods for tonal modelling and
extraction, based on sinusoidal models: even if the idea itself comes from
the mid eighties, more recent breakthroughs were made in the last years
(for example peak picking by ”pattern recognition” in [Rod97] or Markov
Chains to do peaks tracking [XR93]), for different parts of sinusoidal mod-
elling and additive synthesis. As I wanted to keep a MDCT-like transform,
because of its better integration in MPEG and audio-compression frame-
works, I decided to use a ”complex MDCT”, as defined in [Mal99]. Use of
the complex MDCT means wer lose some of the advantages (such as keeping
the data rate constant; this ”complex MDCT” doubles the data rate), but
we gain phase information; this transform has one big advantage: it is easy
to recover MDCT coefficients from it.

The chapter 3 presents the work, mostly of a bibliographic nature, I’ve
done on sinusoidal modeling.

2.2 The transient part: filtering in the wavelet do-
main

Discrete Wavelet transforms are not translation invariant: this is due the
uniform sampling of the translation parameter of continuous time wavelet
transform. In our case, it can be annoying if we want to do some delaying
of the transients without going back to the time-domain representation.

Several methods exist here. I studied one method, based on a very
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simple algebric principle, as described in [LD02b]. For any signal x, if W =
wkk=1...N :

x[n] =
N∑

k=1

αkwk[n]

Filtering the time signal into x̃ with the filter h, if we call αk the coeffi-
cients of x̃:

x̃[n] =
N∑

k=1

α̃kwk[n]

=
N∑

k=1

αkw̃k[n]

where w̃k is the filtered basis. For any k, one can write

α̃k0 =
N∑

k=1

αk < wk0 , w̃k >

So we can implement any filtering by a matrix-vector multiplication,
where the matrix M is a N*N matrix whose elements are mi,j =< wi, w̃j >.
The interest is that M is sparse for wavelet bases.

I studied this method by implementing some fast wavelet C++ classes;
the big problem is that handling sparse matrixes, on a computational point
of view, is very, very difficult. It is almost impossible to have faster schemes
than the wavelet to time-domain/filtering/time-domain to wavelet domain,
for small delays. The technique is more interesting for big impulse response,
but here, all we want is delaying, which in itself is trivial to do in time
domain.

I tend to think that working with translation invariant wavelet schemes
would be more interesting for analysis / synthesis purposes. For exam-
ple, one can think about matching pursuit methods, with a dictionnary of
translation invariant functions. If the dictionary is translation invariant,
then the representation itself is translation-invariant too. See chapter 9 of
[Mal98] matching pursuit and translation invariant dictionnary. There are
also complex wavelet transforms which can be interesting, but I couldn’t
study them.
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Chapter 3

Tonal modelling

3.1 Sinusoidal model

I think that modeling tonal parts with thresholding on MDCT is not very
useful for analysis purposes. There are answers for the different issues, but
these issues don’t exist with ”normal” methods which use phase informa-
tion. That’s why I began to study all the issued involved in the sinusoidal
modeling: by sinusoidal modeling, I mean not only the original work of X.
Serra, but also all the following works on additive synthesis with sinusoidal
signals, as the improvements on peaks tracking, peaks detection, etc... [SL]
[Rod97] [XR93]

The reader may find the following chapter to be vague. It has been
necessary to keep it that way, due to the vastness of the sinusoidal modelling
field. Hence, this chapter should be viewed not as an exhaustive report, but
more as a set of guidelines or start points for further research.

3.1.1 Presentation of the initial framework

The sinusoidal model assumes that tonal parts of the signal can be modelled
with a sum of sinusoids, with constant parameters on frames; parameters
changes between frames are interpolated to have smooths transitions.

The framework has several parts:

• first, one must computes the spectrum; it is easily done with a discrete
Short Time Fourier Transform.

• After that, one has to find the underlying sinusoids; in the original
Serra’s work, it is done by finding the maxima in the spectrum.

• Once the peaks are found, we compute their phase/amplitude/frequency
by interpolation schemes.

• A pitch is estimated for tonal frames
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Figure 3.1: Structure of the SMS framework

• Finally, the peaks are tracked with a simple method [Ser97].

The model assumes that the tonal part can be modelled that way, where
r is the current frame:

s[n] =
Nr∑

k=0

Ar[n]cos(φr[n]) (3.1)

=
Nr∑

k=0

Ar[n]cos(ωrn+ ψr) (3.2)

The analysis problem is to find all these parameters. The figure 3.1
shows the process.

3.1.2 Peak detection

Once the spectrum has been computed for the current frame, one needs
to find the underlying sinusoids in it. The initial method of Serra was to
look for the peaks in the spectrum. The windowing effects are as discussed
previously : it is still mostly the trade off between frequency and time
resolution which is significant.

Detecting the peaks can done the following way:

• First, fix the number of peaks we want to find to N

• Find all values in the spectrum which are greater than their neighbours

• Sort them, and take the N greater peaks.
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Figure 3.2: Peaks detection for a very simple sound

It is implemented in the PickPeaks.m script, which is adapted from
the SMS scripts found in the dafx book site 1.

I first tried it for simple artificial signals, like sums of sinusoids. The
problem is in the parameter N. First, I computed the peaks with the knwon
value of N (ie N is set to the number of sinusoids). Hopefully, it works
perfectly for such simple sounds (see figure 3.2). We see the problem for
”normal” sounds: peaks in the spectrum, concurrent with our definition do
not necessarily indicate the presence of sinusoid. we did, don’t mean that
there is a sinusoid in it (see figure 3.3)

A more recent approach, presented later, works with the shape of a
sinusoid in the spectrum.

It worths noticing that interpolation schemes are used here to give more
accurate values for bins and phase; the method is straightforward, it is
parabolic interpolation of parameters.

3.1.3 Pitch detection

For harmonic sounds, it can be useful to find the underlying pitch. As I
didn’t want to restrict myself to monophonic sounds, and methods to find
fundamental in polyphonic sounds are a subject of research in itself, I didn’t
look into that direction.

1http://www.dafx.de

32



0 100 200 300 400 500 600
−70

−60

−50

−40

−30

−20

−10

0

10

20

30

Figure 3.3: Peaks detection for the MPEG sound

3.1.4 Peaks tracking

Once all the parameters of the sinusoids are found, we still need to track
them: the idea is that instead of resynthesing directly the sinusoids with the
parameters, it is much better to track the partials, and keeping or rejecting
the peaks with reference to their trajectory.

I studied one method, which is the one originaly found in the SMS frame-
work, but I don’t really like it, because it demands too much knowledge
about the signal, and need too much feedback from the user. The idea is
to follow the peaks with some ”guides”: if some partials of one frame are
too far from the previous ones, the guides are killed, which mean that the
partial is considered ended. In a similar way, births are defined.

Much more sophisticated methods exist, which use Markov models [XR93],
but I couldn’t study them.

3.2 Improvements in the framework for tonal ex-
traction

If I had more time, the two aspects I really would want to study are Markov
modeling for peaks tracking, and some techniques developed at IRCAM by
the Analysis/Synthesis team of Mr Rodet. I just present here the reasons
why I would like to go further in these directions.
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3.2.1 Sinusoidal model improvements and waveforms models

Peak detection and estimation

As we saw earlier, peak estimation it is a weak point of the initial framework.
The approach of X. Rodet to improve them is the following [Rod97]: if h[n] is
the window used in the STFT, finding a sinusoid in the frequency spectrum
can be seen as a ”pattern recognition” problem, or more precisely as finding
the spectrum of h in the STFT spectrum. One basic technique to measure
if two signals are similar is the correlation 2.

Elementary Waveforms analysis

This method models the sound by using some Elementary Waveforms, called
EW. The idea itself is not new: the Formes d’Onde Formantiques is often
used in synthesis languages like Csound (the FOF package is even one of
the big reason for the sucess of Csound). The idea of this technique is to
decompose the signal with some time-frequency atoms called EW, thanks
to a matching pursuit algorithm. This kind of ideas could be used for so-
phisticated tonal modeling.

3.3 With the complex MDCT

Some ”complex MDCT” methods were developed recently. The one present
in [Mal99], developed by H.S Malvar, has some useful features:

• Fast to compute

• One can recover the MDCT from it (one just need to take the real
part of the transform)

It is basically the complex sum of one DCT and one DST (S for sine)
multiply by i (where i2 = −1). The idea is to adapt the tonal modeling
previously presented to this transform.

2It is for example heavily used in simple time-domain time scaling algorothms like
SOLA, or WSOLA, which precisely find the best synchronisation point by a waveform
similarity approach, based on correlation
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Chapter 4

Implementations

Fo different reasons, I had to implement most tools presented before myself.
I ended to program C++ classes for discrete wavelet transform, matlab code
for MDCT (with block’s size switching), DCT, DWT, the initial decomposi-
tion for Hybrid decomposition (adapted from L. Daudet’s scripts) and SMS
framework. I decided to put this part here arbitrarly.

4.1 C++ classes for dwt

There were several goals here when I implemented these classes: being
reusable (easy to use) and fast. There are 2 algorithms for wavelet de-
composition, the Mallat algorithm and the lifting scheme. The last one is
theoratically faster, but depends on the wavelet basis.

I first tried to be ”compatible” with wavelab, which was rather difficult,
as the implementation of wavelab was extremely bloated (pre ANSI C). As
DWT is not translation invariant, different implementations lead to different
results, one has to follow the exact same scheme if one wants the same results
with wavelab and C++ implementation.

There are basically two classes, one to handle the the QMF filter, and
one which computes the dwt itself. One first have to construct the QMF
class, then the DWT class, which is passed a QMF filter, the length of dwt
and the number of level of decomposition. As the constructor handles the
initialisation, once it is sucessfully called, one can begin to compute the dwt.
There are several advantages for this scheme, and drawbacks:

• there is no dynamic allocation during the processing itself, so it is
suited to Real-Time processing (it can be easily modified to be thread
safe)

• Having one different class for QMF filter enables to extend it indepen-
dantly of the dwt computing itself
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• Having different sizes or different level require to construct several dwt
classes

There are two implementations of dwt: one which is compatible with
wavelab, and so a bit difficult to read, and one which implements the classic
Mallat algorithm with circular convolution to handle the edge effext 1.

Several efficiency tricks were used (on x86 architecture, I do not know it
these tricks can be apply for other architectures)

• All arguments passed to internal function are copied first before use.
That way, most compilers can handle much better optimizations (copy-
ing pointer arguments for arrays can lead to a 50% faster code for
convolution !)

• Instead of calling a generic convolution function for any size of filter,
there is a test at the construction, and a function pointer points to
optimized versions, using loop unrolling where possible.

• Several specific implementations have been written for classic QMF
filter: if the values of the filter are directly written in the code, it can
be much faster (I suppose for cache reasons, but I am not sure).

All these optimizations are of course transparant to the user, because
easy of use was more important for me than efficiency. At the end, for 32
bits numbers, Daubechies 4 and 4 levels of decomposition, I managed to
have a 25000 cycles consumption for 1024 input signals, which mean that
one can do around 40000 dwt per second on a recent enough computer. This
was a good reason to stop studying filtering in wavelet domain !

To understand the exact scheme of the processing, one can read the
matlab sources of FWT PO.m and IWT PO.m, and dwt.m and idwt.m
for a much easier implementation.

The C++ code was compiled with the GNU C++ compiler on linux. I
used two versions, 3.2 and 3.3, and used the -O3 flag (heavy optimization).
Performances differences were sensible between the two compilers (around
10% for the exact same code). I think there can be further significant speed
improvements:

• the memory bandwidth is often a bootleneck for this kind of algo-
rithms. There too much copy which can be removed.

• using architecture specific instructions, like MMX memcpy optimiza-
tion and SSE/SSE2 vectorization of the code. This requires much more
difficult code, which would depend of the architecture and the operat-
ing system, and I would lose the ISO C++ advantage, so I didn’t use
it.

1I learnt later that it existed far better methods to handle edge effets , as pointed in
[Mal98]
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The FB WT class is in the namespace dsp, as the QmfFilter. The type
used for computation is DataType; it is choosen at the compilation time,
it is just a typdef on float or double. I could have used templates, but
it demands to compile the class every time, as g++ still doesn’t support
pre-compiled header.

The following code shows that using the classes is not difficult:

const int N = 4; // size of the qmf filter

// One creates one QmfFilter object of size N (Daubechies)

const dsp::QmfFilter qmf(N);

int Ni = 1024; // size of the input signal:
int No = 1024; // size of the output;
int lev = 4;

FB_WT::DataType *in, *out, *in2;

// Allocate the input/output arrays:

in = new FB_WT::DataType[Ni];
out = new FB_WT::DataType[No];

// Create the wavelet object
dsp::FB_WT w (Ni, lev, qmf);

// Now, everything is normaly initialised, one can compute dwt:
// one computes the dwt of in, and put it i out.

w.do_FWT(in, out);

4.2 DCT,MDCT

4.2.1 DCT

For a signal x[n] defined for n = 0 . . . N − 1, the DCT I is defined as the
DFT of x̃ defined as:

x̃[n] =
{
x[n] for 0 6= n < N
x[−n− 1] for −N 6= n 6= −1

As x̃ is symmetric around -1/2, the DCT I is always real. Is can be
written as the expansion on
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ek = λk

√
2
N
cos

(
πk

N
(n+ 1/2)

)

with

λk =
{

2−1/2 if k = 0
1 if k 6= 0

So one can write any signal of CN :

x̂I [k] = λk

N−1∑

n=0

x[n] cos

(
πk

N
(n+ 1/2)

)
(4.1)

x[n] =
2
N

N−1∑

k=0

x̂I [k]λk cos

(
πk

N
(n+ 1/2)

)
(4.2)

(4.3)

In a similar way, one can define the DCT-IV, and it is written:

x̂IV [k] =
N−1∑

n=0

x[n] cos

(
π

N
(k + 1/2)(n+ 1/2)

)
(4.4)

x[n] =
2
N

N−1∑

k=0

x̂IV [k] cos

(
π

N
(k + 1/2)(n+ 1/2)

)
(4.5)

(4.6)

which is easy to compute from the FFT. It is done by splitting the signal
x between even e[n]and odd indices o[n]. By an analogue scheme, DCT-I are
computed from DCT-IV. There are more powerful theorems which enable
to compute a N DCT by a N/4 FFT.

4.2.2 MDCT

The MDCT is relatively easy to compute with FFT. If we note w the window,
the N MDCT X[k] of a signal x[n] can be written:

X[k] =
N−1∑

n=0

x[n]w[n] cos

(
2π
N

(n+ n0)(k + 1/2)

)

= Re
{N−1∑

n=0

x[n]w[n]e−i
2π
N

(n+n0)(k+1/2)
}

= Re
{
e−j

2π
N
n0(k+1/2)

N−1∑

n=0

[x[n]w[n]e−i
2πn
2N ]e−i

2πkn
N

}
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SO, to compute the MDCT, we just need to :

• pre-widdle the signal by e(−i2πn
/ 2N)

• compute the N point FFT

• post-widdle the data by e−j
2π
N
n0(k+1/2)

• Taking the real part

The IMDCT is decomposed with an analogue scheme. The scripts
mdct block.m and imdct block.m implement theses algorithms. A MDCT
on the whole signal is done by splitting the signal in N blocks, and by calling
these functions for each block.

4.3 Hybrid representation

I first want to thank here L. Daudet who gave me all his scripts for the
hybrid decomposition. There are two functions:

• tonalExtract.m which implements the mdct thresholding, with the
probability estimation. The prctile script included in the statistical
toolbox is used, but the function should be implemented in C/C++,
as this function is not difficult, and very slow in matlab (several for
loops). It uses my scripts for the MDCT decomposition.

• transExtract.m which implements the same scheme for the tran-
sients, with the wavelet decomposition of Wavelab.

All matlab scripts are much commented, it shouldn’t be difficult to re-use
them for a further use.
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Appendix A

Non linear approximation in
orthonormal bases

This quick introduction to linear and non-linear approximation will just
present some strong results, which are useful to understand why DCT and
MDCT are used over FFT in coding schemes.

Here, H will be an Hilbert space with a basis ek , ie:

• a complex vector space.

• has a scalar product, denoted ¡¿: it enables us to speak about or-
thonormal bases and norm (derived from the scalar product).

• is complete: it is handful to write for any f ∈ H

f =
∑

k∈Z
ekαk

(ie: if f ∈ H, it can be written as an ”infinite linear combination”)

If H has an orthonormal basis, one can decompose any f ∈ H like this:

f =
∑

k

< f, ek > ek (A.1)

and

||f ||2 =
∑

k

| < f, ek > |2 (A.2)
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In fact, in most approximation problems, only A.2 is useful. It is called
the Parseval theorem for Fourier Bases. We can extend the notion of or-
thonormal bases to have a relation similar to, called frame. Frame theory
is really useful in wavelet theory, for example: the idea of frame operators
is how and at which conditions one can recover a vector from its scalar
products with a set of vectors. Some ways to see frame theory is as a theo-
ritical extension of the Shanon/Whittaker theorem or as a generalisation of
orthonormal basis . See the chapter 5 of [Mal98] for a good introduction to
frame theory.

A.1 Linear approximation

An obvious way to approximate f is to take the first M inner products, and
so, if f̂M is the M th order approximation of f :

f̂M =
M−1∑

k

< f, ek > ek (A.3)

The error εM = ||f − f̂M || is:

||εM ||2 =
∞∑

k=M

| < f, ek > |2 (A.4)

It is easy to prove that this error tends to zero when M tend with∞. But
more interesting: we can link the approximation error with the behaviour of
the inner products < f, ek >. So, if we understand how these inner products
behave with k, we can understand how the error approximation behaves. A
strong theorem proves that this error behaves like M s/2 if f is in a certain
functionnal space:

WB,s =
{
f ∈ H :

∞∑

m=0

m2s| < f, ek > |2 <∞
}

(A.5)

In special bases, like Fourier basis or wavelet basis, this space becomes
a Sobolev space, which is strongly linked to the smoothness of f. The more
f is differentiable, the bigger s is, so the better the approximation is.

This approximation is clearly linear, as the inner products don’t depend
upon f . It is also referred as an a priori approximation.
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A.2 Non linear approximation

Even if we want to keep a similar scheme, ie approximate any element of H
by a linear combination of the basis set, the former approximation is clearly
suboptimal. It would be a lot better to take the M vectors which maximise
the inner product < f, ek >, as it would minimize the error approximation.
The approximation becomes a posteriori, and so becames non-linear (the M
vector depend on f).

It is easay to write this kind of approximattion as a threshold on the
value on the inner-products. Why is it useful ? Because this way, one can
approximate f in a ”good” way, even if f has some discontinuities. Links
between the behaviour of εM and f are by far more difficult than in the pre-
vious section, and we won’t present them here. To sum-up, f can have some
discontinuities, and still being ”well” approximate by a few basis vectors.
This feature can be useful for transients signals, which generally present
some discontinuities
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Appendix B

Block based transforms:
DCT and MDCT

Fourier transform is the most widely tool to do the time to frequency map-
ping. The Fourier series enable to reconstruct perfectly the signal from the
Fourier coefficients if the signal is time-limited 1.

In real-life application, one want to deal with time and frequency limited
signals, so one can use discrete sample of the time and the frequency domain
instead of continuous signals. The question which arise here is: can we do
it without any loss in the signal ?

B.1 Block Fourier transforms

B.1.1 Windowing effect

Let’s x be a band limited signal, and that the sampling rate Fs is high
enough to work with a sampled version of x, x[n]. We want to work with
reasonably small blocks of x (ie a few hundred a samples), from t = 0 to
t = T , so we window it with a rectangular window wR of size T . Is this
time-limited version still frequency limited ?

The figure B.1 shows spectrum of the rectangular window. The win-
dowed signal is the convolution between the spectrum of x[n] (the non time-
limited version) and the rectangular window’s spectrum. As the spectrum
decays slowly, there is an high probability that some frequencies outside Fs
are non negligeable, which means some frequency aliasing problems.

With the previous section, we know that the decay of the spectrum (that
is, the decay of < wR, ek >, where ek is the Fourier basis ) is linked to the
smoothness of wR. So, if we build more smooth windows, the windowing
effect will certainly produce less frequency aliasing. And indeed, as the figure

1one can consider this property as a Whitaker theorem in the time domain: if f is time
limited, one can reconstruct the signal with a sampled version of the spectrum of f
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Figure B.1: Spectrum of rectangular, Hanning and Sine window

B.1 shows, Sine window and Hanning window are much better considering
that point.

The N points Sine window ws is defined as:

ws[n] = sin[π(n+
1
2

)/N ] for n = 0 . . . N-1 (B.1)

Even if the main lobe around f = 0 is wider, the spectrum decays much
faster, so time-limiting a signal with that window won’t spread frequencies,
which could cause some aliasing. The size of the main lobe is proportional
to 1/T, ie the window’s length: longer windows means better frequency
resolution, whatever window used.

Kaiser-Bessel window is another type of window, which is defined so that
the trade-off between main lobe’s size and spectrum’s decay can be adjusted.
An N point Kaiser window wkb is defined as:

wkb[n] =

I0

(
πα

√
1.0−

(
n−N/2
N/2

)2
)

I0(πα)
for n = 0 . . . N-1 (B.2)

Where I0 is the 0th order modified Bessel function:
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I0(t) =
∞∑

k=0

(
(x/2)k

k!

)2

It is rather difficult to compute the spectrum of this window, but B.2
shows the representation of the spectrum for different α values.

Sine and Kaiser-Bessel windows are used in a modified version for MDCT
transforms.

B.1.2 The DFT

The Fourier transform becomes the Fourier series expansion for continuous
time-limited or periodic functions: we can reconstruct the original signal
from a proper discrete version of the spectrum. If the signal is band-limited,
the discrete spectrum becomes a finite set of values. With the usual fre-
quency normalisation, it means that:

x[n] =
1
T

∞∑

k=−∞
X[k]e2jπkn/N (B.3)

=
1
T

N−1∑

k=0

X[k]e2jπkn/N (B.4)
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More, as the signal is band-limited, one can work with a discrete version
of it, which means that the Fourier Spectrum becomes, written in a naive
way, with Ts the sampling period:

X[k] =
∫ T/2

T/2
x(t)e−2jπkt/Tdt (B.5)

= Ts

N−1∑

n=0

x[n]e−2jπkn/N (B.6)

These two equations, B.4 and B.6, define what is called the Discrete Time
Fourier transform. It is often computed with the FFT, which computes the
DFT in a much more efficient way than the direct form.

B.1.3 DCT as a way to reduce block artefacts

We know thanks to A that the high frequency content (the < f, ek > for big
values of k, with the same notation as in A) depends on the smoothness of f.
But taking blocks of the signal x[n] means windowing it with a rectangular
window, which is not even continuous.

Let’s imagine a square integrable function f over the time [01]. If we
take its Fourier transform on this interval , the Fourier Serie expansion of
the function is given by the forumula:

f̂ =
∞∑

k=−∞
< f(u), e2jπku > e2jπku (B.7)

f̂ is a periodic function of period 1, which is equal to f over [01]. But if
f(0) 6= f(1), f̂ is discontinuous over [01], so there are some high frequency
content, even if f is smooth.

That’s why some other transforms were conceived, like the Discrete Co-
sine Transform I. Instead of taking the Fourier transform of f directly, it
periodizes f over [−11], so that the Fourier expansion is continuous over R.

That’s why some different transforms were conceived, like the Discrete
Fourier Transform. The idea is the following: instead of taking directly the
DFT of f, one takes the DFT on a 2 periodized function f̃ , defined as:

f̃(t) =
{
f(t) for t ∈ [0:1]
f(−t) for t ∈ (-1:0)

That way, f̃ is continuous on R. This transform has two advantages over
DFT: it is real, and the decay of f̂ , the Fourier transform of f, is greater
(which also means it is best approximate with linear approximation). The
transform can be written as the expansion on the orthonormal basis:
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ek = λk
√

2cos(πkt)
with

λk =
{

2−1/2 if k = 0
1 if k 6= 0

One can also define different DCT, like the DCT IV. This one has the
main drawback than the normal DFT, but its coefficients are easy to com-
pute with FFT, and it one can deduce the DCT I coefficients from the DCT
IV coefficients.

B.1.4 Block Fourier transform

As pointed out, we want to work with block of small sizes, so we have to
divide the signal in successive blocks. Fourier block bases are not very good,
because they introduce some discontinuities; DCT are better, but still, it far
from ideal. As already seen before, in the windows discussion, using smooth
windows enable us to avoid this kind of artefact. But one theorem, the
Balian-Low theorem, shows that there is no differentiable window g with a
compact support such that

{
g(t− nu0)ejkξ0t

}

k,n∈Z

(B.8)

is an orthonormal basis of L2(R). There are two solutions: either use some
overlapp to have perfect reconstruction (in that case, there is no basis any-
more. Trasnforms like STFT are highly redundant), or lapped projectors,
which use also overlapping, but without being redundant (ie one can build
ortonormal basis).

B.2 MDCT

B.2.1 Construction of an overlapped basis

Two approachs exist to build overlapped bases. The first one was discoverd
by Coifman and Meyer for continuous time functions (see the eigth chapter
of [Mal98] for a complete presentation of this method), the second one was
discovered earlier by Malvar for discrete time signals. From my point of
view, the second one is more straitghforward to understand, the first one
is better to understand the reasons why it exists (I generally think most
theorems in DSP are very difficult to understand; not that the proof itself
is difficult, but rather that it is difficult to understand why it works. I
think that continuous theroems are by far more adapted for a description of
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Figure B.3: Matrix expression of a lapped transform

the phenomenon, whereas discrete theorems are of course more adapted to
applications 2). I will present here the Malvar matrix approach, as it give
an easy way to understand block’s size swithching, as explained in 2. The
following explanation is largely due to the MDCT chapter of [MB03]

The principle is to build a transform which maps N samples into N/2
”frequency” samples, and N/2 ”frequency samples” into N time samples, so
that overlapping inverse transformed block leads to perfect reconstruction,
thanks to time-domain aliasing cancellation 3. One can write this transform
as shown in B.3. WAR and WAL are the right and left part of the analysis
window; each part is N/2 long, and so the input block of the signal is N long.
As we want to map them into N/2 blocks, the forward transform has zeros
values in the N/2 last rows; for analog reasons, the inverse transform has
the N/2 last columns to zero. At the end, WSR and WSL are the synthesis
windows. All the process, ie the analysis windowing followed by a forward
transform, an inverse transform and synthesis windowing can be written
that way:

(
WSR 0

0 WSL

)(
B1A1 B1A2

B2A1 B2A2

)(
WAR 0

0 WAS

)

Which can be rewritten:
(
WSRB1A1W

AR WSRB1A2W
AL

WSLB2A1W
AR WSLB2A2W

AL

)

By overlapping such block transforms for two sucessive blocks i and i+1,
we obtain a N*N matrix with 4 N/2*N/2 blocks, where the upper left and
the bottom right blocks contain overlapping values from block i and i − 1.
If we want perfect reconstruction, this matrix must be identity. Though, we
obtain the two following equations, which must be verified for all i:

2As the mathematician Rene Thom pointed out, ”prédire n’est pas expliquer”, ie pre-
diction don’t explain anything

3This kind of transform doesn’t lead to perfect reconstruction; add and overlapping
succesive block does
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MDCT is a special solution for these three equations. MDCT solution
kernel is build in such a way that:

B1A2 = B2A1 = 0 (B.9)
B1A1 = 1 + J (B.10)
B2A1 = 1− J (B.11)

(B.12)

Where J is an antidiagonal matrix with ones on it. With this particular
solution, the windowing conditions become:

WSL
i WAL

i +WSR
i−1W

AR
i−1 = 1 (B.13)

WSL
i JWAL

i = WSR
i−1JW

AR
i−1 (B.14)

The first equation B.14 is exactly the same condition that for an over-
lapped DFT. The equation B.14 is new, and is linked to time-domain aliasing
cancellation. To understand exactly what B.14 means, it is useful to see that
JDJ is a time reversed version of D when D is diagonal, and that (J) is
involutive (ie JJ = 1). So, B.14 demands that the synthesis window is
the time-reversed version of the analysis window. Written in a non-matrix
notation:

wai [n] ∗ wsi [n] + wai−1[N/2 + n] ∗ wsi−1[N/2 + n] = 1 (B.15)

and

wai [n] = wsi−1[N − 1− n] for n = 0 . . . N/2− 1 (B.16)
wsi [n] = wai−1[N − 1− n] (B.17)

Once the window’s conditions are achieved for perfect reconstruction,
one still have to find the MDCT kernel to lead to B.10, B.11 and B.12. The
forward and inverse transforms for a N samples block of the signal xi[n] (the
block starts at n = 0) are:

for k ∈ [0N/2− 1]
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Xi[k] =
N−1∑

n=0

wai [n]xi[n]cos(
2π
N

(n+ n0)(k + 1/2)) (B.18)

for n ∈ [0N − 1]

xi = wsi [n]
4
N

N/2−1∑

k=0

Xi[k]cos(
2π
N

(n+ n0)(k + 1/2)) (B.19)

with n0 = (N/2 + 1)/2.
So, now, we have a new transform which maps N samples into N/2

samples, with an overlapp of 50%, and enables perfect reconstruction. There
is no data increase (ie MDCT is a basis). As the window’s conditions are
basically the same than for block DFT transforms, we can use the classic
windows. To respect all conditions, we just have to build the synthesis
window as the time-reversed version of the analysis window (this condition
leads to the famous time-domain alisaing cancellation).

50



Appendix C

Brief overview about
Discrete Wavelet Transform

Wavelet theory is a big scientific theory which comes from more than twenty
years, ans is interesting for several reasons, not only purely scientific.

Even if the origin of wavelet can be set at the beginning of the twentieth
century, with the work of the mathematician Haar C.3, the story really
begins in the eighties, with the work of Morlet and Grossmann, who tried
to find some analysis tools to study discontinuities in sismic signals. The
initial discover of Haar was that it is possible to construct an orthonormal
basis of L2(R) from a single simple piece-wise constant function ψ:

ψ(t) =





1 if 0 ≤ t < 1/2
−1 if 1/2 ≤ t < 1
0 otherwise

with its dilatation and translations:
{
ψj,n(t) =

1√
2j
ψ
( t− 2jn

2j
)}

(j,n)∈Z

The mathematician Meyer tried then to prove there doesn’t exist any
regular function ψ which can generate such an orthonormal basis; he fails,
as he managed to construct several bases whose ψ is C∞ !

This was the beginning of big researchs in applied mathematics, filter-
bank theory, computer vision and so on. That’s why wavelets are so inter-
esting to study from my point of view: it becomes more and more difficult
to do scientific researches without focusing only on one veru specific field,
and wavelets are across several very different scientific disciplines.

The present section is only aiming at giving the basic definition of wavelet
bases: that’s the goal of the first section. The second section gives the link
with filter bank theory, which enables to compute wavelet coefficients.
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C.1 Multi resolution approach

The multi resolution approach was first developed by Meyer and Mallat,
who take the initial idea from computer vision: the principle is to decompose
a whole space not woth frequency/time atoms, but with the more ”vision
appealing” notion of scale/time atoms. The scale is defined as the dilatation
of a certain set of vectors; the very surprising result here is that one can
construct bases for big spaces like L2(R) from only one function. 1.

C.1.1 The scaling function

The idea of the multiresolution approach is that for f ∈ L2(R), the projec-
tion over the set ψn0,k∈Z represents the error approximation between two
succesive subsets of L2(R).

The formal definition of a multiresolution approximation can be found
in [Mal98]. I prefer here present a non formal definition, which is sufficient
enough to understand where orthonormal bases are coming from. Let’s take
one function φ, with a null first order moment (ie a mean to zero), that is
square integrable; we note φk(t) = φ(t − k) the dilatations of φ. We then
define V0 as the closure of the vector space spanned by the set {φk}[k ∈ Z:

V0 = Span(φk) (C.1)
(C.2)

Which means that

f ∈ V0 
 f =
∑

k∈Z
αkφk (C.3)

If the family set {φk}k∈Z is orthogonal, it is an orthogonal basis of V0,
and we generally normalize the vectors to have a orthonormal basis. That
way, one can rewrite C.3 such that:

f ∈ V0 
 f =
∑

k∈Z
< f, φk > φk (C.4)

which is a lot more easier to handle.
We then define φj , a dilated version of φ, and its translated version φj,k

by:
1if we are thinking about the way Riemann integral, and later Lebesgue integral are

defined, with limits of piece wise approximations of some areas, it is not so surprising

52



φj(t) =
√

2j/2φ(2jt) (C.5)

φj,k(t) = 2j/2φj(t− k/2j) (C.6)

Vj is then defined as the closure of the space spanned by {φj,k}k∈Z.
Normally, when j increases, the spaces Vj increases, two. The factor j can
be seen as a scale factor: one can see a more ”detailed” version of f when it
is projected on Vj , where j is increasing. In fact, what we really want is:

• Vj ⊂ Vj+1

• V−∞ = 0

• V∞ = L2(R)

To assure the first relation, we just have to verify it for the φk,j and
φk,j+1 for one fixed j, and a simple recurence proves it for all j ∈ Z.

Vj ⊂ Vj+1 
 φj ∈ Vj+1

For j = 0, this relation becomes:

φ(t) =
∑
n

hs(n)
√

2φ(2t− n) (C.7)

This can be seen as a finite difference equation, and the hs(n) are called
scaling coefficients.

C.1.2 The wavelet function

For now, we have some Vj , and orthogonal projections on them give several
levels of precision for any f ∈ L2R. But it would be more practical to work
directly with the error of approximation between different Vj . That’s exactly
the definition of wavelet spaces. We define W0 such that 2

V1 = V0 ⊕W0 with V0 ⊥W0

And all Wj are defined the same way. ψj,k are the dilated/scaled func-
tions derived from one function, the wavelet function ψ, and they spanned
the Wj,k spaces. As ψ ∈ V1, one can write:

2As Vj are a priori linear spaces of infinite dimension, the unicity of orthogonal com-
plement is not true. I didn’t find any informations about that, and no wavelet book speaks
about this problem... So I concluded it is not !
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ψ(t) =
∑
n

hw(n)
√

2ψ(2t− n) (C.8)

An example of expansion on such a multiresolution system, for f ∈
L2(R):

f =
∑

k

cJ02J0/2φ(2J0t− k) +
∑

k

∞∑

j=J0

dj(k)2j/2ψ(2jy − k)

where VJ0 ⊕WJ0 ⊕WJ0+1 ⊕ . . . = L2(R. J0 is called the coarsest level,
and where cj =< f, φj,k > and dj =< f, ψj,k >

The big problem was to find such φ (called the scaling function, or the
father wavelet) and ψ (often called the wavelet function, or the mother
wavelet), whose dilatation/scaling define orthogonal sets and spann L2R.
A rather technical theorem from Mallat and Meyer shows the relation be-
tween multi resolution analysis, the coefficients hs and hw and the Fourier
transform of these coefficients (hw and hs can be seen as filter coefficients).

C.2 Filterbank approach

To build a multi resolution analysis system, we need to have the following
relations:

φ(t) =
∑
n

hs(n)
√

2φ(2t− n) (C.9)

ψ(t) =
∑
n

hw(n)
√

2ψ(2t− n) (C.10)

∫
φ(t)φ(t− k)dt = δ(k) orthonormality for the V0 basis (C.11)

∫
ψ(t)φ(t− k)dt = 0 (C.12)

One can shows[Mal98], [CSB98] that these relations imply

hw(k) = (−1)nhs(1− k)

Which are exactly the relations between the two impulse responses of the
analsys filter of a 2 band filterbank ! This relation it the key link between
multi resolution analysis and filter bank theory. It was used to build several
wavelet bases.
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Figure C.1: A 2 level wavelet decomposition filterbank

C.2.1 Mallat algorithm

Here, I will just present the Mallat algorithm, which enables to compute the
discrete wavelet transform for any f ∈ L2(R. No formal proof is provided,
just some elements to understand the algorithm. First, we derive from C.10
that

φ(2jt− k) =
∑
m

hs(m− 2k)
√

2φ(2j+1t−m)

For f ∈ Vj+1, we write the expansion on Vj+1, and as Vj ⊕Wj = Vj+1,
we obtain a relation between two successive scales. If cj,k and dj,k are the
coordinates of the projection on Vj and Wj , respectively:

cj,k =
∑
m

hs(m− 2k)cj+1,k(m) (C.13)

dj,k =
∑
m

hw(m− 2k)cj+1,k(m) (C.14)

We so obtain coefficient of a scale j from the scale j+1 thanks to fil-
tering/decimating them with the filters hs and hw. To compute them, we
need to define a level of precision (for discrete time signals, it is generally
the sampling period), and we pass the signal through a dyadic bank filter
(see figure C.1). As the number of level is normally limited to a few itera-
tions, and don’t depend upon the input signal’s size, that means that the
algorithm’s complexity is O(N), where N is the size of the algorithm 3

3it is worth noticing that concretely, it is not really faster that FFT, which can be in
3/2N*log(N), for usual sizes of signal.
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Appendix D

Details about the tools used
in my master thesis

All my work was done on a GNU/Linux system, Debian ( thanks to Paul
and Nicolas for helping me when I was almost depressed by the computer’s
mysteries). This master thesis was written in LATEX, with the package AMS-
FONTS ( thanks again to Paul for giving me his LATEXmakefile, and to Samer
for his style files ). The LATEXfiles were edited with gvim the GTK version
of vim, an efficient text editor with syntax highlighting.

All matlab scripts were done on the release 13 of Matlab for Linux,
with the Wavelab package, the signal processing toolbox and the statistical
toolbox for a few scripts. The figures were done on xfig.

The C++ code was written with gvim, and compiled with Gcc/g++,
the excellent GNU preprocessor/compiler/linker suite.

The presentations were written with prosper, a great LATEXpackage for
presentations.
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