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ABSTRACT

This dissertation introduces a connectionist model that maps perceptual
controllers to synthesis parameters to allow for an intuitive and powerful
musical control of audio synthesis. This model, or system, allows the
extraction, abstraction, reproduction and transformation of relevant features
of a musician’s style. All the information is deduced exclusively from audio.
No prior knowledge of the musician’s performance is implied. We will first
define the general underlying principles of the model. After, the neural
network specific requirements for the learning and synthesis of sound
information will be presented. With this foundation, the many advantages of
using a principal component based synthesis will be argued. This
dissertation concludes with an overview of some musical applications,
including the re-tuning of a melody, pitch shifting, time stretching, cross-
synthesis and compression.
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1 INTRODUCTION

1.1 Reasons Behind this Project

Until recently, the transformation and control of recorded sounds was a
difficult task requiring intensive studio work. Computer technologies, with
their huge computational power, now allow for a more efficient
transformation of complex sounds. Nevertheless, a flexible, general tool for
the refined control of audio synthesis is still to be desired. Electronic
instruments remain unable to provide the musician with a variety of
controllers and controllable sounds. The often standardized nature of the
available tools limits the musician’s expressive control.

This limit is particularly problematic since musicians are appreciated and
recognized for their style. During many long hours of training, a unique
relationship develops between the musician and his/her acoustic instrument.
The physical properties of the instrument combined with the musician’s
individual personality, skills, and creativity, result in a specific playing style.
This interaction is the foundation for a musician’s identity, essential for
listener recognition and enjoyment.

The model introduced in this dissertation, with its flexible controllers and
possibility for abstraction of salient features of recorded sounds, provides a
musician the opportunity to cultivate his/her style. A tool for greater
expression is particularly relevant now when sound samples are commonly
used in every type of music.

1.2 Literature

Several studies have explored the control of audio synthesis with perceptual
parameters. The first detailed description of a connectionist model for real
time control of synthesis was articulated by M. Lee and D. Wessel in [1].
These authors presented the problem of transformation of performance
gestures into control parameters.  A general “forward model” was analyzed,
and the importance of both the pre-processing of gestural data as well as the
perceptually based representation of sounds was underscored. C. Drame and
D.Wessel [2] applying the ideas presented in the initial study [1], compared
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a neural network model with a memory based machine learning technique.
The network described in this second study received fundamental frequency
and loudness in its input layer, and was trained to estimate amplitudes and
frequencies of the sound partials. Additional Research on the modelling of
speech and music signal was presented in [3]. While the Radial Basis
Function neural network employed in this third study was particularly
adapted for the prediction of time series, the system described lacked variety
in choice of controllers. Although many studies have used artificial neural
networks to predict or simulate harmony and melody in musical pieces, their
application to the control of sound synthesis remains underdeveloped.

Another technique presented in [4] -- the Cluster-Weighted Modelling for
non-linear function approximation – mapped physical movement to spectral
sound representation. This mapping technique, which itself proved an
interesting alternative to neural networks, was applied in [5] in a MAX-MSP
[6] real time implementation. Schoner and Jehan borrowed the general ideas
presented in [2] for the perceptual control and estimation of partials, but
replaced this study’s neural network with the Cluster Weighted Model. This
Cluster Weighted Model approach is equivalent to the hierarchical mixture
of expert model proposed by Jordan and Jacobs in [27].

1.3 The Approach of this Dissertation

This dissertation employs a connectionist model derived from control theory
[7]. Since Artificial Neural Network theory is studied extensively, many
algorithms and practical optimisations have already been devised and are
easily accessible. The aim of this dissertation is to improve the system
proposed in [1] and [2] with the use of more refined training algorithms and
the creation of an optimised system architecture specifically designed for the
synthesis of sounds. The models previously presented continue to lack
efficiency and reliability. Using both the statistical tools provided by
principal component analysis and enhanced learning algorithms, this
dissertation proposes a new, compact representation of spectral information
for an efficient sound synthesis determined by perceptual controllers. The
general principles of this dissertation’s model are described in the following
section.
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2 PRINCIPLES

2.1 Architecture of the System

The structure of this dissertation’s model is straightforward and inspired by
the “natural” system formed by a musician and his/her instrument. The
controllers used by the musician to interact with the system are located on
one side.  The sound synthesis engine, which plays the role of the
instrument, is located on the opposite side. The artificial neural network’s
task is to transmit information and coordinate proper communication
between these two elements (Fig. 1). Its function is similar to that of a music
teacher showing his/her students how to produce a nice sound out of their
instrument’s body (synthesis engine), from a given finger position
(controllers).

Figure1: Overview of the System
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2.2 Smart Instrument

However, there is a limit (or extension depending on the point of view) to
this music student/teacher analogy. Once the network is trained, the system
has acquired a kind of intelligence. Any control information –provided it is
in the range of the training data- will produce a reliable sound. This allows
for experiments with any kind of controllers. This enhanced instrument
adapts to the musician’s control, it becoming possible to play the saxophone
with flute control parameters and vice versa, for example. The relationship
between the musician and his/her instrument is fundamentally changed.
While the musician traditionally has had to adapt to the physical properties
of his/her instrument, the system described in this dissertation gives the
musician extended freedom of choice in gestural control of the instrument.

2.3 Modularity

Another important characteristic differentiating this system from acoustic
instruments is that the controllers and the synthesis engine are two distinct
part of the system. The synthesis engine, consisting of the neural network
and the sound synthesis algorithms, may be physically separated from the
control information. This distinctness makes this kind of synthesis suited to
client server applications. The musician, via the controllers, plays the role of
the client, and the synthesis engine that of the server. To give an example, a
musician could remotely control this new instrument via Ethernet protocol.

2.4 Sequence of Operations

Another important aspect of our model, in addition to its specific structure,
is the timing of the different processes taking place. Since the artificial
neural network must first be trained before any attempt to use the system, it
is necessary to carefully describe the sequence of the different processes
(Fig. 2).  Each step of the setup required for the system to give proper results
is described below.
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2.4.1 Choice of the Training Data Set

First, the audio samples are chosen to fit the needs of the musician. These
samples should be as varied as possible and include the kinds of sonorities
with which the musician wishes to play. To give an example, an accurate
simulation of all the acoustical properties of an instrument would require a
large number of training samples. These samples would be able to describe
the main possibilities of interpretation, transition and playing modes of the
specific instrument. The choice of the training data set is fundamental, since
it will determine the overall results, the “colour” of the sound synthesis and
finally, the musical result.

2.4.2 Analysis

Once the choice of the training data is done, the audio samples are passed
through an additive harmonic analysis tool. This step allows modelling the
sound with a set of parameters that will later be modified depending on the
control information.  We used AddAn, a sound analysis application
distributed by IRCAM (a French institution for research and education in the
fields of acoustics and computer science) as a part of Diphone Studio, an
audio morphing and synthesis editor [8].

2.4.3 Extraction of the Control Information

The results from this analysis are used for the extraction and definition of the
perceptual controllers (such as pitch, loudness, brightness…). These
controllers are the only connection between the musician and his/her
instrument and should be as convenient as possible from a musical point of
view.

2.4.4 Training of the Neural Network

Finally, the third step involves the training of the neural network. The
perceptual controllers information is sent to the input of the Artificial Neural
Network (Fig. 2). The network is then trained to map these controls to the
set of the output parameters needed for driving the sound synthesis
algorithm. The quality of the sound produced by the system is highly
dependant on the training performances. Once the training is considered
satisfactory, the Neural Network Synthesizer is ready for use. The
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parameters needed for the sound synthesis are estimated by the system, and
the musician can play with it. Now that the procedure is explicit, the
different parts of the system will be accurately defined.

     Figure 2: Sequence of Operations
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3 ANALYSIS/SYNTHESIS PARADIGM

3.1 Overview

Many different sound synthesis techniques have already been devised. Each
of them falls into four main categories [9].

3.1.1 Abstract Models

The first group of synthesis methods is called abstract algorithm models.
They are usually simple and easy to implement. Nevertheless, they often
sound artificial if compared to other more complex synthesis techniques.
Abstract models includes synthesis schemes such as FM synthesis,
particularly efficient for the synthesis of bell-like and metallic sounds, wave-
shaping (or non-linear distortion) synthesis, and Karplus strong algorithm
typically used for the synthesis of plucked string or percussive sounds.

3.1.2 Processed recording

The second group is based on processed recordings. It includes simple
sampling synthesis, consisting in the play-back of short recording of sounds,
wave-table synthesis, which principle is to store typical portions of an
instrument sound in tables to be able to loop them, play them back, and shift
the pitch. Finally, granular synthesis’ idea is to represent the sound by
elementary units or grains, which shape and temporal distribution change the
synthesised sound.

3.1.3 Spectral Models

The spectral methods attempt to model the properties of sound accordingly
to the perception of the listener. These synthesis techniques are more
general, since any sound can be treated. Techniques based on the spectral
model include additive synthesis, that models the signal by a sum of
weighted sinusoids, the phase vocoder (that can be viewed either as a bank
of filters or as a short term Fourier transform analyzer), source-filter
synthesis, Mc Aulay-Quatieri algorithm and Spectral Modeling Synthesis
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(SMS), that decompose any signal into a deterministic part and a stochastic
part.

3.1.4 Physical Models

Finally, physical models continue to develop as they allow a better control
over the synthetic instrument parameters. This final group can itself be
divided into five categories [9], namely a numerical solving of partial
differential equations, source filter modelling, vibrating mass-spring
network, modal synthesis and waveguide synthesis.

3.2 The approach of this Dissertation

The neural network synthesizer described in this dissertation uses an
additive analysis/synthesis model. This model is chosen for its ability to
synthesize a large range of sounds while sounding quite natural (which
unfortunately is sometimes not the case for abstract models). Unlike physical
models, the additive model is based on the original recorded sounds. It
doesn’t require having a theoretical representation of the physical property
for each different instrument. Since the concept of additive synthesis is quite
old and has been often used in electronic music, theoretical and practical
tools for additive analysis are reliable and well documented. The concept of
additive synthesis is quite simple; nevertheless, it can require many
parameters to get a satisfactory sounding result. Moreover, these parameters
are not always adapted to a musical control of the synthesis. By introducing
both a principal component analysis for the reduction of parameters, and a
neural network for a flexible control of sound, this dissertation proposes a
new and flexible scheme for musical control of sound.
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3.3 Harmonic Additive Paradigm

3.3.1 Analysis

In this model, the sound is represented as a sum of weighted sinusoids at
frequencies multiple of the fundamental frequency. This model presupposes
the sound is quasi-harmonic, and the frequencies, amplitudes and phases are
varying slowly. This is an important limitation, since most of the sounds
encountered in nature contain inharmonicities, and since fast varying
spectrum are common (in the attack part of an instrument for instance).
Nevertheless, the results obtained with this type of analysis still prove
satisfactory in a first approximation for the purpose of this paper.
A quasi-periodic tone can be generated by a sum of sine waves with time-
varying amplitudes and frequencies.

y n a n f nk
k

N

k k( ) ( )sin( ( ) )� �� �� 01 2 ��� (1)

n is the time index
N is the number of harmonics in the synthetic signal
ak(n) is the time-varying amplitude of the k-th partial
fk(n) is the time-varying frequency of the k-th partial
fk=k.f0  (harmonicity hypothesis)

k

�
is the corresponding phase

a t and f tk k( ) ( ) are slowly time-varying

The information obtained from AddAn analysis software includes the time
varying frequency of the fundamental (which gives the variation of the
harmonics), the phase values, and the amplitude of each partial.
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The results of Addan analysis in the ascii format are represented as follows:

Number of partials Date Amplitudes

        Frequencies Phases

20 0.030000
1 453.179901 0.0004710692-0.239716
2 918.076782 0.0000767186-2.154978
3 1238.771851 0.00004726462.053178
4 1809.822388 0.00002198100.066719
5 2179.204346 0.0000148958-2.583294
…

18 8010.302734 0.0000159558-0.303375
19 8461.330078 0.0000000000-1.038158
20 8823.456055 0.0000049069-1.274832
20 0.040000
1 455.558289 0.0015450128-3.080712
…

Fig 3: Addan Partial Information

Times Frequency

0.01 444.151
0.02 442.208
0.03 442.208
0.04 442.208
0.05 442.208
0.06 442.208
…

Fig 4: Addan Fundamental Analysis

In this dissertation, the result of the harmonic additive analysis for the partial
amplitude is represented as a matrix A (eq. 2), of dimension number of
partial by number of frames. The analysis parameters used for most of the
sounds are: a FFT window size of 1024 with a Blackmann windows, a
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fundamental frequency range of [200,1400Hz], a number of partial set to 20,
and a sample rate of 44100Hz. Yet, these numbers are just an indication.
They can be, and should be adjusted in regard to the nature of the sound to
be analysed.

One row of the matrix represents the time-varying amplitude of a partial, and
one column of the matrix represents the whole spectrum of the audio signal
for one frame (typically, one frame is 0.01 or 0.02 s).

a a

a a

M

N N M

11 1

1

, ,

, ,

		
	�		
�

���

�
�
���

(2)

N is the number of partial
M is the number of frames

3.3.2 Synthesis

For the re-synthesis, the phase information, which is less perceptually
relevant, is not taken into account, and the sample y(t) are reconstituted at
the proper sample rate Fs by linear interpolation between each frame of the
analysis matrix A to give the coefficientsak(n). The procedure is similar for
obtaining the coefficientsfk(n).
The analysis hop size, gives the number of samples represented by each
column of the matrix:

hop round F frame durations
���( _ ) (3)

Fs is the sample rate in Hertz
Frame _duration is in seconds
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The interpolation scheme allows the calculation of the time varying
coefficients between each frame:

a n
a a

hop
n ak

j k j k j
k j[ ]

( ), ,
,

�������� 1
 (4)

where a nk
j[ ] is the time varying amplitude of the partial k

between the frame j and j+1.
ak j,  is the element of matrix A (Eq. 2) corresponding to the
partial k and to the frame j

The same procedure is repeated for the interpolation of the fundamental
frequency values between each frame, and the synthesised sound is
calculated with Eq.1. The analysis information (time-varying fundamental,
and partial amplitudes) provides a reliable abstract representation of the
original audio samples. This information is used for the definition of control
parameters.

3.4 High-level descriptors for Synthesis control

The control parameters are extracted from the analysis data and defined
thereafter. They have been chosen in order to correspond to human
perceptive criterions and are relevant for musical applications.

3.4.1 The Pitch

The pitch or time-varying fundamental frequency F0 is directly given by
AddAnn. It is strongly recommended to carefully check the validity of the
fundamental frequency estimation, since it is the primary cause of
inaccuracy in the re-synthesis. It has been observed that an error of one
octave often occurs in the detection of the fundamental frequency by Addan
algorithms (Fig. 5 and Fig. 6).
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Fig 5:  Original Fundamental Detection of a Singing Voice.

Fig 6: Corrected Fundamental Frequency
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3.4.2 The Intensity Summary

The intensity summary I t0( )  is given by:

I t a tkk

N

0 1
( ) ( )��� (5)

It gives a description of the intensity level of a sound.

Fig 7: Intensity Summary Associated with the Fundamental
Frequency of Fig. 6.

3.4.3 The Centroid

The Centroid C(t) [10] is calculated with:

C t
a f

a
t

kk

N

k

k
k

N( ) ( )!#"$
$
% % 1

1

(6)
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The centroid is often associated with the measure of the brightness of a
sound. It is an estimation of the centre of gravity of a given spectrum.

Other parameters such as perceptual loudness, spectral flatness, noisiness or
any other control inferred from the analysis data can be added according to
the needs of the musician. In the next step, these control parameters are used
to feed the input of the artificial neural network.
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4 AN ARTIFICIAL NEURAL NETWORK ASSISANT
FOR THE CONTROL OF SYNTHESIS

4.1  Overview

4.1.1  A Connectionist Approach

Artificial neural networks are an attempt to model the behaviour of
biological neurons. They are constituted of a multitude of simple
interconnected processing units. This kind of model is often referred to as
connectionist or parallel distributed processing. The parallelism resides in
the fact that the processing units interact simultaneously and are independent
of each other. The model is distributed, since the knowledge resides in the
strength of the connections that are adaptative. When exposed to a set of
data, the network is capable of learning by adjusting the strength (the
weights) of its connections.

4.1.2 Static/Dynamic

Two main different kinds of Artificial Neural Networks can be found. The
first one is the static network, for which equations are memoryless. The
output is a function of the current input only. One classical example of this
category is the Multilayer Perceptron trained by the back-propagation error
algorithm. The second kind, namely Dynamic Neural Networks, is making
use of a memory, described by difference equations. One example of this
kind is the Hopfield Network.

4.1.3 Supervised/unsupervised learning

Two different learning modes are possible. Supervised learning produces a
desired output from a given input. It is thus supposed that the output is
known in advance (C.f. the Perceptron). Unsupervised learning is more a
way of extracting knowledge from the input data. The system is presented
only with input data and is supposed to self organize and find the
corresponding relevant output (For instance Kohonen networks).
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The general advantages of neural networks are their learning capability, their
generalization capacity, their content addressability and their noise
tolerance.
On the other hand, Artificial Neural Networks usually offer poor explanation
capabilities, they present difficulties with structured representations
(concept, hierarchy, inferences…), and they are monolithic, and often
frustrate analysis of an underlying mechanism.

4.2  The Approach of this Dissertation

For the purpose of this dissertation, we chose to use a Static Feed Forward
Multilayer Neural Network with Supervised Learning. Such a network can
be viewed as an implementation of a non-linear input-output mapping.
Previous studies in [2] and [3] have demonstrated the efficiency of a static
neural network, that doesn’t require intense usage of computer memory.
Efficiency is an important criterion for this study, the final purpose of which
is to provide a reliable synthesis model for real-time interaction. The
problem of memory requirements is even amplified by the fact that the
implementation of the concepts presented in this dissertation has been
realised in the Matlab programming language in which memory
management is a sensitive problem… The learning of the neural network is
done in a supervised fashion, since the principle of this dissertation’s model
is to reproduce a given target sound. This connectionist system is based on
fairly simple algorithms, and the non linearity is learned from the training
data set. We thereafter explain the principles and specificities of this
complex system.

4.3 Artificial Neural Networks Fundamentals

4.3.1 Artificial Neuron

The artificial neuron is an attempt to model the behaviour of biological
neurons that constitute the fundamental units of the nervous system.
Biological neurons are organised and cooperate to accomplish complex
tasks. The neuron’s topology is composed of three main functional parts,
namely the dendrites, the synapses, and the axon (Fig. 3 and 4). The
dendrites are the incoming neuronal fibers that receive electrical signals
from the other connected neurons. The synapses in which the electrical
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transmission takes place can be either excitatory or inhibitory by
respectively reducing or increasing the amplitude of the transmitted signal.
The axon is the outgoing neuronal fiber. If the sum of the signals transmitted
by the inhibitory and excitatory synapses is higher than a certain threshold,
an action potential is fired through the axon towards other neurons, and there
is a time delay called refractory period the neuron has to wait before it can
fire again.

Figure 3: Biological neuron

Figure 4: Synaptic connection
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The artificial neuron is a mathematic representation of the schematised
comportment of a biological neuron we described previously (Fig. 5).
Let x(t) be the input signal column vector of dimension n by 1, at time t. We
suppose that the input is binary, i.e: x( ) ,t & ')(0 1 . The inhibitory or excitatory
effect of the synapses is modelled by a weighting vector w of dimension n
by 1, applied on the inputs. Finally, a step function f(y) -or activation
function- is used to set the output to zero or one at time t+1, depending if the
sum of the input signals is higher than the neuron firing threshold.

f y
if y threshold

if y threshold
( ) *,+-./ 0 1

0
(7)

The output of the artificial neuron is expressed by:

Out t f w x t f ti i
i

n
t( ) ( ( )) ( . ( ))132 2451

1

w x (8)

Fig 5: Artificial Neuron
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If f is now centered around zero, equation (8) is equivalent to:

Out t f w x t threshold f w x t f ti i
i

n

i i
i

n
t( ) ( ( ( ) )) ( ( )) ( . ( ))687 9:7 7; ;< <

1
1 0

w x (9)

The weight w0 (or bias) is equal to the threshold’s value and the imaginary
input x0 is set to the value 1.

One should note there still are many properties of the biological neuron this
model doesn’t take into account. For instance, biological neurons have a
continuous response instead of a binary one, they use a non-linear weighting
of the inputs, the refractory period can be different for each neuron, and the
refractory/excitatory characteristics of a synapse is not always predictable.
Yet, the artificial network model is still an efficient computational tool that
allows basic Boolean operation including NOT, AND, OR.

4.3.2 Perceptron

One of the simplest kind of neural network architecture is called the
perceptron. It allows only unidirectional feed forward connections between
neurons. The network is constituted by one layer of p neural units connected
to n inputs. In this architecture, the number p of outputs is the same as the
number of neural units.

The output of the perceptron is given by:

  
out f w x i pi ik

k

n

k
= =>?( . ) , ,

0

1K  (10)

Which in matrix notation gives:

out f w x@ ( . )t
(11)

Where f is a vector function such as the function fi is applied at
the ith component of the vector and w is the weight matrix.
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with the conditions mentioned in Equation (9).

where w xik
k

n

kAB 0 .  is the input of the unit i, and wik is the weight

connecting the output  unit i to the n inputs.

4.3.3 Multi-layer feed-forward Neural network

The perceptron architecture, although fundamental, can only solve a limited
class of problem. It is unable, for example, to emulate the Boolean function
XOR. More generally, a perceptron has been proved unable to solve non-
linearly separable problems in [11]. This is the reason of the introduction of
multi-layer feed forward networks (Fig. 6) in which the role of the first
layers is to pre-process the inputs.  Let suppose that the network has L
layers. Each layer l has n(l) neuronal units connected to the layer l+1.

Figure 6: Feed Forward Neural Network with n inputs and n
outputs.
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The value at the output of each unit i in layer l is given by:

  
out f w out with i n li i ik k

k

n lC CD EF( . ) , , ( )
( )

0

1

1K (12)

The outputs of layer l-1 are the inputs of layer l and fi is the activation
function of unit i.

4.4 Neural Network Architecture for Sound Synthesis

The neural network’s architecture is determined by the nature and the size of
its inputs and outputs, as well as by the specific tasks it has to handle.

4.4.1 Static Feed-Forward Neural Network

This paper uses a neural network for function approximation. Following
previous research suggestions to look more closely at the use of static feed
forward neural network with back-propagation error [1], [2], this model
attempts to improve the network’s architecture to make it more efficient and
particularly suited for the control of sound synthesis. The number of
controllers has to be the number of inputs in the network. In most of this
dissertation’s examples, the neural network will have two inputs
corresponding to the fundamental frequency and the intensity summary
respectively. Since two-layer networks have been proven of being able to
approximate arbitrarily well any functional mapping [12], with a sufficient
number of hidden units, this model is a two-layers network.

4.4.2 Activation Function

The activation function for the hidden-units is a “tanh” function (Fig.7),
which in practice gives a faster convergence than the logistic function [13].
A linear activation function has been chosen for the output layer, thus
making the range of the output limitless.
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Fig 7: Activation Function

4.4.3 Units

The number of output units is variable and defined by the number of partials
needed to perform the re-synthesis. (Experience has shown that we need at
least twenty partials for a realistic additive re-synthesis).
The number of hidden units governs the complexity of the network. For
determining the number of initial hidden units in our system, a practical rule
of thumb proposed in [14] is used: the total number of weights in the
network should approximately be the number of training points divided by
ten.

4.5 Data Preprocessing

4.5.1 Normalization

In order to take into account the relative importance of the control
parameters expressed in different units, a normalization of the data is
necessary (Fig. 8 and 9). The mean and variance are calculated for the input
vectors.
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This yields the normalized input variable:

x n
x n
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x n

M
x n
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x n

norm

i
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M( )
( ) ( )
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1

1
1

1
1

1 1

1 2
   (13)

M is the length of the input vector or number of frames
n is the index of the current input.

Fig. 8: Original Inputs
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Fig 9: Normalised Inputs

4.5.2 Principal Component Preprocessing

A Principal Component Analysis [15] is then used to de-correlate the
elements of the input vectors. This technique orthogonalizes the components
of the input vectors and it orders the resulting orthogonal components so that
those with the largest variation come first (Fig. 10). This technique can
potentially reduce the size of the input vector by removal of data that is not
statistically significant, but this reduction property is not used on the inputs.
Reducing the dimension of the input vectors by too large a margin could
actually become an obstacle for the function approximation. Information
removed by the Principal Component Analysis technique, looking
apparently irrelevant to the representation of the data itself can actually be of
crucial importance for the regression process [11]. A safe approach is then to
keep the maximum of information in the input data. The principal aim of
using the principal component analysis in this step is to structure (de-
correlate and order) the input data set, which helps the network in its
regression task [11].  Nevertheless, the Principal Component Analysis ability
to reduce the dimensionality of a space, if not recommended for the input
space, is successfully used on the network’s output space. This Principal
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Component analysis of the output space actually contributes to a major
improvement in the efficiency of the model, and is discussed in Chapter 5 to
greater details.

Fig 10:  Normalisation and PCA

4.6 Training

The training of the network has been a crucial point in our project. The
neural network is constituted of a set of neurons, or units, which weighted
combination is trained to approximate time-varying partials.

4.6.1 Background

The standard learning algorithm for multi layers perceptrons is called the
error back propagation algorithm. The principle is to compute the partial
derivatives of the error function in the hidden units with respect to the output
values. When the error and activation functions are differentiable, a gradient
descent technique can be applied to find the weight matrix that minimise the
error. The back propagation algorithm can be divided in two steps. First, the
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input pattern xq , q={1,…,m} taken from a set of m training examples, is
propagated through the network to the output.  Then the error vector is back
propagated from the output to the input of the network. The principle is to
update the weight matrix at each step u in a way that minimises the error
function K (W).

The sum of square error function is given by:

L L( ) ( ) ( )W WM NOMPP PQQ Q1
2 1

2

1 1

out ti
q

i
q

i

p

q

m
q

q

m

(13)

out is the output of the neural network
t is the target
m is the number of examples in the training set
p is the number of output units in the network

If the output error for the pattern is different from 0, the weight matrix is
updated. The update is applied to every weight connecting unit k in layer l-1
to unit I in layer l.
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We obtain d
w oik

q
i
q

k
qe f g h (18)

The problem is now reduced to the calculation ofi ik. For the output units, i.e
if the unit I is in the layer L, we obtain [18]:j
k lki

q
q

i
q ik k

k

n l

i
q

i
q

o
f w out out tmnm op qr'

( )

( . )( )
0

1

(19)

for hidden units, the expression of s
i
k. Is [18]:t t

i
q

ik k ij j
q

j

n l
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1
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0
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(20)

The principle of the backpropagation algorithm now appears more clearly.
Once the {

i
k is calculated for the output layer, the |

i
k of layer l can be

calculated with the value of }
i
k in the layer l+1. The error is propagated from

the output layer L to the input terminals.

4.6.2 Back-propagation with momentum

4.6.2.1 Theory

We first tried the standard back-propagation with the heuristic momentum
algorithm, which was not very requiring but slow, and led to a certain lack
of smoothness in the re-synthesized sound. The principle is to update the
weight matrix at each step u in a way that minimises the error function ~ (W).
The gradient descent with momentum algorithm updates the network
weights, taking into account the local gradient and the last weight change.
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The formula is:� �
w u

u

w
w uik

ik
ik( )

( )
( )� ���3���� � ���� 1 (21)

Thewik are the element of the weight matrix.�  is the learning rate.

And � �� ( )u

wik

= ZT � �  is the gradient with Z being the Jacobian

matrix.
u indicates the current cycle of the procedure over the whole
training set.�

 is the momentum term and is a means to avoid too fast
changes in the weight updating, by keeping track of the step u-
1. It avoids the network to stay stuck in a local minimum.

4.6.2.2 Results

In our application, the training is done in batch mode, where the weights and
biases are updated after all the inputs have been presented to the neural
network. The back-propagation with momentum method gives acceptable
results, and doesn’t need intensive computation, but it requires long training,
and post-processing. The post-processing is necessary to eliminate the
artefacts systematically heard in the end and in the beginning of the partial
estimations (Fig. 11). We defined empirically that the points to be post-
processed are the points where the partial value is smaller than the threshold
given by the formula: (mean(intensity summary))/factor. Factor is an
adjustable variable. The corresponding artefact values are then replaced by
the value of the intensity summary at the same time index. (Fig.12: the 0 are
replaced by X)
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Fig 11: Neural Network Estimation (x) with Back-Propagation with
Momentum and Original (-). First Partial of a Saxophone Sequence.
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Fig 12: Network Estimation (o) with Smoothing Function(+)
compared to the original (-)

4.6.3 Levenberg-Marquardt Algorithm

4.6.3.1 Theory

While some of the recurrent artefacts that appear in the end and in the
beginning of the target partials (Fig. 11) can be successfully removed by
post-processing (Fig. 12), an enhanced learning algorithm is proposed for
even better results without any extra processing. This algorithm, namely the
Levenberg-Marquadt optimisation algorithm, is specifically designed for
minimizing the sum of square error [13]. It is faster than the gradient descent
with momentum algorithm, but requires more computational power. The
Levenberg-Marquardt algorithm is designed to approach second-order
training speed without having to compute the Hessian matrix (second order
derivative). The Hessian matrix is approximated by H Z ZT�3� , where Z is the
Jacobian (first derivatives of the network errors).
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The formula for updating the weights becomes:�
w u Z Z I Z uik

T T( ) ( ) ( )�U����� �����1 1 (22)

where �  is the step size�  is the error for the vector of samples.

4.6.3.2 Results

The speed of the convergence is considerably augmented with this
algorithm. The response of the network also appears a closer fit with the
partial amplitudes, yielding a better sounding result (Fig.13 and 14). In
addition, the reproduction of a satisfactory sound doesn’t require any
filtering. While the response is reliable when the network is fed with the
original inputs, the network’s ability to generalise with new input data is
discussed in the next section.

Fig 13: Estimation of First partial of saxophone with Levenberg
Marquadt algorithm.(original: –  estimation: x)



Sylvain Le Groux                                                                     A Neural Network PCA-based Synthesizer

CNMAT / IRCAM DEA ATIAM Research Report                                                                            4-39   

Figure 14: Comparison of the Training Algorithms for the
Approximation of the Second Harmonic of a Saxophone Sample.
Backpropagation with Momentum in Green. Original in blue. Levenberg-Marquadt in red.

4.7 Regularization

The audio quality of the results is highly dependant on the inaccuracies
encountered in the approximated partial amplitudes. A large error in the
approximation of the partials occurs when the network is over-fitting the
data during the learning process and is presented with a new set of inputs. A
way to avoid over-fitting is to reduce the size of the network but it is hard to
know in advance what is the ideal size of a network for a specific
application. The technique used in this paper is Bayesian regularization [20].
Early-stopping regularisation methods [21] have been put aside because they
don’t give the smooth response required to satisfy human’s sensitive ears.
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Bayesian regularisation puts a control on the smoothness of a mapping
function, by adding a variable extra-term in the expression of the error
function. This term is used to evaluate the degree of smoothness.

The error function    becomes:¡£¢ ¡¤¢¥¡' ( ) ' '¦¨§ª©1 (23)

where « ' ' ¬®¯1 2

1n
w j

j

n

 is the sum of square of the network

weights.
And °  is called the performance ratio.

This error function forces the network to have small weights, which entails a
smoother response, less likely to over-fit. The determination of the optimum
performance ratio is not an easy task. If ±  is too large, the network can over-
fit and if it is too small, the network will not fit the data at all. To solve this
problem, we used an automated Bayesian Regularization algorithm [20] that
automatically finds the optimised parameters for regularization and gives the
effective number of weights and bias necessary for the neural network. This
information is highly relevant for the optimisation of the network
architecture, so that improved efficiency may be attained. Despite the many
improvements achieved on network performances, the size of the audio
samples to be processed is highly limited by the computational cost of
dealing with too many data.
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5  IMPROVING THE MODEL WITH PRINCIPAL
COMPONENT SYNTHESIS

5.1 Introduction

One problem encountered in the realization of this project is the high
computational cost of training the network on large audio samples. A
tradeoff between memory requirement and speed efficiency has to be
defined for each training data set. This seriously limits the generalization
capacities of the network by restraining the length of the training data. One
possible way to circumvent this problem is to somehow reduce the
dimension of the output space necessary to represent the audio data. This is
equivalent in our model to finding a compact representation of the time-
varying partial amplitudes. The Principal Component Analysis tools here are
particularly useful in reducing the computational cost associated with
successful neural network functioning.

5.2 Analysis

The PCA is based on the data matrix extracted thanks to AddAn analysis
algorithms (fig. 15 and eq. 2). The figure 15 represents a matrix of 20 rows
(partials) and 150 columns (frames of 0.01 seconds).
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Figure 15: 3D Representation of the Additive Analysis Matrix
A of a Saxophone Phrase by Coltrane.

The PCA techniques are applied in each frame of the analysis matrix
successively. The covariance matrix is first calculated, the element of which
are given by:

c
M

a E a a E al c l
i

M

l c ci i, ( ( ))( ( ))
, ,

² ³ ³´µ1 1

(24)

Where N is the number of partials,
c, l = 1,2…N,

E is the expected value:

E(x ) k ¶¸·¹1

1M
al c

i

M

,

 M is the number of  frames
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From a symmetric matrix such as the covariance matrix, an orthogonal basis
can be calculated once eigenvalues and eigenvectors are found. The
eigenvectors ei and the corresponding eigen-valuesº iare the solutions to the
equation:

C e ex i i i
» ¼ (25)

These values can be found once the solutions of the characteristic equation
are known:

C Ix ½¿¾À 0 (26)

where the I is the identity matrix having the same order than
Cx, and the notation |.| represents the determinant of the matrix.

The trace of the matrix (or sum of its eigen-values) is the variance of the
data set. By placing the eigenvectors according to the descending order of
eigenvalues (largest first), an orthogonal basis is created in which the first
eigenvector lies in the direction of largest data variance. It becomes possible
to simplify the representation of the analysis matrix, and avoid losing large
amounts of information. By choosing the eigenvectors with the largest
eigenvalues, only the smallest amount of information is lost in the mean-
square sense. A fixed number of eigenvectors (or Principal Component
basis) and their respective eigenvalues can be chosen while a consistent
representation (or abstraction) of the data is obtained. The principal
component analysis of the saxophone sample shows (fig. 16) that only 6 PC
basis associated with the Eigen-Values accounting for more than 99% of the
total variance have been kept.
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Figure 16: 6 PC Basis Obtained with the PCA of Matrix A.

Consequently, an efficient tool for creating and choosing a variable number
of Principal Component Basis can be used. Yet, it is still necessary to
include the time-varying weights that correspond to the PC basis in order to
obtain an approximation of the original partials. This weight matrix of
smaller dimension than the original matrix of partial amplitudes now serves
as the new and smaller target of the neural network.

5.3 Principal Component Synthesis

5.3.1 Modeling the Problem

In order to match the original sound spectrum, the set of new PC basis must
be varied in time. The method is to multiply the PC bases by a time-varying
envelope (fig. 17).
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The problem is represented by the following over-determined system of
equations:

pca pca
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L is the number of principal component basis
N is the number of partials
M is the number of samples
A is the matrix obtained from the additive analysis
PCA is the matrix of Principal Component basis deduced from A
T is the matrix of the time-varying envelopes (fig. 17)

Figure 17: Time-Varying Envelope Corresponding to the 6 PC Basis
of the Saxophone Sample.
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Note that L Ê N is desirable if the task of the network is to be eased by
reducing its target matrix A of dimensions N by M, to a new target matrix T
of lower dimension L by M.

5.3.2 Solving the problem

To solve this over-determined system of equations, where there are more
rows or equations than unknowns,  we seek the minimum norm least squares
envelope solution T  that minimizes:

 A pca T pca T Ak j j r k r
j

M

k

NËÍÌ ËÎÎÐÏÏ. ( ), , ,2
1

2

1

(28)

The matrix T solution of this problem is calculated with the standard
Cholesky decomposition technique [21]. Any number of PC bases can now
be chosen to re-synthesize the audio signal. The more bases we keep the
better the quality of the audio rendering. If the number of bases is equal to
the number of frames in the analysis matrix, the synthetic spectrum is
exactly the same as the original sound spectrum. In the case of the
saxophone sample, we can now replace the previous target matrix A of the
neural network (dimension 20 by 158) by the matrix T of dimension 6 by
158. The training of the network on this matrix W is more efficient,
accurate, and less expensive in terms of computation since the training data
is more than 3 times smaller than before. The retrieval of the time-varying
amplitudes for the re-synthesis is obtained by a simple multiplication of the
matrix PCA by the matrix T. In a real-time situation, the calculation of
partials in response to control information is then simple and efficient,
provided the network is well trained. The PC bases are calculated
beforehand and stored in memory. Fig.18 shows a 3D representation of a
time-varying spectrum in a basis of 3 principal components. Additional
graphical representation showing the efficiency of the PCA neural network
synthesizer can be found in the appendix B.
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Fig 18: Time Varying Spectrum in a 3 PC Basis Representation
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6 APPLICATIONS

6.1 Playing a New Melody

One of the most powerful features of this system is its ability to change the
original melody, while preserving the musical identity of the audio sequence
on which the network has been trained. The figure 7 shows the spectrogram
of the saxophone melody estimated from the PCA neural, network
synthesizer. The difference between the audio signal reconstituted from the
target spectrum (represented by the additive analysis matrix A), and the
synthesised signal built from the response of the network is not audible. The
network can be fed with pitches and loudness in a different order, and still
gives convincing results, if the new controllers values are in the same range
as the training data set (Fig. 19 and 20). The spectral properties of the sound
are preserved when the control information varies.

Fig. 19: Original Melody Played by Coltrane
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Fig. 20: Modified Melody preserving Coltrane’s Style.

6.2 Pitch Shifting/ Time Stretching

Common applications such as time stretching and pitch shifting also give
satisfactory results.

Two different techniques for pitch shifting are possible with the neural
network principal component synthesiser. The first type of technique is
linked to the previous paragraph. It takes advantage of the generalisation
properties of the network. The musician can change the note he/she wants to
play by entering directly the desired frequency as a control input. The
limitation of this technique is the range of the data on which the network has
been trained. The results will be poor if the frequencies, given as an input to
the system, are too different from the frequencies encountered in the training
data set.
Another method, that tackles the previous problem, consists in doing the
pitch processing on the output of the network. Pitch shifting is realised by
accessing the output values at different rates during playback.
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6.3 New Controllers

The choice of controllers is left to the will of the musician. The model we
propose is applicable to any other kind of controller that can be inferred
from an audio sample. For instance, controllers for noisiness or vibrato could
be implemented too.

6.4 Cross-Synthesis

6.4.1 Type 1
The structure of the model makes it suited for cross-synthesis where the
control parameters of one instrument can be reused on a network trained
with another type of instrument.

Fig. 21: Network Trained on a Trumpet Controlled with Piano Parameters
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6.4.2 Type 2
The option of keeping the controllers and the network from a specific
instrument while doing the synthesis using PC bases from another
instrument can be considered too. All the results presented are applicable to
any kind of musical instrument that can be easily described by additive
analysis.

Fig. 22: Network and Controls from a Trumpet but Principal Components
from a Piano

6.5 Studio Corrections

The system we defined is equally interesting for studio work. If a musician’s
performance contains a small mistake in the interpretation, or in the melody,
the neural network synthesizer allows for its correction directly from the
recorded material. It preserves the original musician’s style and avoids a
second recording take.
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Fig. 23 and 24 show the spectrogram of two different interpretations of the
same note, obtained by varying the control information.

Fig. 23: Singing Voice

Fig. 24: Same Note but Different Control Information
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6.6 Scalable Synthesis

In addition, due to the characteristics of the PC synthesis, our model has an
interesting property of scalability. The number of useful PC bases can be
chosen depending on the quality of sound required at the moment. This
comportment is particularly interesting in networked applications, where the
bandwidth available is variable. The quantity of data to be transmitted
(number of time varying envelopes) can be modified in regard to the
availability of the bandwidth, which make the Neural Network Principal
Component Synthesizer an interesting synthesis scheme in the context of
MPEG-4 [22], [23] and [24].
This model definitely offers a flexible control on sound which purpose is to
stimulate musical creativity.

7 CONCLUSION

7.1 Summary

This paper used recorded audio samples to present a model for flexible
control of sound synthesis. An additive analysis/synthesis paradigm was first
chosen for its generality. Unlike other specific models, this model was able
to simulate many different sounds with satisfactory results. An efficient
design of an artificial back-propagation neural network for partial
approximation was then described. The Levenberg-Marquadt training
algorithm (associated with Bayesian Regularization) provided an accurate
estimation of the time-varying partials needed for the re-synthesis of a
musical sound. The powerful statistical methods of Principal Component
Analysis improved the model’s flexibility and scalability. These methods
also reduced the quantity of data necessary for the representation of sound
parameters, and proved particularly suited for the neural network’s
approximations of harmonics. Applications of the original design for the
control of sound samples led to interesting new ways of interacting with
sounds.
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7.2 Future Directions

There are several improvements to be made on this model, which can be
achieved through further research.  An extra input for the neural network
should be added to take into account the noise parameter, not included in
this study’s additive synthesis paradigm. A promising additive analysis-
synthesis technique called Loris, that uses a noise model in addition to
sinusoidal tracks, has been developed by Kelly Fitz [25]. It could replace the
analysis/synthesis paradigm of this dissertation, without any major change in
the global architecture of our system. The work presented in this dissertation
did not include a memory mechanism for previous states of an instrument.
We know, for example, that in a rapid passage, a given note on a wind
instrument will sound different depending on whether it was preceded by a
higher or lower pitch. Future work should take these temporal dependencies
into account. Prior state can be introduced into the network architecture.
The synthesis models presented are causal and can be implemented in real
time. Future research and musical application will benefit greatly from real-
time interaction between the musician and this new “smart instrument”.
Another possible future direction that shows considerable promise is the
application of Kernel Principal Component Analysis [26]. By the use of
Mercer kernels, one can efficiently compute principal components in high-
dimensional feature spaces, related to input space by some nonlinear map.

This paper’s modular model is easily adaptable to future changes. It is
possible to add new inputs, and refined synthesis models while preserving
the general architecture of the original system. This flexibility ensures a
reliable tool for the development of creative expression.
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8 APPENDIX A

Descriptive List of the Main Functions Written in Matlab
for the Neural Network Principal Component Synthesizer

This code has been tested on a desktop macintosh PowerPC G3
upgraded to G4 at 500MHz with 384 MB of ram, and with virtual
memory on.
Matlab version 5.2.1
Neural Network Toolbox version 3.0
Signal Processing Toolbox version 4.1

Ø  addread.m

Syntax:
part = addread(file, n_synthpartial);

Description:
Reads Ircam's Addan partial analysis file in Ascii format
and returns the matrix of time-varying partials.

Inputs:
file: Name of addan analysis file for the partials in ascii

format.
n_synthpartial: Number of partial desired in the re-synthesis

Outputs:
part: Time-varying partials matrix. (dimension number of

partials by number of analysis frames)
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Ø  centroid.m

Syntax:
bright = centroid(part, f0)

Description:
Calculate the centroid of a time varying spectrum.

Inputs:
part: analysis matrix of partial's amplitude

(dimension number of partials by number of analysis
frames)

f0: vector of time varying fundamental frequency values
(dimension one by number of frames)

Outputs:
bright: centroid of the time-varying  spectrum

Ø  cumul.m

Syntax:
[added,nbr] = cumul(b,thres);

Description:
In the context of Principal Component Analysis, gives
the successive sum of the eigen values and the number of
principal component corresponding to a desired
precision.

Inputs:
b: matrix of the time-varying partials of the signal to be

pca-analyzed (dimension number of partials by number
of analysis frames)

thres: parameter controlling the accuracy of the synthesized
sound (percentage of the total variance kept) 0<thres<1

Outputs:
added: vector representing the successive sum
 of the eigen-value
nbr: number of principal component basis necessary to attain

the precision required
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Ø  f0read.m

Syntax:
[f0,time] = f0read(file_f0)

Description:
Imports fundamental frequency analysis files from addan
in ascii format, and returns a time-varying frequency
vector in matlab.

Inputs:
File_f0: addan analysis f0 file in ascii format

Outputs:
f0: vector of time varying fundamental frequency

(dimension one by number of analysis frames)
time: vector giving analysis frame time sequence

Ø  fltr.m

Syntax:
[filter,start,stop] = fltr(p,factor)

Description:
Removes artifacts in the beginning and in the end of the
partials estimation of a neural network trained with back-
propagation and momentum technique.

Inputs:
p: Neural network input matrix. The first line corresponds

to the fundamental frequency. The second line
corresponds to the intensity summary. The third line
corresponds to the centroid. (dimension three by number
of training samples)

factor: Factor controls the threshold value (mean of the
signal/factor) under which the signal is considered as an
artifact.
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Outputs:
Filter: “filtered” partial matrix.
Start: First sample index where the amplitude of one partial is

not zero.
Stop: Last sample index where the amplitude of one partial is

not zero.

Ø  lsq.m

Syntax:
x = lsq(a, b);

Description:
Least square solution of over-determined system of
equation a.x = b. Solved with cholesky decomposition of
the normal equation.

Inputs:
a: matrix with n_row > n_column;
b: row vector;

Outputs:
x: matrix of the least-square solutions.

Ø  main.m

Syntax:
[out, out_s, net, tr, p, t, synth, synth_part, noise, n, a,
synth_w] = main(file_add, file_f0, n_partial, epochs,
goal, norm, pca, thres, fs, awin);

Description:
Main script. Performs the principal component analysis
of the data, the training of the network and the sound re-
synthesis.

Inputs:
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file_add: addan harmonics analysis file in the ascii format
file_f0: addan fundamental frequency analysis file in the asccii

format
n_partial: number of partial desired for the re-synthesis
epochs: number maximum of iteration in the training process
goal: wanted error value
norm: performs the normalization on the inputs and outputs of

the neural network  when norm = 1
pca: decorrelates and orders the input vectors of the network if

pca=1
(pca without any reduction of the dimensionality)

thres: sets the number of principal component to synthesize (if
integer value). Calculates the number of principal
component to synthesize in order to retain a certain
percentage of the total variance of the data (if percentage
value) (c.f. the function cumul.m)

fs: sample rate in Hertz
awin: size of the analysis window in seconds

Outputs:
Out: synthesized sound waveform calculated from the outputs

of the neural network.
out_s: smoothed version of the output, filtered with the function

fltr.m. Only necessary when the network is trained with
simple back propagation with momentum algorithm.

net: trained network
tr: record of training performances
p: Neural network input matrix. The first line corresponds

to the fundamental frequency. The second line
corresponds to the intensity summary. The third line
corresponds to the centroid. (dimension three by number
of training samples)

t: target matrix of the neural network (normalized partials)
synth: synthesized sound waveform calculated directly from the

analysis partials (not from the estimation of these partials
by the network)

synth_part: partial matrix as estimated by the network
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noise: difference between synth and out (difference between the
target and the network estimation).

n: number of initial units in the neural network
a: matrix of PC basis. (dimension number of partials by

number of principal component basis)
synth_w: synthesized time-varying envelopes (c.f. chap5

improving the model with principal component
synthesis).

Ø  nn_io.m

Syntax:
[ptrans, pn, tn, p, t, meanp, stdp, meant, stdt, a] =
nn_io(file_add, file_f0, n_partial, norm, pca, thres);

Description:
Pre-processes the neural network inputs and outputs.
Normalizes, de-correlates and calculates the principal
components of a training data set.

Inputs:
file_add: addan harmonics analysis file in the ascii format
file_f0: addan fundamental frequency analysis file in the asccii

format
n_partial: number of partial desired for the re-synthesis
norm: performs the normalization on the inputs and outputs of

the neural network  when norm = 1
pca: decorrelates and orders the input vectors of the network if

pca=1
(pca without any reduction of the dimensionality)

thres: sets the number of principal component to synthesize (if
integer value). Calculates the number of principal
component to synthesize in order to retain a certain
percentage of the total variance of the data (if percentage
value) (c.f. the function cumul.m)

fs: sample rate in Hertz
awin: size of the analysis window in seconds
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Outputs:
ptrans: de-correlated network input
pn: normalized network input (mean of 0 and variance 1)
tn: normalized target of the network
p: Neural network input matrix. The first line corresponds

to the fundamental frequency. The second line
corresponds to the intensity summary. The third line
corresponds to the centroid. (dimension three by number
of training samples)

t: network target matrix of time-varying partials.
(dimension number of partials by number of analysis
frames)

meanp: mean of the input data
stdp: standard deviation of the input data
meant: mean of the target data
stdt: standard deviation of the target data
a: matrix of the principal component (dimension number of

partials by number of principal components)

Ø  pca.m

Syntax:
[base,value] = pca(b);

Description:
Performs principal component analysis on the analysis
matrix of time-varying partials

Inputs:
b: Matrix of data for analysis. Each row of b represents a

variable (in this project a row corresponds to a time-
varying partial amplitude) each column of b represents an
observation (spectrum for an analysis frame).

Outputs:
base: PCA basis matrix.
value: vector made of the eigen-values sorted by decreasing

order.



Sylvain Le Groux                                                                     A Neural Network PCA-based Synthesizer

CNMAT / IRCAM DEA ATIAM Research Report                                                                            8-62   

Ø  Synthadd.m

Syntax:
Out = synthadd(part, f0, n_partial, fs, awin)

Description:
Additive synthesis with linear interpolation between the
analysis frames to match the right sampling rate.

Inputs:
Part: Matrix of time-varying partials. (dimension number of

partials by number of analysis frames).
f0: Vector of time-varying fundamental frequency values

(dimension one by number of frames)
n_partial: number of partial desired for the re-synthesis
fs: sample rate in Hertz
awin: length of the analysis window in seconds.

Outputs:
Out:  synthesized waveform.

All the other functions used for this project (for cross-synthesis, pitch
shifting, or for displaying graphics, etc) are based on the fundamental
functions we just described.

crossynth.m performs cross-synthesis of type 1 (c.f chap 6
applications)

crossynth2.m performs cross-synthesis of type 2 (c.f chap 6
applications)

pcadd.m performs principal component analysis on an additive
analysis file from addan in ascii format

plotpart3d.m plots a 3D representation of the time-varying partials



Sylvain Le Groux                                                                     A Neural Network PCA-based Synthesizer

CNMAT / IRCAM DEA ATIAM Research Report                                                                            8-63   

plotpca3d.m spectrum representation in a basis of principal
components

plotting.m displays principal component basis, loudness, time-
varying envelopes, time-varying partials, target and
synthesized sound waveform, target and synthesized
spectrogram.

plot_input_norm.m

displays the normalized inputs of the neural network

plot_part_smooth_target.m

displays time-varying amplitude of partials. Compares
the network estimation, the target and the “smoothed”
estimation.

start.m launch the whole analysis synthesis process for a specific
sound sample and save the results in a record file.

synthmelod.m re-synthesize with a different succession of notes

synthpca.m pca synthesis from addan .f0 and .add files

synthsmooth.m smoothen time-varying partials

synthstretch.m performs time-stretching
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9 APPENDIX B

Graphical Tools

During this project, graphical tools appeared to be very useful. Examples of
typical displays plotted during an analysis and synthesis session are
proposed in this appendix. The following displays come from the same
saxophone analysis synthesis session as in chapter 5.

Inputs:
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Outputs:
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Qualitative Description of the Results
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Quantitative Description of the Results:

Linear regression between the target (time-varying envelope) and the output
of the network.

Time-varying envelope 1. Coefficient of regression R: 0.996

Time varying envelope 2. Coefficient of regression R: 0.983
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